Stochastic Modeling of Dormant Cancer Tumors

Authors

  • Kouadio Jean Claude Kouaho Laboratory of Applied Mathematics and computer science, Université Felix Houphouet-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire Author
  • Yao Modeste N’Zi Laboratory of Applied Mathematics and computer science, Université Felix Houphouet-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire Author
  • Innocent Adoubi Director of the Department of Immuno hematocancerology, Université Felix Houphouet-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire Author

DOI:

https://doi.org/10.30707/LiB8.1.1647878866.042927

Keywords:

Birth-and-death process, cancer therapy, tumor resistance, tumor relapse

Abstract

During tumor progression, many interactions are established between cancer cells and their micro-environment. These interactions promote the survival of cancer cells and resistance to therapy. This ability of the tumor to develop resistance to therapy resides in the mechanism of dissemination of cancer cells from the primary tumor. Disseminated cancer cells may remain dormant for a certain period of time. These dormant cells reactivate under the influence of an environment and cause therapeutic failure. In this paper, we propose a stochastic computational model of tumor dormancy and resistance. This mathematical model is based on the description of the tumor cell colony as a branching process. With this model, we identify the patient's status at diagnosis, and optimized treatment strategies by investigating the therapeutic efficiency, resistance and tumor relapse.

Downloads

Published

2021-08-02

Issue

Section

Research

How to Cite

Stochastic Modeling of Dormant Cancer Tumors. (2021). Letters in Biomathematics, 8(1), 101-118. https://doi.org/10.30707/LiB8.1.1647878866.042927

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>