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ABSTRACT
The usefulness of log-linear models for contingency table analysis is
evident from its current general popularity among statisticians. We
have extracted U.S. vital rates and survival data in cancer mortality
from the Surveillance between the year of 1975–2015. This paper has
two distinct fields: (i) Survival and (ii) Contingency table analysis in a
single analytical framework based on log-linear model. In this paper,
the effects of gender and different types of cancer on death rate have
been demonstrated. Testing and estimation are also applicable here.
The purpose of the underlying Cox model is to evaluate simultane-
ously the effect of several factors on survival, i.e. it can examine how
specified factors influence the rate of happening of a particular event
(e.g. death) during this time interval. The purpose of this work is not
to develop new methodologies, but rather to present new uses and
interpretations. Simulation is based on R-software.
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1. Introduction

In the world, cancer is one of the deadliest diseases. Our body is made up of different types
of cells. Generally, these cells are grown and divided under controlled conditions to create
more cells as they are needed to keep the body healthy. When cells become old or dam-
aged, they die and new cells can take place in there. Cancer is the uncontrolled growth of
abnormal cells anywhere in a body. These abnormal cells are known as cancer cells, malig-
nant cells or tumour cells. These cells can infiltrate normal body tissues. Cancer refers to
cells that grow out of control and invade other tissues. Cells become cancerous due to the
accumulation of defects, or mutations, in genetic material (DNA) of a cell. Tobacco use
is one of the causes of cancer deaths. Apart from this, another reasons are due to obesity,
poor diet, lack of physical activity or excessive drinking of alcohol. Other factors including
certain infections, exposure to ionizing radiation and environmental pollutants are also
responsible for cancer. Typically, many genetic changes are required for cancer develop-
ment. Some cancers are due to inherited genetic defects from a people’s parents. There are
over 200 types of cancer and each is classified by the type of cell that is initially affected.
Many cancers and the abnormal cells that compose the cancer tissue are further identified
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by the name of the tissue that the abnormal cells originated from (e.g. breast cancer, lung
cancer and colon cancer). But some cancers do not form tumours (as e.g. Leukemia is a
cancer of the bone marrow and blood). Some types of cancer begin in the skin or in tis-
sues that line or cover internal organs (skin, lung, colon, pancreatic, ovarian cancers, etc.).
Some of them begin in bone, cartilage, fat, muscle, blood vessels or other connective or
supportive tissue (bone, soft tissue cancers). Some cancers begin in the cells of the immune
system (i.e. T-cell lymphomas, B-cell lymphomas, etc.) and it can also begin in the tissues
of the brain and spinal cord. In human body, the hollow area in the centre of each kidney
is renal pelvis. It is a top part of the ureter. The ureter is a kind of long tube which makes
a connection between the kidney and bladder. Actually, renal pelvis is very much related
with kidney. Transitional cell cancer of the ureter and renal pelvis is a disease in which
malignant (cancer) cells form in the ureter and renal pelvis.

Cancers may be prevented by not smoking, maintaining a healthy weight, not drinking
too much alcohol, eating whole grains and fresh vegetables, fruits, vaccination against cer-
tain infectious diseases, not eating too much processed and red meat and avoiding too
much sunlight exposure. Cancers can be treated with some combinations of radiation
therapy, surgery, chemotherapy, immunotherapy, monoclonal antibody therapy, targeted
therapy, etc. The choice of therapy is based on the location and grade of the tumour and
the stage of the disease, as well as the medical state and age of the affected people. The aim
of the treatment is to complete removal of the cancer cells without damaging the rest of
the body. But it is unfortunate that most of the cancer treatments have a negative effect on
normal body cells.

Chemotherapy is the treatment of cancer with one or more cytotoxic anti-neoplastic
drugs through some protocol. Chemotherapy also affects cells that divide rapidly under
normal circumstances: cells in the bone marrow, digestive tract and hair follicles. Targeted
therapy is also a form of chemotherapy that targets specific molecular differences between
cancer and normal cells. The efficacy of chemotherapy depends on the type of cancer and
the stage. The combination of chemotherapy and surgery is useful in different types of can-
cer (including breast cancer, colorectal cancer, pancreatic cancer, testicular cancer, ovarian
cancer and certain lung cancers). Besides it is curative for some cancers, such as some
leukaemia (a cancer caused by an overproduction of damagedwhite blood cells). The effec-
tiveness of chemotherapy is frequently limited by its toxicity to other tissues in the body.
Even when chemotherapy does not provide a permanent cure, it may be helpful to reduce
symptoms such as pain or to reduce the size of an incurable tumour in the hope that surgery
will become possible in future.

Radiation therapy involves the use of ionizing radiation in an attempt to either cure
or improve symptoms. As per the clinical evidence this therapy is useful for half of the
cases. The radiation can be of two types: (i) from internal sources and (ii) from external
sources. Generally, the radiation is most low energy X-rays for treating skin cancers, while
higher energy X-rays are used for cancers within the body. It can be damaging or killing the
DNA of cancerous tissue. To spare normal tissues (such as skin or organs, which radiation
must pass through to treat the tumour), shaped radiation beams are focused frommultiple
exposure angles to intersect at the tumour. It will provide a much higher absorbed dose at
the location of the tumour than in the surrounding (healthy tissue).

Surgery is the primary method of treatment to cancer therapy. It is an important part of
definitive diagnosis and staging of tumours. In localized cancer, surgery typically attempts
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to remove the entire mass along with, in certain cases, the lymph nodes in the area. For
some types of cancer it is sufficient to eliminate the cancer.

Immunotherapy is one of the most recent approaches for cancer. It depends on the
generally-accepted hypothesis: ‘the immune system is the best tool that humans have for
fighting disease’. It can help for stimulating or helping the immune system to fight cancer.
The approaches include antibodies, checkpoint therapy and adoptive cell transfer. In this
work we have fit log-linear model to predict effects of gender and different types of cancer
on death rate. Some of the more attractive features of this modelling system are the ease
of model specification and reduction which provide the flexibility in treating both depen-
dent and independent variables; and the fact that maximum likelihood estimates can be
collectively characterized for an assortment of sampling distributions, including Poisson,
multinomial and product multinomial (Agresti, 2002, 2007, 2010). Apart from this, the
purpose of the underlying Coxmodel is to evaluate simultaneously the effect of several fac-
tors on survival. In other words, it allows us to examine how specified factors influence the
rate of a particular event happening (e.g. infection, death) at a particular point in time. This
rate is commonly referred as the hazard rate. Predictor variables (or, factors) are usually
termed covariates in the survival-analysis literature. The simulation of this work is based
on R-software. Finally, the last section consists of the general discussions and conclusions
of the paper.

2. Model derivation and preliminaries

2.1. Log-linearmodels for Poisson count data

In most studies, there are several explanatory variables which may be continuous as well
as categorical. The main purpose is usually to describe their effects on response variables
(Ghosh & Samanta, 2019). When a model is good fitted, it evaluates the effects, includes
relevant interactions, and provides smoothed estimates of response probabilities. The fam-
ily of generalized linear models (GLM), which contains the most important models for
categorical responses as well as standard models for continuous responses, is most impor-
tant part in the statistical field for investigations. It is used increasingly in a wide variety
of applications. The simplest distribution for count data is the Poisson distribution. It can
take any non-negative integer value. Let Y denotes a count and let ψ= E(Y). The Poisson
pmf (probability mass function) for Y is

f (y;ψ) = e−ψψy

y!
, where y = 0, 1, 2, . . . (1)

The Poisson log-linear model is defined as

logψi =
∑
j
βjxij + εi, i = 1, 2, ˙· · ·,N. (2)

The mean of Poisson distribution is non-negative. Although a GLM can model a positive
meanusing the identity link, it ismore common tomodel the log of themean. The logmean
can take any real value like linear predictor θ + βX. A Poisson log-linear GLM assumes
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a Poisson distribution for Y and uses the log link. The Poisson log-linear model when we
consider X as explanatory variable and ε as the error term be

logψ = θ + βx + ε (3)

Themean satisfies an exponential relationship for thismodel:ψ = exp(θ + βx)= eθ (eβ)x
A 1-unit increase in x has a multiplicative impact of eβ on ψ ( i.e. the mean at x+1 equals
the mean at x multiplied by eβ). A common use is for ‘modelling cell counts’ in contin-
gency tables, since it is generally familiar with log-linear models for contingency table
analysis (Agresti, 2010; Laird &Olivier, 1981). The models specify how the expected count
depends on levels of the categorical variables for that cell as well as associations and inter-
actions among those variables (Anderson, 1984; McCullagh, 1980; Powers & Xie, 2000).
The purpose of log-linear modelling is the analysis of association and interaction patterns.

When a response count ni has index equal to ti, where ti is the time or space (e.g. days
in the community), the sample rate of occurrence is ni/ti. The expected value is ψi/ti.

i.e.

E
(
ni
ti

)
= 1

ti
E(ni)

= ψi

ti
.

When x is the explanatory variable, the Poisson log-linear regressionmodel for expected
rate of the occurence of events is

log
(
ψi

ti

)
= θ + βxi

⇔ logψi − log ti = θ + βxi
⇔ logψi = θ + βxi + log ti
⇔ ψi = ti exp(θ + βxi), (4)

Sometimes, log t is called ‘offset’. The mean is proportional to the index, with proportion-
ality constant depending on the value of x. But when we consider the identity link, then
the model is of the form:

ψi

ti
= θ + βxi

⇒ ψi = θ ti + βxiti. (5)

Here, xiti are explanatory variables and there is no intercept.
The likelihood function for n independent Poisson observations is obtained by taking a

product of pmf given by Equation (1), then taking logs and ignoring a constant involving
log(yi!). Thus the log-likelihood function is

log L(β) =
∑

[yi log(ψi)− ψi], (6)

whereψi depends on the covariates of xi and a vector of p parametersβ through the log link
of Equation (2). Generally, the log is the canonical link for the Poisson distribution. If we
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take derivatives of the log-likelihood function with respect to the elements of β , and then
taking the derivatives equal to zero, the maximum likelihood estimates (ψ̂) in log-linear
Poisson models satisfy the estimating equations:

XTy = XTψ̂ , (7)

where X is the model matrix, with one row for each observation and one column for each
predictor, including the constant (if any), y is the response vector and ψ̂ is a vector of
fitted values, calculated from the maximum likelihood estimator’s β̂ by exponentiating the
linear predictor ξ = XT β̂ . This estimating equation occurs not only in Poisson log-linear
models, but also in any GLM (with canonical link), including logistic regression models
for binomial counts and linear models for normal data.

Deviance is a measurement of discrepancy between observed and fitted values. For
Poisson responses the deviance takes the form:

D = 2
∑
i

[
yi log

yi
ψ̂i

− (yi − ψ̂i)

]
. (8)

The first term of the right side is identical to the binomial deviance, representing ‘twice a
sum of observed times log of observed over fitted’ and the second term is ‘a sum of differ-
ences between observed and fitted values’ (usually zero as maximum likelihood estimators
in Poisson models have the property of reproducing marginal totals). When the sample is
large, the distribution of the deviance is approximately a chi-squared with (n − p) degrees
of freedom, where n is the number of observations and p is the number of parameters.
Therefore, the deviance can be used directly to test the goodness of fit of the underlying
model. An alternative measure of goodness of fit is Pearson’s chi-squared statistic denoted
and defined as:

X2 =
∑
i

(yi − ψ̂i)
2

ψ̂i
, (9)

where the numerator is the squared difference between observed and fitted values, and
the denominator is the variance of the observed value. It has the same form for binomial
and Poisson data. For large samples, the distribution of Pearson’s statistic is also approx-
imately chi-squared with (n − p) degrees of freedom. One of the advantages of deviance
over Pearson’s chi-squared is that it can be used to compare nested models. A good-fitting
log-linear model provides a basis for describing and making inferences about associa-
tions among categorical responses. Standard methods apply for checking fit and making
inference about model parameters. As usual, X2 and G2 (Likelihood Ratio chi-squared
statistic) test whether a model holds by comparing cell fitted values to observed counts.
Here ‘degrees of freedom’ equals ‘the number of cell counts minus the number of model
parameters’.

For log-linear models, the likelihood ratio tests can easily be constructed in terms of
deviances. Apart from this, in this work we have constructed Wald tests based on the fact
that themaximum likelihood estimator β̂ has amultivariate normal distributionwithmean
equal to the true parameter value β and variance-covariance matrix var (β̂) = XTWX
(approximately in large samples). HereX is the model matrix andW is the diagonal matrix
of estimation weights.
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2.2. Modelling survival times

In this work, we have also considered a method for modelling survival times related to the
Poisson log-linearmodel for rates that focuses on times until death rather than on numbers
of deaths. In survival (and reliability) analysis, the hazard and survival functions are very
useful. Let T denotes the time to some event, such as death or such as product failure in
the context of reliability study. Let f (t) denotes the pdf (probability density function) and
F(t) is the cdf (cumulative density function) of T. There exists a good connection between
maximum likelihood estimation using a Poisson likelihood for numbers of events and a
negative exponential likelihood for T (Aitkin & Clayton, 1980). The survival function is
denoted and defined as:

S(t) = 1 − F(t) (10)

and the hazard rate or hazard function is denoted and defined as:

λ(t) = f (t)
1 − F(t)

. (11)

There are several models for the censoring mechanism that lead to non-informative
censoring, and informative censoring models as well (Lagakos, 1979). Let, wi be the indi-
cator function, where wi = 1 for death and wi = 0 for censoring for subject i. Now, the
survival-time likelihood for n independent observations is as follows:

n∏
i=1

f (ti)wi[1 − F(ti)]1−wi . (12)

Then the log likelihood equals to∑
i
wi log[f (ti)] +

∑
i
(1 − wi) log[1 − F(ti)]. (13)

Further analysis is required for a parametric form for f and a model for the dependence
of its parameters on independent variables. Most survival models focus on the rate at
which death occurs rather than expectation of T. Now, consider the log likelihood (13)
with f (t) equals to the negative exponential density with parameter ζ exp(βTx), where
h(t; x) = ζ exp(βTx) is the hazard function for a negative exponential survival distribution
including explanatory variable x. For subject i, let ψi = tiζ exp(βTxi) and by substitution,
the log likelihood becomes

log
[{(

ψ1

t1

)w1

e−ψ1

}{(
ψ2

t2

)w2

e−ψ2

}
· · ·

]

=
∑
i
log

{(
ψi

ti

)wi

e−ψi

}

=
∑
i
wi logψi −

∑
i
ψi −

∑
i
wi log ti. (14)

The first two terms of the last line involve β and is identical to the log likelihood for inde-
pendent Poisson variates {wi} where expected values are {ψi}. In this application {wi} are
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binary rather than Poisson, but that is irrelevant to the process of maximizing with respect
to β . This process is equivalent to maximizing the likelihood for the Poisson log-linear
model:

logψi − log ti = log ζ + βTxi (15)

with offset log(ti), using observations {wi}. The summation of the terms in the log-
likelihood (for subjects having a common value of x) yields the observed data as the
numbers of deaths

(∑
i wi

)
for each x, and the offset is the log

(∑
i ti

)
at each setting.

The Cox model is expressed by the hazard function denoted by h(t). Briefly, the
hazard function can be interpreted as the risk of dying at time t. The Cox model can
be written as a multiple linear regression of the logarithm of the hazard on the vari-
ables xi, with the baseline hazard being an ‘intercept’ term that varies with time. The
quantities exp(βi) are called hazard ratios (HR). A value of βi is greater than zero, or
equivalently a hazard ratio greater than one, indicates that as the value of the ith covari-
ate increases, the event hazard increases and thus the length of survival decreases. Put
another way: a hazard ratio above 1 indicates a covariate that is positively associated with
the event probability, and thus negatively associated with the length of survival. A pos-
itive sign means that the hazard (risk of death) is higher, and thus the prognosis worse,
for subjects with higher values of that variable. For good prognosis means the negative
sign that the hazard is lower. When hazard ratio is equal to 1, then there is no effect.
Therefore,

(i) A covariate with hazard ratio> 1 (i.e. when βi > 0) is called bad prognostic factor.
(ii) A covariate with hazard ratio < 1 (i.e. when βi < 0) is called good prognostic factor.

Generally, a separate hazard rate is used for each piece of the time scale. The piecewise
exponential approach is a natural one for life-table analysis where the period of follow-
up is divided into intervals, since a common assumption is that the hazard function is
approximately constant within interval (Holford, 1976). Perhaps themost appealing as well
as popular feature (in survival analysis) of the hazard function is that it allows a needful
way for specifying the effect of covariates on survival. The ‘proportional hazards model’
introduced by Cox (1972) is as follows:

h(t; x) = h0(t)ex
Tβ , (16)

where h0(t) is the underlying hazard function which is chosen from any parametric family
(such as exponential, Weibull, etc.) or it may be left unspecified and β is a column vector
of unknown parameters specifying the effect of covariates (Cox, 1972). The ratio of haz-
ard functions for any two individuals with covariate vectors X1 and X2 is exp (X1 − X2)

Tβ

which is independent of t. It is noted that ‘the ratio of hazard functions’ does not depend
on t provides a convenient way of summarizing the effect of a covariate on survival.
‘Non-proportional hazards’ models can be constructed by allowing h0(t) to depend on X,
whereas time varying covariates allow X to depend on t.
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3. Materials andmethodology

Themortality data of cancer is provided byNational Cancer Institutementioned in the fol-
lowing link: https://seer.cancer.gov. In thiswork,we have considered the rates of population
as per 1 lakh in the year between 1975 and 2015.

Herewe have considered cancer patients who are classified by types of cancer [(i) Kidney
and Renal Pelvis and (ii) Colon and Rectum] and by gender (male, female). To use gender
and different types of cancer as predictors in a model for frequency of death, the proper
baseline is not the number of subjects but rather the total time that subjects were at risk.
Therefore, we model the rate of death. The time at risk for a subject is their follow-up time
of observation. For a given gender and different types of cancer, the total time at risk is the
sum of the times at risk for all subjects in the cell those who are died. We can get death
rate by dividing deaths with the time at risk. We now model effects of gender and cancer
type on the rate. Let g be a dummy variable for gender, with g1 = 0 for male and g2 = 1 for
female. Let c be a dummy variable for cancer type, with c1 = 0 for Kidney and Renal Pelvis
and c2 = 1 for Colon and Rectum. Let nij denotes the number of deaths for gender gi and
cancer type cj, with expected value λij for total time at risk tij. Given tij, the expected rate
is λij/tij. In this work, we have considered the model:

log
(
λij

tij

)
= θ + β1gi + β2cj. (17)

The corresponding model of Equation (17) with identity link be

λij = θ tij + β1gitij + β2cjtij. (18)

Now we fit the data for Poisson regression model considering log link and then the
corresponding model with identity link can be fit which is shown in the following table:

It is assumed that there is a lack of interaction in the effects in the model. Here, model
fitting uses standard iterative methods, treating nij as independent Poisson variates with
means λij. This is done conditional on tij.

In clinical investigations, there are many situations where several known quantities
(known as covariates) potentially affect patient prognosis. In this work, two groups of
patients are compared. For this purposed the established data are suitably constructed as
well as computed for the underlyingmodel. Let us consider two different types of gender (i)
male (= 0) and (ii) female (= 1). For censoring status: 0 =Censored, 1 =Dead. Type-1 is
the annual rate of affecting and dying people in Kidney and Renal Pelvis cancer, similarly
Type-2 is the annual rate of affecting and dying people in Colon and Rectum cancer.

4. Concluding remarks

This work demonstrates how model fitting, estimation and testing methods have
been developed for log-linear contingency table analysis. The methods for handling
ordered categories, such as those described in Fienberg (1977), would be very useful.
Table 1 presents the fitted death counts and estimated rates. The estimated effects are
β̂1 = −0.39 (standarderror = 0.283) and β̂2 = 1.56 (standarderror = 0.367). It can be
concluded that when the gender type is given, the estimated rate for Colon and Rectum



LETTERS IN BIOMATHEMATICS 9

Table 1. Fit for Poisson regression models.

Log link Identity link

Gender Kidney & Renal Pelvis Colon & Rectum Kidney & Renal Pelvis Colon & Rectum

Female Number of deaths 3.63 17.36 2.78 19.5
Death rate 0.007 0.036 0.005 0.041

Male Number of deaths 5.36 25.63 6.5 23.21
Death rate 0.011 0.053 0.013 0.048

cancer is exp(1.56) = 4.75 times that for the Kidney and Renal Pelvis cancer. The 95%
Wald confidence interval for β2 of 1.56 ± 1.96(0.3675) translates to (2.4, 10.5) for the true
multiplicative effect exp(β1) and the likelihood-ratio confidence interval is (2.4, 9.8). The
present study contains much censored data. From the 133 patients, only 52 died during the
study period. Both effect estimates are imprecise. The analysis uses all 133 patients through
their contributions to the times at risk.

Goodness-of-fit statistics comparing nij to fitted values λ̂ij are G2 = 0.2 and X2 = 0.3.
The residual degrees of freedom is equal to 1, since the four response counts have three
parameters. Themild evidence of lack of fit corresponds to evidence of interaction between
gender and cancer type. However, the model only considered different types of cancer and
omitting the effect of gender (i.e. β1 = 0), then it fits nearly as well, with G2 = 2.14 and
X2 = 2.16 and degrees of freedom equals to 2. We also conclude that the corresponding
model with identity link shows a good fit with G2 = 0.3 and X2 = 0.3 (degrees of freedom
= 1), the table shows the fit. The estimate β̂1 = −0.007 (standard error = 0.005) then rep-
resents an estimated difference in death rates between the female andmale gender for each
type of cancers. Also, the estimate β̂2 = 0.034 (standarderror = 0.007) then represents an
estimated difference in death rates between the different type of cancers for each type of
gender.

The greatest usefulness of the Cox model in any application may be in describing the
relationship between survival time of patients and various explanatory variables. Results
of this study indicate that the Cox model is very useful for cancer mortality. Generally, the
Cox proportional hazards regression analysis works for both quantitative predictor vari-
ables and for categorical variables. Furthermore, theCox regressionmodel extends survival
analysis methods to assess simultaneously the effect of several risk factors on survival time.
This survival rate of cancer patients is synonymous to the mortality rate of patients. The
present work also expands to include an analysis of the significance of the variables used
in influencing the survival rate of cancer patients. The ‘survival rate’ and the ‘relationship
between independent variables and survival rate’ lead to an estimate of the reliability of the
survival rate of cancer patients which is obtained in this study.

In the multivariate Cox analysis, the covariates ‘Gender’ and ‘Type-1’ (for Kidney and
Renal Pelvis) remain significant (p-value < 0.01). The p-value for Gender < 0.01 with a
hazard ratioHR = exp(coef ) = 0.18 indicates a relationship between patients’ Gender and
decreased risk of death. The hazard ratios of covariates are interpretable because of mul-
tiplicative effects on the hazard. If holding the other covariate as constant, being female
(Gender = 1) reduces the hazard by a factor of 0.18, or approx 82%. Therefore, we come
to the conclusion: being female is associated with good prognostic. Similarly, the p-value
for Type-1 < 0.01 with a hazard ratio HR = 0.89 indicates a strong relationship between
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Table 2. Summary of fitted models for survival.

Cancer type Test Value Df p-Value

Type-1: Kidney and Renal Pelvis LR test 63.61 2 < .01
Wald test 15.82 2 < .01
Score test 43.49 2 < .01

Type-2: Colon and Rectum LR test 23.43 2 < .01
Wald test 22.34 2 < .01
Score test 25.25 2 < .01

Type-1 value and decreased risk of death. Holding the other covariate as constant, a higher
value of Type-1 is associated with a good survival. The summary outputs of the performed
computation through R provides upper and lower 95% confidence intervals for the ‘hazard
ratio (exp(coef )) of Gender’: lower 95% bound = 0.13, upper 95% bound = 0.58. Simi-
larly for the ‘Type-1’ case, we get lower 95% bound = 0.86, upper 95% bound= 0.94. The
covariates ‘Gender’ and ‘Type-2’ ( for Colon and Rectum cancer ) remain significant (p-
value< 0.01). The p-value for Gender< 0.01 with a hazard ratio HR = exp(coef ) = 0.27
indicates a relationship between the patients’ Gender and decreased risk of death. The haz-
ard ratios of covariates are interpretable as multiplicative effects on the hazard. If holding
the other covariate as constant, being female (Gender = 1) reduces the hazard by a factor
of 0.27, or approx 73%. It can also be concluded that being female is associated with good
prognostic. Similarly, the p-value for ‘Type-2’ < 0.01 with a hazard ratio HR = 0.43 indi-
cates that there exists a relationship between ‘Type-2’ value and decreased risk of death.
The summary outputs also gives upper and lower 95% confidence intervals for the hazard
ratio (exp(coef )) of Gender: lower 95% bound = 0.02, upper 95% bound = 1.5. Similarly,
for ‘Type-2’ case, we get lower 95% bound = 0.2, upper 95% bound = 0.8.

The performed tests evaluate the null hypothesis ‘all of the betas (β) are zero’. In this
work, the test statistics are in good agreement with ‘the null hypothesis is soundly rejected’.
Finally, the output gives p-values for three alternative tests for overall significance of the
model: (i) Likelihood-ratio test, (ii) Wald test, and (iii) Score log-rank statistics. These
three methods are asymptotically equivalent. For large enough N, they will give similar
results. For small N, they may differ somewhat. The ‘Likelihood ratio test’ has shown bet-
ter behaviour for small sample sizes, so it is generally preferred for the Kidney and Renal
Pelvis cancer (as evident from Table 2). But the value of score test is high for small sample
sizes as evident from Table 2, so it can be concluded that the score test is useful for the
Colon and Rectum cancer. For short time intervals, the piecewise exponential approach
is essentially non-parametric, making no assumption about the dependence of the haz-
ards on time. From the view point of data modelling, the piecewise exponential models
are very flexible. If nothing is assumed about the underlying survival distribution, then
an essentially non-parametric analysis can be implemented by making the time intervals
sufficiently small. For future developments in this area, more formal methods for model
simplifications should be included based on fitting a time curve to the estimated time effect.
From the analytical point of view, it is both intuitively appealing and conceptually expedi-
ent to include survival analysis in the general counted data framework. The most obvious
advantage is that the whole class of log-linear models used to characterize ‘counted data
structures’ carries over directly to characterize ‘survival data’. In this general framework,
‘competing risk analyzes’ and ‘time varying covariates’ can be easily and suitably handled.
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The Poisson regression was used on flood occurrences (responsible variable) and the
set of explanatory variables under consideration were tested in the work of Cupal, Deev,
and Linnertova (2015). But in the present work, not only to determine the dependent vari-
ables of the underlying Poisson regression model with relatively input parameters but also
Cox model is applied to evaluate simultaneously the effect of several factors on survival.

Our goal is to control infection and thereby prevent reproductive health problems and
also aware the people about the diseases. So, the development of various cancer therapies
and identification of the most effective therapy against the spread of tumour cells should
be formed as a part of future research.
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