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ABSTRACT
Zika is a vector borne disease for which the latest world wide out-
break inspired a renewed interest in epidemiological modelling of
vector bornediseases. However, due to thepossibility of sexual trans-
mission and the high proportion of asymptomatic individuals, mod-
els for similar diseases, such as dengue or chikungunya, are no longer
applicable. It is of interest to study how the existence and behaviour
of asymptomatic individuals and the potential of them transmitting
the disease affect the overall epidemic dynamics. The model pre-
sented here aims to be as simple as possible, while at the same time
taking into account the features that make Zika unique among other
vector borne diseases. Thismodel allows for the exploration of sexual
transmission andhow the sexual behaviour of asymptomatic individ-
uals may affect the spread of the disease. In addition, the model was
used to determine the basic reproductive number, with and without
the effect of sexual transmission as well as to implement a simple
version of control usingWolbachia bacterium.
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1. Introduction

Zika is a vector-borne diseasewhich is primarily transmitted through the bite of an infected
female Aedes mosquito, mainly Aedes aegypti (Gao et al., 2016). Aedes aegypti mosquito
is the same mosquito that can transmit dengue, chikungunya and yellow fever. Unlike
dengue, chikungunya and yellow fever, however, Zika can be transmitted through sex-
ual contact (Allard, Althouse, Hébert-Dufresne, & Scarpino, 2017). The most common
symptoms of the Zika virus infection are fever, rash, headache, joint pain, conjunctivi-
tis and muscle pain. Symptoms usually last anywhere from 3 to 14 days (Krow-Lucal,
Biggerstaff, & Staples, 2017). Yet not everyone who is infected with Zika displays or expe-
riences any symptoms and, in fact, it is estimated that 80% of people infected with Zika are
asymptomatic (Duffy et al., 2009).
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Many of the early models of Zika epidemics assumed that sexual transmission of the
virus can be neglected, and that we can rely on previously analysed models of other vector
borne diseases. Papers such as Maxian, Neufeld, Talis, Childs, and Blackwood (2017) con-
cluded that sexual transmission may play a crucial role in the existence of Zika outbreaks,
and offers conditions for which sexual transmission is relevant.

Later models tend to consider sexual transmission but group symptomatic and asymp-
tomatic humans in one class. A few recent papers include both the asymptomatic and
symptomatic classes, as well as sexual transmission (Maxian et al., 2017; Padmanabhan,
Seshaiyer, & Castillo-Chavez, 2017). As it is estimated that the vast majority of people
infected with Zika do not present any symptoms, splitting the infected population into
these two classes offers the opportunity to better understand the dynamics of the disease
and the effect that the behaviour of asymptomatic individuals will have on the spread of
Zika. If an infected individual does not present symptoms, it ismore likely that this individ-
ual will not take the precautions necessary to avoid spreading the disease. For this reason,
we present and analyse a model which includes both sexual transmission, and symp-
tomatic and asymptomatic classes and analyse how the sexual behaviour of asymptomatic
individuals affects the spread of Zika.

This is similar to the model presented in Padmanabhan et al. (2017), but withoutWorld
Health Organization (WHO) and Center for Disease Control (CDC) preventative mea-
sures. Instead, the authors here are interested in investigating the effects of a different vector
control measure,Wolbachia. Given that current strategies to battle the spread of Zika such
as insecticides or larval biological control have been proven unsustainable and ineffective,
new approaches are needed to halt the spread of the disease. TheWolbachia bacterium has
been shown to effectively prevent the transmission of Zika and has the ability to reduce the
mosquito population (Walker et al., 2011).Wolbachia is naturally found in at least 40% of
all known terrestrial insect species, and while it is not normally present inA. aegypti, it can
be introduced to them (McMeniman et al., 2009). It is also known thatWolbachia does not
affect humans (Dutra et al., 2016).

There are two ways Wolbachia can be beneficial in reducing the spread of Zika. The
first is that it can be used to reduce the mosquito population as well as mosquito life span
(Schraiber et al., 2012; Walker et al., 2011). When a male mosquito is infected with a strain
of Wolbachia its sperm becomes modified such that embryos die during early embryonic
development. This method is very much dependent on the prevalence ofWolbachia in the
mosquito population, since uninfected female mosquitoes are less likely to mate withWol-
bachia-infected males. Thus there is a risk of the strain becoming obsolete (Jiggins, 2017).
The secondwayWolbachia can help in stopping the spread of Zika is that it has been shown
to greatly reduce the capacity of Zika-infected mosquitoes to harbour and transmit the
disease (Hughes & Britton, 2013; Ndii, Hickson, & Mercer, 2012).

Numerous projects and studies have already been conducted introducing Wolbachia-
infected mosquitoes into populations (Debug Project, 2017; Dutra et al., 2016; Hughes
& Britton, 2013; Jiggins, 2017; McMeniman et al., 2009; Ndii et al., 2012; Schraiber
et al., 2012 among many others). Most studies which include mathematical modelling of
epidemic dynamics and which focus on the use ofWolbachia to control the spread of dis-
eases utilize highly complex models highly focused on the mosquito population (Ferguson
et al., 2015; Hughes & Britton, 2013; Ndii et al., 2012), but not many models focus on Zika
spread among humans and the effect thatWolbachia can have in the spread of the disease.
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Mathematical modelling has played a crucial role in understanding the dynam-
ics of an epidemic outbreak and in developing and testing different control measures
(Brauer & Castillo-Chavez, 2012). Since the most recent Zika outbreak in 2015, there
was an increase in number of mathematical models of Zika (see Agusto, Bewick,
& Fagan, 2017; Bates, Hutson, & Rebaza, 2017; Gao et al., 2016; Maxian et al., 2017; Ola-
woyin & Kribs, 2018; Padmanabhan et al., 2017; Towers et al., 2016; Wang, Zhao, Oliva,
& Zhu, 2017 among many others). In addition, a wide variety of different mathematical
models of other vector-borne diseases are common in the literature (Brauer & Castillo-
Chavez, 2012). We present a simple model with the goal of showing this model is sufficient
to assess the effect of this kind of vector control on the spread of the disease. Local sensi-
tivity analysis for the model parameters is done and, in addition we use Latin Hypercube
Sampling to estimate parameters for which only ranges are known.

The paper is organized as follows: in Section 2, a mathematical model is presented
in which the human population is divided into five classes while the vector popula-
tion is divided into three classes with all classes and parameters defined in Section 2. In
Section 2.1, we take an epidemiological interpretation of the system to obtain the next-
generation matrix, and thus, calculate the basic reproductive number. Section 2.2 presents
the results for the local sensitivity indices of R0. Section 3 deals with vector control and
the effect of the use ofWolbachia in controlling the spread of Zika. Lastly, Section 5 sum-
marizes what was presented in the paper and explores new and future directions of the
project.

2. Mathematical model

Adeterministicmodel of transmission dynamics is developed for theZika virus. Themodel
includes vector to human, human to vector contact and human to human unprotected sex-
ual contact. Vertical transmission is neglected in themodel as it is almost negligible (Center
for Disease Control and Prevention, 2018; Kucharski et al., 2016; Olawoyin & Kribs, 2018).
TheH andV subscripts in the variables denote human and vector populations, respectively.
The human population follows an SEIR compartmental model and the vector population
follows an SEI compartmental model. See Table 1 for a list of the variables in the model.

Amember of the susceptible class, SH , moves to the exposed class, EH , after being bitten
by an infectious vector or after unprotected sexual contact with an infectious symptomatic
or asymptomatic human, which are considered separate classes; IHS and IHA, respectively.

Table 1. Description of variables used in the model.

Description

NH Total population of humans
SH Population of susceptible humans
EH Population of exposed humans
IHA Population of infectious asymptomatic humans
IHS Population of infectious symptomatic humans
RH Population of recovered humans
NV Total population of vectors
SV Population of susceptible vectors
EV Population of exposed vectors
IV Population of infectious vectors
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The rate of transfer from the susceptible class to the exposed class by means of vector to
human contact is given by aHb, where aH is the transmissibility probability frommosquito
to human and b is the bite rate. The rates at which susceptible humans are exposed to the
virus due to unprotected sexual encounterswith symptomatic and asymptomatic infectious
humans are ψS and ψA, respectively. The parameters ψS and ψA are the products of the
rate of sexual intercourse and the probability of being infected with the virus through an
unprotected sexual encounter. It is assumed that symptomatic and asymptomatic humans
are equally infectious but that their sexual habits differ as subjects with symptoms might
be less likely to be sexually active and more likely to use protection if they are aware that
they are infectious. However, because the discovery of sexual transmission is fairly recent,
the transmission rate is still unknown.

Once exposed to the virus, humans move to the infectious classes after a latency period
of β−1

H days. The exposed individuals will then become symptomatic with probability q,
and asymptomatic with probability 1−q. It is assumed that both symptomatic and asymp-
tomatic individuals recover at the same rate γ (Agusto et al., 2017; Caminade et al., 2017).
Once a human moves to the recovered class, RH , they can no longer infect a mosquito or
another human. This life-long immunity, although still not proven, is an assumptionmade
bymany other models (Agusto et al., 2017; Caminade et al., 2017; Manore &Hyman, 2016;
Momoh&Fügenschuh, 2018; Padmanabhan et al., 2017; Towers et al., 2016). The death rate
due to the Zika virus is assumed to be negligible and is therefore not included in the model
(Chikaki & Ishikawa, 2009; Momoh & Fügenschuh, 2018). Given that the model simulates
a single possible outbreak, the birth and death rates of humans are also neglected (Ding,
Tao, & Zhu, 2016; Kucharski et al., 2016; Towers et al., 2016; Yakob & Clements, 2013).
Thus the total human population is assumed constant, NH , as is equal to the sum of the
populations of humans in all other classes, i.e. NH = SH + EH + IHA + IHS + RH .

The total population of vectors (mosquitoes), NV , is divided into three classes: suscep-
tible, exposed and infectious. Death rates across each class are assumed to be the same.
Mosquitoes are assumed to be born only into the susceptible class at a rate of λV . Suscep-
tible mosquitoes become exposed after biting an infected (symptomatic or asymptomatic)
human at a rate of aVb. After a latency period of β−1

V days, mosquitoes in the exposed
class transition to the infected class. Given the short lifespan of mosquitoes, we assume
infectious vectors remain infectious for the rest of their life.

See Figure 1 for themodel diagram and Table 2 for the list of parameters and their units.
The complete model is presented in the system of equations (1).

dSH
dt

= −aHbIV
SH
NH

− ψAIHA
SH
NH

− ψSIHS
SH
NH

dEH
dt

= aHbIV
SH
NH

+ ψAIHA
SH
NH

+ ψSIHS
SH
NH

− βHEH

dIHS
dt

= qβHEH − γ IHS

dIHA
dt

= (1 − q)βHEH − γ IHA

dRH
dt

= γ (IHS + IHA) (1)
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Figure 1. Black arrows represent the flowwithin each population. Dashed arrows represent the contact
between humans and vectors. A human in the Susceptible class, SH , will transition to the Exposed class,
EH , when they are bitten by an infectious mosquito or when they engage in unprotected sex with infec-
tious individuals. A mosquito in the Susceptible class, SV , can transition to the Exposed class, EV , when
they bite an infectious individual. Exposed humans and vectors are not able to transmit the infection but
will eventually transition to the infectious class (IH and IV respectively). The birth and death of vectors
are incorporated in this timespan. Birth and deaths of human populations are ignored since the model
aims to predict the behaviour of the disease during a single season, and therefore, changes in the human
population are negligible.

dSV
dt

= λVNV − aVb(IHS + IHA)
SV
NV

− μVSV

dEV
dt

= aVb(IHS + IHA)
SV
NV

− βVEV − μVEV

dIV
dt

= βVEV − μVIV

2.1. Calculation and analysis of R0

The basic reproduction number, R0, is defined as the expected number of secondary cases
produced by introducing a single infected individual into a completely susceptible popu-
lation during the entire period of infectiousness of such individual. If R0 > 1, the disease
can invade and potentially turn into an outbreak or epidemic. If R0 < 1, the disease will be
unable to invade and will not produce an outbreak or epidemic (Cushing & Yicang, 1994;
Diekmann, Heesterbeek, & Metz, 1990).
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Table 2. Parameter description and dimensions, range, value and reference utilized to set such values.

Description Range Baseline Reference

b Mosquito biting rate 0.3–1 0.5 Putnam and Scott (1995), Trpis
and Hausermann (1986)

Number of bites per mosquito per day
aH Transmission probability from an

infectious mosquito to a susceptible
human per bite

0.1–0.75 0.4240∗ Newton and Reiter (1992), Paupy
et al. (2010)

dimensionless
aV Transmission probability from an

infectious human to a susceptible
mosquito per bite

0.3–0.75 0.4872∗ Gao et al. (2016)

dimensionless
ψA Rate of sexual transmission

(asymptomatic)
0.001–0.1 0.0992∗ Assumed

per day
ψS Rate of sexual transmission

(symptomatic)
0.001–0.1 0.0496∗ Assumed

per day
q Proportion of humans who are

symptomatic
0.1–0.27 0.18 Duffy et al. (2009)

dimensionless
β−1
H Latency period of ZIKAV in humans,

days
3–14 8.5 Krow-Lucal et al. (2017)

γ−1 Human infectious period, days 3–5 4.5 Towers et al. (2016)
λV Birth rate of vectors, per day 0.02–0.27 1/14.5 Chitnis, Hyman, and Cushing (2008)
β−1
V Latency period of ZIKAV in vectors,

days
8–12 10 Andraud, Hens, Marais, and Beutels (2012),

Boorman and Porterfield (1956),
Moreno, Espinoza, Bichara, Holechek,
and Castillo-Chavez (2017)

μ−1
V Lifespan of vectors, days 5–20 14.5 Sheppard, Macdonald, Tonn,

and Grab (1969), Chikaki
and Ishikawa (2009), Trpis
and Häusermann (1995)

Note: Parameters with ∗ were estimated (by themedian) using Latin Hypercube Sampling given the ranges provided by the
literature.

The next-generation matrix (NGM), K, introduced in Diekmann et al. (1990) is the
basis for the definition and calculation of R0: R0 = ρ(K). The ijth element of K is the
expected number of new cases with state-at-infection i, generated by one individual who
has just entered state-at-infection j in a fully susceptible population (Diekmann, Heester-
beek, & Roberts, 2009). States-at-infection are those in which an individual can be in
immediately after becoming infected. For our model, states-of-infection are EH and EV .

For the linear algebra approach for computing the NGM, see Appendix A.1. However,
here we derive the NGM K in this systematic manner by epidemiological reasoning. We
refer to state-of-infection EH with index 1 and EV with index 2. Thus, for the elementK11,
we beginwith one individual who has just entered stateEH and follow the individual for the
remainder of their infectious life to determine howmany cases of exposed humans they are
expected to produce.We are assuming thatwith probability 1 the individual survives theEH
state and moves to one of the two infectious states, IHS or IHA. Thus the individual moves
to state IHS with probability q. While in state IHS, the individual is expected to produce new
cases at a rate ψS(NH/NH), for an expected time 1/γ . Similarly, the individual moves to
state IHA with probability 1−q, expected to produce new cases at a rateψA, for an expected
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time 1/γ . Thus

K11 = qψS
1
γ

+ (1 − q)ψA
1
γ
.

For the element K12, we begin with a vector that has just entered state EV and follow it
for the remainder of their infectious life to determine how many cases of exposed humans
they are expected to produce. Before the vector can infect, it has to survive the exposed
state and move to the infectious state. This occurs with probability βV/(βV + μV). While
in the infectious state this vector is expected to produce new cases of exposed humans at a
rate aHb, for an expected time 1/μV . Therefore

K12 = βV

βV + μV
aHb

1
μV

.

Similarly to determine K21, we see that an exposed human moves to state IHS with proba-
bility q, is expected to produce new cases of exposed vectors with rate aVb, for an expected
time 1/γ . Including the movement from EH through IHA we obtain

K21 = qaVb
1
γ

+ (1 − q)aVb
1
γ
.

Finally, K22 = 0 since there is no transmission between vectors.
Therefore, the NGM is

K =

⎛
⎜⎝
ψSq + ψA(1 − q)

γ

aHbβV
(βV + μV) μV

aVb
γ

0

⎞
⎟⎠ .

Thus the reproduction number of the system is given by

R0 = ρ(K) = tr(K)+
√
(tr(K))2 − 4det(K)

2

= ψSq + ψA(1 − q)
2γ

+ 1
2

√(
ψSq + ψA(1 − q)

γ

)2
+ 4avb2aHβV
γμV(βV + μV)

.

In addition, if sexual transmission is ignored, then tr(K) = 0 and the reproductive number
due to vector-borne transmission only, R0V , is given by

R0V =
√

−det(K) =
√

aVb2aHβV
γμV(βV + μV)

.

If vector transmission is ignored, then det(K) = 0 and the reproductive number due only
to sexual transmission, R0S, is given by the expression

R0S = tr(K) = qψs + (1 − q)ψA

γ
.

In order to provide a more robust estimation of the reproductive number, Latin Hyper-
cube Sampling (LHS) maximin criteria was performed (Blower & Dowlatabadi, 1994; van
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Figure 2. Box plot showing the possible ranges for transmission rates R0S, R0V and R0 calculated using
Latin Hypercube Sampling on the unknown parameters (parameters with ∗ in 2). The horizontal line
represents R0 = 1.

den Driessche, 2017). Based on the ranges for the parameters with a ∗ in Table 2, one mil-
lion randomly generated set of parameters were used to calculate R0. The parameters were
generated assuming a uniform distribution. The median and the percentiles at 2.5% and
97.5% are provided (see Figure 2); R0 = 1.610[0.870, 2.357], R0V = 1.385[0.699, 2.087],
R0S = 0.413[0.028, 0.798]. The median of the data generated by LHS was used to establish
the baseline values for all four transmission rates (see Table 2).

Given the values of R0,R0V and R0S, we calculate the ratios

R0V
R0

= 0.86,
R0S
R0

= 0.14

which help us conclude that although the largest contribution to R0 clearly comes from the
vector–human transmission, sexual transmission cannot be ignored.

2.2. Local sensitivity analysis of R0 on different parameters

Local sensitivity analysis demonstrates how the basic reproductive number will change in
response to changes in the model parameters. The sign of the index indicates the direc-
tion of the response. That is, if the sensitivity index for a given parameter is positive, then
an increase in the parameter will increase the value of R0. The magnitude of the sensitiv-
ity index indicates the relative importance each parameter has on the model’s predictions
(Moreno et al., 2017).

The normalized sensitivity index (a.k.a. elasticity index) of a variable (R0) to a parameter
is the ratio of the relative change in the variable to the relative change in the parameter
(Chitnis et al., 2008). The normalized sensitivity index of R0, that depends differentiably
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Figure 3. Bar graph showing the normalized sensitivity index for each parameter (see Equation 2). For
an example of this calculation, see Appendix A.2.

on a parameter p, is defined as

γ
R0
p := ∂R0

∂p
× p

R0
. (2)

The normalized sensitivity indices of R0 are summarized in Figure 3. For an example of
the calculation, see Appendix A.2. Results show that the biting rate of mosquitoes, b, is the
most impactful parameter in the computation of R0. That is, an increase in the number of
times per day a single mosquito bites humans will correspond to the greatest increase in
the probability of humans becoming infected with Zika.

The next most sensitive parameters are μ−1
V and γ−1, the lifespan of vectors and the

infectious period for humans, respectively. Increasing μ−1
V results in a longer lifespan of

mosquitoes, thus increasing the time mosquitoes are able to transmit the disease and as
a consequence increasing R0. Increasing γ−1 results in a slower recovery rate, and thus
infectious humans are able to transmit the disease for a longer period of time, and as a
result R0 increases.

The least sensitive parameter is q, the proportion of humans who are symptomatic. This
is not surprising as sexual transmission makes up only 14% of R0. However, if we restrict
our analysis to the effect that asymptomatic individuals can have on R0S, the effect of the
behaviour of asymptomatic individuals is significant, see Section 4 and Figure 4.

3. Wolbachia as a form of vector control

The Model presented here, as many mathematical epidemiological models, is used to
experiment with control measures that can be used by governments to decrease the size
and length of a Zika epidemic. In this work, the Wolbachia bacterium is introduced into
the vector population as a measure of control.
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Figure 4. Graph representing the change in R0S, the basic reproduction number tied to the human-
to-human disease transmission, as ψA, the rate of sexual transmission for asymptomatic individuals, is
varied. The graph shows a linear relationship betweenψA and R0S, where doublingψA results in almost
doubling R0S.

As discussed in Section 1, Wolbachia bacterium can play a major role in reducing the
mosquito population and preventing the spread of Zika. Previous mathematical mod-
els that include Wolbachia do so by explicitly modelling Wolbachia infected mosquitoes
(Hughes & Britton, 2013; Ndii et al., 2012). The model presented here takes a simpler
approach.

In order to introduce the effect of control, the model focuses on the parameters affected
by Wolbachia. When male mosquitoes are infected with Wolbachia, sperm and eggs are
unable to form viable offspring, thus lowering the value of λV . While this is important, the
parameter λV does not appear in the expression of R0. To calculate the control measures,
a scaling parameter is attached to λV and is then used to determine the time course of EH
and EV with a 25%, 50% and a 75% reduction in vector births (see Figure 5).

Figure 5. Control measure for reducing vector births. The solid black curves represent no reduction.
The dark grey dot-dashed curve is a 25% reduction. The grey long-dashed curves are 50% and the light
grey-dashed curves are a 75% reduction: (a) exposed humans and (b) exposed vectors.



LETTERS IN BIOMATHEMATICS 11

Another way Wolbachia can be used as a control measure is in a reduction in trans-
mission from vectors to humans. A study was done in 2010 that found at least 37.5% of
female mosquitoes that had been infected with both Dengue and Wolbachia were unable
to transmit the disease (Bian, Xu, Lu, Xie, & Xi, 2010). If a similar effect is assumed with
Zika, the transmission probability, aH , from an infectiousmosquito to a susceptible human
is decreased. The only entry in the NGM K that is targeted with the control strategy of
decreasing aH is the element K12. Thus we calculate the target reproduction number TS
where S = {(1, 2)} as described in van denDriessche (2017). For information regarding the
type reproductive number, calculated when the control strategy is aimed at particular host
types only, see Heesterbeek and Roberts (2007); Roberts andHeesterbeek (2003). Formore
detailed work on the target reproduction number, calculated when control can be targeted
at interactions between types, see Shuai, Heesterbeek, and van Den Driessche (2013).

Thus, following the recipe in van den Driessche (2017), the target matrix, KS, is

KS =
⎛
⎝0

aHbβV
(βV + μV) μV

0 0

⎞
⎠ .

Note that ρ(K − KS) = R0S < 1 and thus the target reproductive number TS is given by

TS = ρ
(
KS(I − K + KS)

−1)

= ρ

⎛
⎜⎜⎝

⎛
⎝0

aHbβV
(βV + μV) μV

0 0

⎞
⎠

⎛
⎜⎝
γ − ψSq − ψA(1 − q)

γ
0

−aVb
γ

1

⎞
⎟⎠

−1⎞⎟⎟⎠

= ρ

⎛
⎜⎝

⎛
⎝0

aHbβV
(βV + μV) μV

0 0

⎞
⎠

⎛
⎜⎝

γ

γ − ψSq − ψA(1 − q)
0

aVb
γ − ψSq − ψA(1 − q)

1

⎞
⎟⎠

⎞
⎟⎠

= ρ

⎛
⎝ aHaVb2βV
μV (βV + μV) (γ − ψSq − ψA(1 − q))

aHbβV
(βV + μV) μV

0 0

⎞
⎠

= aHaVb2βV
μV (βV + μV) (γ − ψSq − ψA(1 − q))

= (R0V)2

1 − R0S
= 3.1963

If the transmission from vectors to humans can be reduced by a fraction of at least 1 −
1/TS = 1 − (1 − R0S)/(R0V)2 = 0.6871 then Zika will die out. We also provide a similar
figure as for λV by attaching to the parameter aH a scaling parameter and seeing again what
a 25%, 50% and 75% reduction in transmission from vectors to hosts does to the system
(see Figure 6).
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Figure 6. Controlmeasure for reducing vector transmission to humans. The solid black curves represent
no reduction. The dark grey dot-dashed curve is a 25% reduction. The grey long-dashed curves are 50%
and the light grey dashed curves are a 75% reduction: (a) exposed humans and (b) exposed vectors.

4. Results

The model presented is used to determine the effect of the sexual behaviour of asymp-
tomatic individuals in the spread of Zika. Figure 4 shows the percentage change in R0S, the
basic reproductive number tied to the human-to-humandisease transmission, asψA, prod-
uct of the sexual infectiousness and the rate at which asymptomatic individuals engaged in
unprotected sex, is varied. As the amount of unprotected sexual encounters had by asymp-
tomatic individuals increases, so does the probability that Zika is spread, which should not
be surprising. What is more telling is the linear relationship betweenψA and R0S, and how
doubling ψA results in almost doubling R0S.

Themodel was also used to testWolbachia as a vector control strategy. Using the param-
eter values fromTable 2, scaling parameters are used to give a 25%, 50%, and 75% reduction
in the parameters λV and aH . The model is run until equilibrium and the time course of
the Exposed classes are plotted to show the results. Figure 5 displays the results for scaling
the vector birth rate, λV . The plots show that as the vector births are reduced, the length
of the outbreak gets shorter as does the magnitude of the outbreak. For the vector trans-
mission to humans, Figure 6 shows the magnitude of the outbreak is reduced, however, the
length of it is prolonged. The outbreak is not as severe but lasts for an extended period of
time. The length is much longer for the 50% reduction, but at the 75% reduction the out-
break dies out very quickly. Furthermore, the target reproduction number that was found
in Section 3 showed that if aH is reduced by a fraction of at least 0.6871, then R0 will be
less than one. This can be seen in Figure 7 where R0 graph crosses the horizontal line y=1
when aH reaches the value of 0.3 ≈ (0.6871)(0.4240).

5. Discussion and future work

The model presented here aims to simulate an outbreak of the vector borne Zika virus
taking into consideration symptomatic and asymptomatic humans and the possibility of
sexual transmission. In order to gain better understanding of the spread of the disease,
the basic reproductive number R0 was computed and separated into the two components,
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Figure 7. Graph representing R0 as a function of the vector to human transmission rate. In this graph,
it can be observed that if the transmission from vectors to human can be reduced by a fraction at least
0.6871, then the vector-host disease will die out. This information can be used to evaluate any vector
control strategy, in particular, the use ofWolbachia.

the basic reproductive number due to vector to human transmissions and the basic
reproductive number due to human to human transmissions, RV and R0S respectively.

Given that 80% of individuals do not present any symptoms, the model was used to
explore the effect the sexual behaviour of asymptomatic individuals can have on the spread
of the disease by plotting the change in R0S against changes in the ψA, the rate of sex-
ual transmission of asymptomatic individuals and showing the linear relationship between
these two variables, R0S and ψA.

Themodel was then used to investigate the effect of implementing vector control strate-
gies, in particular the use ofWolbachia focused on the two types of control: the reduction in
vector births due to cytoplasmic incompatibility where the embryos do not develop; and
through the reduction in vector transmission to humans. The focus on vector transmis-
sion seems to not be as effective as it requires an almost 70% reduction in order for R0 to
be reduced below 1. It also seems to increase the length of the outbreak considerably. The
vector birth control seems to bemore effective. Themodel shows that even a 50% reduction
in vector births can shorten the outbreak time and reduce its magnitude.

It is important for the projects that are releasing Wolbachia infected mosquitoes to
monitor the reduction in vector births. Some projects are only releasing maleWolbachia-
infected mosquitoes. However, females are less likely to mate with Wolbachia-infected
mosquitoes and because of cytoplasmic incompatibility, Wolbachia will not continue to
strain to future broods (Jiggins, 2017). Wolbachia-infected females have a selective advan-
tage over uninfected females because they have a normal brood size, regardless of the
Wolbachia-infection status of the males they mate with Sullivan and O’Neill (2017). This
advantage would help Wolbachia spread through (and ultimately reduce) the mosquito
population: the male offspring from a Wolbachia- infected female would essentially be
sterile, and the female offspring would continue the Wolbachia strain to future broods.

There are several directions inwhich thework presented here can be expanded.A simple
one is to use the model presented here to test other measures of control. Similar models
have tested different controls measures such as the use of bed nets to reduce vector-host
infections or the use of condoms to decrease sexual transmission among others. Another
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direction that can be taken is to split the human population by gender and consider the
different recovery rates between females and males and all different sexual transmission
possibilities: males to males, male to female, female to male and female to female further
complicating themodel. This direction seems particularly important to take as the recovery
rate for human females is on the order of days while Zika has been shown to remain in
male semen up to six months after infection. We believe these explorations will lead to
interesting and innovative dynamics as Zika seems to be the only vector born disease to
exhibit such behaviour.
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Appendix

A.1 Calculating R0
The reproductive number, R0, is formally calculated using linear algebra to construct the next-
generation matrix (NGM), K, as described in Diekmann et al. (1990). For the construction of K
via epidemiological reasoning, see Section 2.1. The system has five infected states, EH , IHS, IHA,EV
and IV , where EH and EV are states-at-infection, and IHS, IHA and IV are states-of-infectiousness.
The uninfected states are SH ,RH and SV . At the disease free equilibrium, the number of indi-
viduals in infected states and recovered are zero, and so SH = NH and SV = NV . Thus, for small
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(EH , IHS, IHA,EV , IV) we have the linearized infection subsystem

ĖH = aHbIV + ψAIHA + ψSIHS − βHEH
˙IHS = qβHEH − γ IHS
˙IHA = (1 − q)βHEH − γ IHA (A1)

ĖV = aVb(IHS + IHA)− (βV + μV)EV
˙IV = βVEV − μVIV .

We let (x1, x2, x3, x4, x5) = (EH , IHS, IHA,EV , IV) and write the Jacobian matrix of the infection
subsystem as T +�, where T is the transmission matrix and � the transition matrix. Hence T
contains the entries where an epidemiological birth occurs, and all other epidemioligcal events are
incorporated in the model via�. Thus

T =

⎛
⎜⎜⎜⎝
0 ψS ψA 0 aHb
0 0 0 0 0
0 0 0 0 0
0 aVb aVb 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠ .

Referring to infected states with indices i and j, where i, j = 1, . . . , 5, the ijth entry of T is the rate at
which individuals in infected state j have epidemiological offspring in infected state i for the linearized
system. Thus we note that rows two, three, and five, of T consists of zeroes only as individuals in
infected state j = 1, . . . , 5 do not produce new cases in states IHS (row 2), IHA (row 3) and IV (row
5). The transition matrix �, corresponding to all other changes of state, is given by

� =

⎛
⎜⎜⎜⎝

−βH 0 0 0 0
qβH −γ 0 0 0

(1 − q)βH 0 −γ 0 0
0 0 0 −(βV + μV) 0
0 0 0 βV −μV

⎞
⎟⎟⎟⎠ .

Thus the NGM with large domain, KL = −T�−1, is

KL = −T�−1 =

⎛
⎜⎜⎜⎝
0 ψS ψA 0 aHb
0 0 0 0 0
0 0 0 0 0
0 aVb aVb 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
βH

0 0 0 0
q
γ

1
γ

0 0 0
1 − q
γ

0
1
γ

0 0

0 0 0
1

βV + μV
0

0 0 0
βV

(βV + μV)μv

1
μv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ψA(1 − q)+ ψSq
γ

ψS

γ

ψA

γ

aHbβV
(βV + μV)μV

aHb
μV

0 0 0 0 0
0 0 0 0 0

aVb
γ

aVb
γ

aVb
γ

0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.
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Wenote that although�−1 is not difficult to compute, it is also easily found by using the biological
interpretation of −�−1. That is, the ijth element of −�−1 is the expected time that an individual
presently in infected state jwill spend in state i as the disease runs its course. Thus the diagonal terms
of−�−1 are the number of days a human or vector spends in its present state. As a more interesting
example, a vector in infected state EV is expected to spend βV/(βV + μV)× 1/μV days in state IV ,
where the first factor is the probability that an individual vector survives state EH and moves to state
IV , and the second factor is the expected amount of days it will spend in state IV .

Given the epidemiological interpretations of T and −�−1, the ijth entry of KL is the expected
number of state-i-infected offspring an individual presently in infected state jwill produce through-
out its future infected life. Because the infected states IHS, IHA and IV are not states-at-infection, the
matrix KL has rows two, three and five, exactly zero. Thus to obtain K from KL we let the auxiliary
matrix, E, be given by

E =

⎛
⎜⎜⎜⎝
1 0
0 0
0 0
0 1
0 0

⎞
⎟⎟⎟⎠ .

Then, the NGM is

K = −E′T�−1E

=
(
1 0 0 0 0
0 0 0 1 0

) ⎛
⎜⎜⎜⎝
0 ψS ψA 0 aHb
0 0 0 0 0
0 0 0 0 0
0 aVb aVb 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
βH

0 0 0 0
q
γ

1
γ

0 0 0
1 − q
γ

0
1
γ

0 0

0 0 0
1

βV + μV
0

0 0 0
βV

(βV + μV)μv

1
μv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
1 0
0 0
0 0
0 1
0 0

⎞
⎟⎟⎟⎠

=
(
0 ψS ψA 0 aHb
0 aVb aVb 0 0

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
βH

0
q
γ

0
1 − q
γ

0

0
1

βV + μV

0
βV

(βV + μV)μv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝
ψSq + ψA(1 − q)

γ

aHbβV
(βV + μV) μV

aVb
γ

0

⎞
⎟⎠ .
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Because det(K) = −(avb2aHβV/γμV(βV + μV)) �= 0 no further reduction of K is possible. Thus
the reproduction number of the system is given by

ρ(K) = tr(K)+
√
(tr(K))2 − 4det(K)

2

= ψSq + ψA(1 − q)
2γ

+ 1
2

√(
ψSq + ψA(1 − q)

γ

)2
+ 4avb2aHβV
γμV(βV + μV)

.

A.2 Calculation of local sensitivity indices

Using Equation (2), we compute the sensitivity indices of R0 with respect to the nine parameters in
the expression of R0. For example, the sensitivity index of R0 with respect to the parameter b is as
follows:

∂R0
∂b

= ∂

∂b

(
qψS + (1 − q)ψA

2γ
+ 1

2

√(
qψS + (1 − q)ψA

γ

)2
+ 4aVb2aHβV
γμV(βV + μV)

)

= 1
4

((qψS + (1 − q)ψA

γ

)2 + 4aVb2aHβV
γμV(βV + μV)

)− 1
2

× 8aVbaHβV
γμV(βV + μV)

= 1√(
qψS+(1−q)ψA

γ

)2 + 4aVb2aHβV
γμV (βV+μV )

× 2aVbaHβV
γμV(βV + μV)

= 2aHbaVBV

γμV(μV + βV)

√(
qψS+(1−q)ψA

γ

)2 + 4aVb2aHβV
γμV (βV+μV )

.

Thus

γ
R0
b = 2aHbaVBV

γμV(μV + βV)

√(
qψS+(1−q)ψA

γ

)2 + 4aVb2aHβV
γμV (βV+μV )

× b
R0

.
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