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ABSTRACT
Pattern formation is widely studied in spatio-temporal prey–
predator models with only self-diffusion terms. Models with cross-
diffusion, besides self-diffusion, take care of the situation in which
presence, absence, abundance or scarcity of one species affect the
movement of a population of another species in a given domain.
Here, we consider cross-diffusion induced pattern formation in
a prey–predator model with Rosenzweig–MacArthur type reac-
tion kinetics in a one-dimensional spatial domain. Spatio-temporal
prey–predator model with Rosenzweig–MacArthur type reaction
kinetics and self-diffusion is unable to generate Turing patterns,
rather it produces travelling wave, periodic travelling wave, modu-
lated periodic travelling wave and spatio-temporal chaotic patterns.
However, addition of density dependent cross-diffusion leads to sat-
isfaction of Turing instability conditions and generation of stationary
Turingpatterns. Also, the dynamics of the patterns formed in the self-
diffusion model are preserved. Furthermore, cross-diffusion affects
the speed of travelling waves produced in the self-diffusion model.
Our focus in this work is to investigate the bifurcation of travelling
wave solution into Turing patterns and transition of one pattern into
another in the presence of cross-diffusion.
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1. Introduction

Spatio-temporal pattern formation plays a vital role in understanding the dynamics of
interacting populations (such as prey–predator, competing species) as a part of a large
ecological community. Such populations are heterogeneously distributed over their habi-
tat which gives rise to the patterns, which may be stationary or non-stationary with
respect to time. System of reaction–diffusion equations is used to model such interactions
among individuals of more than one species within a domain and the solutions of the sys-
tem correspond to the patterns. For one spatial dimension, stationary patterns resemble
stripes aligned parallel to time axis in a space-time plot (Aragón, Barrio, Woolley, Baker,
&Maini, 2012).When a cross-section of this pattern along the spatial axis is considered at a
given time, periodic with respect to space solution is found. The number of peaks formed
in such periodic solution increases with an increase in the length of the spatial domain
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(Murray, 2001). Non-stationary patterns in one spatial dimension include travelling wave,
periodic travelling wave, wave of chaos, etc (Aragón et al., 2012; Dunbar, 1986; Petrovskii
& Malchow, 1999; Sherratt, Eagan, & Lewis, 1997).

When the homogeneous steady state of a system of reaction–diffusion equations, which
is stable under temporal perturbations, becomes unstable due to heterogeneous perturba-
tions, diffusion driven instability or Turing instability sets in Turing (1952). As a result,
non-homogeneous in space but stationary with respect to time solutions known as Tur-
ing patterns appears. Stationary spot, stripe and mixture of spots and stripes are the few
examples of Turing patterns in two spatial dimensions (Cross & Hohenberg, 1993; Mur-
ray, 2001). Non-stationary patterns in two dimensions include spirals, targets, interacting
spiral chaos, spatio-temporal chaos, etc.

Travelling waves are transition fronts having constant shape and speed connecting two
or more equilibria of the corresponding reaction part of the spatio-temporal model (Sher-
ratt et al., 1997; Shigesada, Kawasaki, & Teramoto, 1986; Volpert & Petrovskii, 2009). Exis-
tence of travelling waves in prey–predator models is established using various approaches,
most common of which are shooting technique, invariant manifold theory and qualitative
theory of ordinary differential equations. These were used by Dunbar (1983,1984, 1986)
and later by others in prey–predator models with various functional responses (Huang,
Lu, & Ruan, 2003; Huang & Weng, 2013; Li & Wu, 2008; Lin, Weng, & Wu, 2011; Peng,
Shangbing, & Yihong, 2017). Schauder’s fixed point theory has also been used to prove
the existence of travelling waves (Hong &Weng, 2013; Huang & Lin, 2014; Zhang, Wang,
& Wang, 2016). Other than these, perturbation technique (Feltham & Chaplain, 2000),
connecting index (Gardner, 1984), comparison principle (Lin, 2014), geometric shooting
method (Huang, 2016), etc., are also used to prove the existence of the same. Travelling
wave solutions are also found in models for prey taxis (Lee, Hillen, & Lewis, 2008) and
prey–predator systems in environments with unidirectional flow (Hilker & Lewis, 2010).
Existence of travellingwaves in a uniformflow supports the choice of one spatial dimension
in the corresponding spatio-temporal model.

Spatio-temporal chaos is a fascinating feature of the pattern formation process. In this
case, the solutions never settle down to any state and keep on oscillating irregularly with
respect to both space and time. It is a more realistic phenomena in the context of ecology.
Several numerical techniques have been explored to understand spatio-temporal chaos and
to distinguish chaotic behaviour formother solutions. Pascual (1993) used such techniques
in a spatio-temporal prey–predatormodel withHolling type II functional response. A con-
siderable amount of research work has been done on evolution of spatio-temporal chaos
from travelling wave or periodic travelling wave in one spatial dimension (Sherratt, 1998;
Sherratt et al., 1997; Sherratt, Lambin, & Sherratt, 2003).

It is obvious that the movement of population of a species in a considered domain
cannot be just random. Instead, it is influenced by the presence, absence, abundance,
and scarcity of population of another species. To model such a situation, cross-diffusion
terms are included into the spatio-temporal populationmodels in addition to self-diffusion
terms (Morales et al., 2010; Nathan et al., 2008; Okubo & Levin, 2013; Potts & Petro-
vskii, 2017). Shigesada, Kawasaki, and Teramoto (1979) were the first to work on these
terms and they showed that heterogeneity in environment along with non-linear dis-
persive movements of a population might give rise to pattern formation in systems
involving two or more competing species. This approach was later adopted by others
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and the conditions for positivity of solutions for such systems were investigated (Mimura
& Kawasaki, 1980; Oeda, 2011). A competition system with cross-diffusion was approx-
imated by a system of reaction–diffusion equations with linear diffusion terms by Iida,
Mimura, andNinomiya (2006). Gambino, Lombardo, and Sammartino (2013) investigated
pattern formation in a cross-diffusion model using weakly nonlinear analysis. Exhaustive
numerical simulations were also carried out to explore the effects of cross-diffusion on
various interacting population models with self-diffusion (Ling, Zhang, & Lin, 2014; Ruiz-
Baier & Tian, 2013). These studies have established that inclusion of cross-diffusionmakes
the modeling approach more realistic.

Several works have been carried out on the existence of travelling waves as well as on
emergence of spatio-temporal chaos and other patterns for spatio-temporal prey–predator
model with self-diffusion and Holling type II functional response (Dunbar, 1986; Garvie
& Trenchea, 2010; Sherratt et al., 1997). But Turing patterns have not been found for any
set of parameter values. Our focus in this work is to introduce a cross-diffusion into the
model with self-diffusion and to demonstrate the generation of Turing patterns due to
the cross-diffusion term. Furthermore, the effects of cross-diffusion on travelling wave,
periodic travelling wave, modulated periodic travelling wave and spatio-temporal chaotic
solutions of the self-diffusion model are examined. Our main motive behind this work
is to explore the mechanisms for transition of patterns from travelling waves to Turing
patterns and chaotic patterns to periodic in time solutions via modulated periodic trav-
elling waves. The temporal model with Holling type II functional response is discussed
in Section 2 along with the conditions for Hopf bifurcation. The spatio-temporal model
with cross-diffusion is discussed in Section 3 along with the derivation of conditions for
Turing instability and existence of travelling wave solutions. Section 4 consists of extensive
numerical simulation results and validation of the analytic results of Section 3. Section 5
contains discussion on the results along with some concluding remarks.

2. Themodel

Holling type II functional response was introduced by Holling (1965) and a prey–predator
model incorporting this functional response is also known as Rosenzweig–MacArthur
model (Rosenzweig &MacArthur, 1963). It is amodification of the original Lotka-Volterra
type prey–predator system where the prey searching and handling time are incorporated
into the model. Handling time is the time taken by a predator to catch hold of its prey
and prey on it, before it gets ready to search for another prey. The rate of prey capture is
saturated when the population of prey is relatively large. Such a model is represented by a
system of ordinary differential equations:

dN
dt

= rN
(
1 − N

κ

)
− αNP

αhN + 1
, (1a)

dP
dt

= eαNP
αhN + 1

− μP, (1b)

with non-negative initial conditions N(0) ≥ 0,P(0) ≥ 0. Here r and κ are the intrinsic
growth rate and carrying capacity of the prey population,α is the attack rate of the predator,
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h represents the handling time, e (0< e<1) is the conversion efficiency and μ repre-
sents the death rate of the predators. We take N̄ = N/κ , P̄ = P/κhr and t̄ = rt for the
dimensionless prey population, predator population and time. Using these in system (1),
dropping the over-bars on the dimensionless variables, we obtain

dN
dt

= N(1 − N) − NP
N + c

, (2a)

dP
dt

= aNP
N + c

− bP, (2b)

where a = e/rh, b = μ and c = 1/αhκ are all nondimensional positive parameters.
The equilibrium states of system (2) include trivial solution (0, 0), axial equilibrium

point or the predator free state (1, 0) and the coexistence interior equilibrium point (N∗ =
bc/(a − b),P∗ = (1 − N∗)(N∗ + c))which is feasible for b(1 + c) < a. From standard lin-
ear stability analysis, it can be shown that the equilibrium point (0, 0) is always a saddle
point. Axial equilibrium point (1, 0) is stable and a global attractor for a/(1 + c) < b and a
saddle point for a/(1 + c) > b. The interior equilibrium point (N∗,P∗) is infeasible in the
former case and feasible in the later case. The interior equilibrium point (N∗,P∗) loses its
stability through a super-critical Hopf-bifurcation giving rise to a stable limit cycle, whose
description is given below.

2.1. Hopf bifurcation

The conditions for local asymptotic stability andHopf bifurcation of the coexistence steady
state of system (2) are discussed here. For the linear stability analysis, we write

N1 = N − N∗, P1 = P − P∗, |N1| � 1, |P1| � 1,

which on substituting into (2) and linearizing gives

(
N1t
P1t

)
=

⎛
⎜⎝−N∗ + N∗P∗

(N∗ + c)2
− N∗

(N∗ + c)
acP∗

(N∗ + c)2
0

⎞
⎟⎠ (

N1
P1

)
≡

(
a11 a12
a21 0

) (
N1
P1

)
. (3)

The conditions for asymptotic stability of (N∗,P∗) are a11 < 0 and a12a21 < 0 which are
automatically satisfied (Murray, 2001). Hopf bifurcation occurs when (N∗,P∗) becomes
unstable to temporal perturbations giving periodic solutions. At the Hopf threshold, the
linearized system’s eigenvalues are a complex conjugate pairwith zero real parts. Taking b to
be the bifurcation parameter for themodel (2), we write the complex conjugate eigenvalues
of the Jacobian matrix as λ(b), λ̄(b) = λ1(b) ± iλ2(b). Thus, Hopf bifurcation occurs at
b = bH if

λ1(bH) = 0, λ2(bH) > 0 and
∂

∂b
λ1(bH) �= 0.

The Hopf bifurcation threshold bH for model (2) can be obtained by solving

a11(b) = 0, (4)
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which is explicitly obtained as

bH = a(1 − c)
(1 + c)

. (5)

For values of b < bH , the interior equilibrium is unstable and stable for bH < b <

a/(1 + c) and c<1. From the first Liapunov number (Perko, 2013), which is negative in
this case, we can say that the limit cycle, generated due to Hopf instability, is stable. Hence,
the Hopf bifurcation is supercritical.

3. The spatio-temporal model

Nowwe include the spatial aspect into the temporal model (2) by extending it to a coupled
reaction–diffusion equations over a bounded one dimensional spatial domain. A similar
modeling approach was followed in Petrovskii and Malchow (1999), where the authors
were interested to find a minimal spatio-temporal model showing spatial pattern and its
dependence on various initial conditions. Let N(x, t) and P(x, t) respectively denote the
dimensionless prey and predator population densities at position x ∈ [0, L] and time t ≥ 0.
Self-diffusion terms are used to model the random movement of the prey and preda-
tor individuals. The corresponding spatio-temporal extension of the prey–predator model
with Holling type II functional response is given by

∂N
∂t

= N(1 − N) − NP
N + c

+ ∂2N
∂x2

, (6a)

∂P
∂t

= aNP
N + c

− bP + d1
∂2P
∂x2

, (6b)

subject to the non-negative initial conditions and no-flux boundary conditions

N(x, 0) ≥ 0,P(x, 0) ≥ 0, x ∈ (0, L), (7a)

∂N
∂x

= ∂P
∂x

= 0, x = 0, x = L, t ≥ 0. (7b)

Here d1 is a dimensionless quantity representing the ratio of diffusivities of predator
over prey. Due to nondimensionalization, the rate of self-diffusion for prey population
is 1. Model (6) cannot produce Turing patterns, however it can produce travelling wave,
periodic travelling wave and spatio-temporal chaos under proper parameteric restrictions
(Petrovskii &Malchow, 1999; Sherratt et al., 1997). Now, we incorporate the effects of pres-
ence, abundance or scarcity of the prey population over the predator population to explore
if the modified model can produce other type of patterns, mainly Turing patterns. Let the
movement of the predator population depends on the prey population gradient. To model
this situation, we incorporate density dependent cross-diffusion for predator into the self-
diffusion model (6). It describes the tendency of the predator species to keep safe distance
fromhigh density areas of the prey, preferring low-density areas of preys for hunting (Gam-
bino, Lombardo, & Sammartino, 2018). Such modeling has also been done in Ruiz-Baier
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and Tian (2013), Liu and Lin (2010), Peng and Zhang (2016). Hence, the modified model
with cross-diffusion terms is of the form

∂N
∂t

= N(1 − N) − NP
N + c

+ ∂2N
∂x2

, (8a)

∂P
∂t

= aNP
N + c

− bP + d1
∂2P
∂x2

+ d2
∂2(NP)

∂x2
, (8b)

where d2 is the dimensionless cross-diffusion coefficient. The initial and boundary condi-
tions are same as given in (7). There are other modeling approaches too as described in
Okubo and Levin (2013). Now we shall derive the conditions for the existence of travelling
waves solutions and Turing instability for the model (8) in two consecutive subsections.

3.1. Existence of travelling wave solution

A travelling wave is a wave which travels without changing its shape joining two or more
equilibrium points of the reaction part of the spatio-temporal model (Murray, 2001). Note
that N(x, t) ≡ N∗ > 0, P(x, t) ≡ P∗ > 0 are taken to be the homogeneous steady state for
(8) since they satisfy system (8) along with the initial and boundary conditions. Therefore,
if a solution u(x, t) represents a travelling wave, the shape of the solution will be same
with advancement of time and the speed of propagation, denoted by s, will be same at all
time. To find such a solution for themodel with cross-diffusion (8), we substituteN(x, t) ≡
U(x − st) and P(x, t) ≡ V(x − st) which gives

−sU ′ = F(U,V) + U ′′, (9a)

−sV ′ = G(U,V) + d1V ′′ + d2(UV ′′ + U ′′V + 2U ′V ′), (9b)

where

F(U,V) = U(1 − U) − UV
U + c

,

G(U,V) = aUV
U + c

− bV .

Taking U ′ = W and V ′ = X, we convert the system of ordinary differential Equations (9)
into a system of first order ordinary differential equations

U ′ = W, (10a)

V ′ = X, (10b)

W′ = −sW − F(U,V), (10c)

X′ = 1
d1 + d2U

(−sX − G(U,V) − 2d2WX + sd2VW + d2VF(U,V)) . (10d)

From the linear stability analysis of the system of ordinary differential Equation (10)
around the equilibrium points, we find out the criteria for existence of travelling wave



LETTERS IN BIOMATHEMATICS 7

connecting the homogeneous steady-states of the system (8). Also, the effects of cross-
diffusion on the speed of the travelling wave can be studied. The equilibrium points
of the system of ordinary differential Equation (10) are E0(0, 0, 0, 0), E1(1, 0, 0, 0) and
E2(bc/(a − b), ac(−bc + a − b)/(a − b)2, 0, 0). From the characteristic equation of the
Jacobian matrix for each of these equilibrium points, we calculate the eigenvalues based
on which we derive the conditions for existence of heteroclinic connections between two
equilibrium points. The Jacobian matrix of the system (10) at E0(0, 0, 0, 0) is

JE0 =

⎛
⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 −s 0

0
b
d1

0 − s
d1

⎞
⎟⎟⎟⎟⎠ , (11)

which have eigenvalues −s/2 ± √
s2 − 4/2 and (−s ±

√
4bd1 + s2)/2d1. It is clear from

the eigenvalues that one-dimensional unstable manifold and three-dimensional stable
manifold exist at E0 for s ≥ 2. It should be mentioned here that we do not consider the
case of s<2 since it leads to complex eigenvalues. In this case, the trajectories will spiral
in or out of E0, which gives rise to negative values for the population density. In order to
maintain the feasibility of the situation that is non-negativity of population densities of
both prey and predator, we consider the cases where s ≥ 2. Cross-diffusion parameter d2
has no effect on the stability of E0 since the eigenvalues of JE0 are independent of d2.

At E1(1, 0, 0, 0) which may connect to E2, the Jacobian matrix is of the form,

JE1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1

1
1

1 + c
−s 0

0
bc − a + b

(d1 + d2)(1 + c)
0 − s

(d1 + d2)

⎞
⎟⎟⎟⎟⎟⎠ . (12)

The eigenvalues of JE1 are −s/2 ± √
s2 − 4/2 and

1
(c + 1)(d1 + d2)

(
−s(1 + c) ±

√
s2(1 + c)2 − (d1 + d2)(1 + c)(4a − 4b(1 + c))

)
.

From the condition b(1 + c) < a for feasibility of (N∗,P∗), we have s2 ≥ 4(d1 + d2)
(a − b(1 + c))/(1 + c) which clearly shows that the minimum speed of propagation smin
increases for d2 > 0. From the eigenvalues, it is clear that four-dimensional stablemanifold
exist at E1 for s ≥ 2 and b(1 + c) < a.

The explicit forms of the eigenvalues of the Jacobian matrix JE2 are algebraically com-
plicated which are not presented here. These will be discussed with a suitable numerical
example in Section 4.2. The conditions for existence of the travelling waves derived here
will be numerically validated in that section too with the help of simulations.

3.2. Turing instability

Turing instability occurs when the homogeneous steady-state is stable to infinitesimal per-
turbations in the absence of diffusion but becomes unstable due to infinitesimal spatial
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perturbations in the presence of diffusion (Murray, 2001; Turing, 1952). The conditions
for stability to perturbations in absence of diffusion are a11 < 0 and a12a21 < 0 discussed
before. We perturb the homogeneous steady state (N∗,P∗) of system (8) as(

N
P

)
=

(
N∗
P∗

)
+

(
C1
C2

)
eλt cos kx, (13)

where 0 < C1,C2 � 1, λ is the growth rate of perturbations and k is the wave number.
Substituting (13) into (8), the characteristic equation for the growth rate λ is found from
Det(J1) = 0, where

J1 =
(
a11 − k2 − λ a12
a21 − d2P∗k2 −(d1 + d2N∗)k2 − λ

)
. (14)

The explicit expressions for a11, a12 and a21 are given in (3). The characteristic equation is
given by

λ2 − λ
(
a11 − k2(1 + d1 + d2N∗)

) + h(k2) = 0, (15)

where

h(k2) = (d1 + d2N∗)k4 + (d2P∗a12 − d2N∗a11 − d1a11)k2 − a12a21. (16)

Equating the derivative dh(k2)/d(k2) of h(k2) with respect to k2 to zero at k = kT , which
is the critical wave number for Turing instability, gives

k2T = d1a11 + d2N∗a11 − d2P∗a12
2(d1 + d2N∗)

.

It should be noted that for d2 = 0, i.e. for the self-diffusion model (6), a11 has to be pos-
itive to maintain the positivity of k2T . But from the conditions for Turing instability, we
know that a11 < 0 is required for the stability of homogeneous steady state under temporal
perturbation. Thus, Turing instability conditions can not be satisfied for the self-diffusion
model (6).

We find the Turing bifurcation condition for the cross-diffusion model (8) by substi-
tuting the expression for k2T in h(k2) = 0. From this, we obtain the Turing bifurcation
threshold d2 explicitly as

dT2 = 1
N2∗a211 − 2N∗P∗a11a12 + P2∗a212

[
d1P∗a11a12 − d1N∗a211 − 2N∗a12a21

+ 2
√
d1N∗P∗a11a212a21 − d1P2∗a312a21 + N2∗a212a

2
21

]
, (17)

whenever the expression is feasible. Thewave number kT of themost rapidly growing eigen
mode on account of the boundary conditions satisfies pπ/L ≤ kT ≤ qπ/L, where p and q
are natural numbers and L is the length of the domain. Therefore, the expected wavelength
is of the form χ = 2π/m, where m is a natural number satisfying p ≤ m ≤ q. The total
number of stripes in the spatial domain will be L/χ (Aragón et al., 2012). These results
can be numerically verified with suitable examples which are described in Section 4.3.
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4. Simulation results

We have obtained the temporal Hopf bifurcation threshold in terms of b and Turing bifur-
cation threshold in terms of d2 for system (8) in the previous section. We now perform
numerical simulations to understand the pattern formation scenario of system (8). Before
that, we discuss the same for the self-diffusion model (6). For this, we consider a one-
dimensional spatial domain [0, 1200] with�x = 1 and�t = 0.01. Results are verifiedwith
other choices of�x and�t andwe can assure that the reported results are free fromnumer-
ical artefacts. Three-point stencil finite difference scheme for the diffusion part and forward
Euler method for the temporal part are used to simulate the models (6) and (8). Values of
parameters c=0.2 and d1 = 2 are kept fixed for all the simulations. Along with no-flux
boundary conditions, initial conditions for the simulations are taken to be

N(x, 0) = N∗, P(x, 0) =
{
P∗ if |x − 600| < 5,
0 otherwise.

(18)

Now we discuss the patterns exhibited by model (6) followed by those produced by simu-
lating model (8) in the following subsections. We also validate the analytical results with
the numerical examples and examine the effects of cross-diffusion on pattern formation
scenario of the self-diffusion model (6).

4.1. Patterns without cross-diffusion

The conditions for Turing instability are not satisfied for prey–predatormodel withHolling
type II functional response in presence of self-diffusion and numerical simulations with
any set of parameter values do not produce Turing patterns. But there are other patterns
exhibited by with self-diffusion model (6).

For the set of parameters a=0.6, b=0.35 close to the Hopf bifurcation threshold bH =
0.4, the transient state consists of periodic travellingwavewhich are formed till the solution
starting from the given initial condition reaches the boundary (see Figure 1(a,b)). After a
long time, it becomes a periodic in space and time solution which finally leads to periodic
in time solution (see Figure 1(c,d)). Similar results are found for the parameters near the
Hopf bifurcation boundary.

For parameters a=0.9, b=0.2, that are away from the Hopf bifurcation threshold
bH = 0.6, modulated periodic travelling wave followed by chaotic pattern appears. The
symmetry in the initial conditions is maintained for a long time and then symmetry breaks
down giving rise to chaotic oscillations (see Figure 2). Similar results are found for other
parameter values, away from the temporal Hopf bifurcation boundary.

We now consolidate all such simulation results in a bifurcation diagram plotted on a –b
plane (see Figure 3). The dashed curve divides the domain into two parts, the upper part
corresponds to region I where the coexistence equilibrium point (N∗,P∗) is not feasible.
(N∗,P∗) is feasible in the lower part of the domain which is divided by the black curve
bH = 0.6667a corresponding to Hopf bifurcation boundary. Region II lies between the red
and black curves where the homogeneous steady state (N∗,P∗) is stable under temporal
perturbations. Travellingwaves are formed in region II connecting the total extinction state
(0, 0), predator free state (1, 0) and co-existing steady state (N∗,P∗) with the given initial
conditions. Region III lies just below the Hopf bifurcation curve where periodic travelling
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Figure 1. Periodic travelling wave followed by periodic with respect to space and time solutions for
parameter values a= 0.6, b= 0.35, c= 0.2, d1 = 2, d2 = 0: (a) Plot of u(x, t) and v(x, t) at time t= 1500;
(b) Plot of patterns formed in x-t plane till time t= 1500; (c) Plot of u(x, t) and v(x, t) at time t= 4500;
(d) Plot of patterns formed in x-t plane till time t= 4500.

waves emerge initially followed by periodic in space and time solution and finally peri-
odic in time solutions (see Figure 1). Region IV lies below region III away from the Hopf
bifurcation boundary, where modulated periodic travelling waves appear initially which
ultimately turn into chaotic patterns.

We shall now introduce cross-diffusion and examine the changes occurring to each of
the solutions generated by corresponding parameter sets of the a –b plane in Figure 3. We
will also compare the patterns generated in the self-diffusion model (6) with those of the
cross-diffusion model (8).

4.2. Travelling waves due to cross-diffusion

Here, we discuss the effects of cross-diffusion on travelling wave solutions of the self-
diffusion model (6) with the help of a numerical example. We consider the parameter
set a = 0.9, b = 0.65, c = 0.2, d1 = 2. We take d2 = 0 first and then gradually increase it
to note the changes due to the influence of cross-diffusion. We have already converted
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Figure 2. Modulated periodic travelling wave followed by chaotic pattern for parameter values a= 0.9,
b= 0.2, c= 0.2, d1 = 2, d2 = 0: (a) Plot of u(x, t) and v(x, t) at time t= 1500; (b) Plot of patterns formed
in x-t plane till time t= 1500; (c) Plot of u(x, t) and v(x, t) at time t= 4500; (d) Plot of patterns formed in
x-t plane till time t= 4500.

the model with cross-diffusion (8) to a system of ordinary differential Equation (10) by
substitution of N(x, t) ≡ U(x − st) and P(x, t) ≡ V(x − st).

From the linear stability analysis of system (10) around its equilibrium points, we find
the criteria for existence of travellingwave connecting the equilibriumpoints of the tempo-
ral part of the model. Also the effects of cross-diffusion on the speed of the travelling wave
can be studied. The three equilibrium points of the form (U,V,W,X) of system (10) with
the given parameter values are E0 ≡ (0, 0, 0, 0),E1 ≡ (1, 0, 0, 0),E2 ≡ (0.52, 0.3456, 0, 0).

The eigenvalues of Jacobianmatrix JE0 of system (10) at E0(0, 0, 0, 0) are λ1,2 = −0.5s ±
0.5

√
s2 − 4 and λ3,4 = −0.25s ± 0.05

√
25s2 + 130. Thus, it is clear that there exists a one-

dimensional unstable manifold at E0 for s ≥ 2, which creates a heteroclinic connection
with one of the other equilibrium points E1 or E2. The characteristic polynomial of the
Jacobian matrix JE1 of system (10) at E1(1, 0, 0, 0) is

PE1(λ) = (1.2d2 + 2.4)λ4 + (3.6s + 1.2sd2)λ3 + (1.2s2 − 1.2d2 − 2.28)λ2

− 1.08sλ − 0.12.
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Figure 3. Bifurcation curves in a–b plane: dashed curvemarks the boundary of region I where the coex-
istence equilibrium point is not feasible; black curve represents the Hopf bifurcation curve; region II lies
between the red andblack curvewhere coexistence equilibriumpoint (N∗, P∗) is feasible and temporally
stable; ‘*’ symbols represent region III where periodic travelling waves are formed followed by periodic
in time solutions; ‘o’ symbols represent region IV where chaotic patterns are observed.

The eigenvalues are λ1,2 = −0.5s ± 0.5
√
s2 + 4 and λ3,4 = (0.1/(d2 + 2))(−5s ±√

25s2 − 10d2 − 20). It is obvious that λ1 is always positive while λ2 is always negative. If
s ≥ √

10d2 + 20/5 = smin, thenλ3 andλ4 are real negative eigenvalues. This becomes clear
form the plot of PE1 , which shows that for s ≥ smin, three of the roots are real and negative
while the fourth one is real and positive (see Figure 4(a,b)). Hence, there will be a one-
dimensional unstable manifold and a three-dimensional stable manifold at equilibrium
E1. If 0 < s <

√
10d2 + 20/5, then λ3 and λ4 are a pair of complex conjugate eigenvalues

with negative real part. E1 then becomes a spiral point which is biologically not feasible.
Therefore, if a travelling wave solution of system (10) exists, then the possible minimum

Figure 4. (a) Plot of the characteristic polynomial PE1 for the parameter values a = 0.9, b = 0.65, c =
0.2, d1 = 2, d2 = 0; (b) zoomed version of (a); (c) Plot of the characteristic polynomial PE2 . Solid, dashed
and dotted curves represent s > smin, s = smin and s < smin respectively.
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speed for biologically relevant solution with non-negative U and V is

smin =
√
10d2 + 20

5
.

It is clear that the minimum speed smin of the travelling wave increases with an increase
in value of the cross-diffusion parameter d2. Travelling wave solutions for two different
values of d2 are shown in Figure 5. The travelling wave of Figure 5(b) with non-zero
cross-diffusion d2 = 4 moves faster than the one in Figure 5(a) with zero cross-diffusion
d2 = 0.

At the non-trivial equilibrium E2 ≡ (0.52, 0.3456, 0, 0), the Jacobian matrix is of the
form

JE2

=

⎛
⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1

0.1733 0.7222 −s 0
−0.0864 + 0.043d2
0.3744d2 + 1.44

− 0.1797d2
0.3744d2 + 1.44

0.2488sd2
0.3744d2 + 1.44

− 0.72s
0.3744d2 + 1.44

⎞
⎟⎟⎟⎟⎠ .

(19)

For s ≥ √
10d2 + 20/5, the plot of the corresponding characteristic polynomial PE2 in

Figure 4(c) shows that the PE2 has exactly two negative real roots. By calculation the other
two roots are found to be complexwith positive real parts. Thus, there is a two-dimensional
unstable manifold at the equilibrium E2. As a result, a heteroclinic connection is possible
between E0, E1 and E2 of system (10). Figure 5 depicts the travelling wave connecting the
equilibrium points (1, 0) and (N∗,P∗) of the spatio-temporal model (8). If we change the
initial conditions to

N(x, 0) =
{
N∗ if |x − 600| < 5
0 otherwise

, P(x, 0) =
{
P∗ if |x − 600| < 5
0 otherwise

,

Figure 5. Travelling wave profiles connecting two equlibrium points: (a) a = 0.9, b = 0.65, c =
0.2, d1 = 2, d2 = 0 at time t = 100 (black), 200 (red), and 300 (blue); (b) a = 0.9, b = 0.65, c = 0.2, d1 =
2, d2 = 4, at time t = 100 (black), 200 (red), and 300 (blue).
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Figure 6. Travelling wave profiles connecting three equilibrium points for (a) a = 0.9, b = 0.65, c =
0.2, d1 = 2, d2 = 0 at time t = 100 (black), 200 (red), and 300 (blue); (b) a = 0.9, b = 0.65, c = 0.2, d1 =
2, d2 = 4, at time t = 100 (black), 200 (red), and 300 (blue).

Figure 7. Speed of travelling wave s with respect to cross-diffusion parameter d2 for d1 = 2 (black
curve), d1 = 4 (black dashed curve), d1 = 6 (black dotted curve), d1 = 8 (magenta curve).

then we get travelling waves connecting all the three homogeneous steady-states (0, 0),
(1, 0) and (N∗,P∗) of model (8) as shown in Figure 6. In this case also, the speed of the
travelling wave increases with increase in the cross-diffusion parameter d2 when the plots
are obtained at same instances of time.

Thus, heteroclinic connections between the the total extinction state, predator free state
and co-existing homogeneous steady state exist in both the systems with self- and cross-
diffusion. The travelling wave of system with cross-diffusion (8) moves faster than that
of the self-diffusion model (6). The dependence of the speed of travelling wave on the
cross-diffusion coefficient d2 for a given value of self-diffusion coefficient d1 is shown in
Figure 7. For a given d1, the speed of the travelling wave increases as d2 is increased from
0 but ultimately it reaches a saturation level. Furthermore, the speed of the travelling wave
is almost independent of cross-diffusion coefficient d2 for higher values of d1.

4.3. Cross-diffusion induced turing patterns

In the presence of cross-diffusion, Turing patterns are produced in system (8). We dis-
cuss this phenomenon with a numerical example. Considering parameter values a=0.4,
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Figure 8. Turingpattern for parameter valuesa= 0.4,b= 0.27, c= 0.2,d1 = 2,d2 = 6: (a) plot ofu(x, t)
till time t= 1500; (b) zoomed version of (a) for L= 200; (c) Turing patterns for L= 200 for the predator
population.

Figure 9. (a) Plot of Re(λ) (red curve) andh(k2) (green curve)with respect to k; (b) plot of Turing pattern
for prey population in x-t plane till time t= 1500. Parameter values are a= 0.3, b= 0.19, c= 0.2, d1 = 2
and d2 = 6.

b=0.27, c=0.2 and d1 = 2 for which the Turing bifurcation threshold from (17) is
dT2 = 3.8463 and kT = 0.34558. Turing patterns are formed for d2 > dT2 and Figure 8
depicts the same for d2 = 6. For validating the analytic results with the numerical simula-
tion results, the corresponding eigen mode that grows rapidly has wavelength 2π/kT =
19.67 and the approximate number of stripes to be found due to Turing instability is
1200
19.67 ≈ 61. We observe 61 stripes for simulation with the given initial conditions (18) (see
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Figure 8(a)). Turing patternswith 61 stripes are also found for randomperturbation around
the homogeneous steady state (N∗,P∗) ≡ (0.4153, 0.3597). Zoomed version of the Turing
patterns for both the prey and predator populations in spatial domain (0,200) are shown
in Figure 8(b,c) which show that the areas with high concentration of prey population
correspond to low density of predator population and vice versa.

We consider another example of patterns in the Turing-Hopf domain. Turing-Hopf
domain represents the region where the homogeneous steady-state (N∗,P∗) of system (8)
is unstable with respect to temporal and spatial perturbations. For the parameter values
a=0.3, b=0.19, c=0.2, d1 = 2, the Turing bifurcation threshold is found to be dT2 =
2.3039 and the corresponding kT = 0.3573. Plot of Re(λ) (red curve) confirms that the
system is Turing unstable for d2 = 6 > dT2 (see Figure 9(a)). Also at k=0, Re(λ) is pos-
itive which confirms that the parameter set lies below the Hopf bifurcation boundary in
Figure 3 where bH = 0.2. Thus, the parameter set belongs to bluethe Turing-Hopf domain.
The corresponding eigenmode that grows rapidly due to Turing instability has wavelength
is 2π

0.31416 ≈ 20 and the approximate number of stripes to be found due to Turing instability
is 1200

20 = 60. We get 60 stripes after simulation with the given initial conditions (18) (see
Figure 9(b)). Here also areas with high concentration of prey population correspond to low
concentration of predator population and vice versa.

4.4. Pattern diagram on a–b plane

Now we examine the effect of cross-diffusion on all types of solutions exhibited by the
self-diffusion model (6). For this, we increase the cross-diffusion parameter d2 gradually
from 0 and note the changes of the regions marked in a –b plane of Figure 3. Regions
I, II, III and IV are specified in the caption of Figure 3. We use the given initial condi-
tions (18) and no-flux boundary conditions to simulate the model with cross-diffusion (8)
for each parameter set of the a –b plane. It is obvious that region I does not change with
variation in d2 since the co-existing steady-state remains infeasible. Conditions for Turing

Figure 10. Bifurcation curves in a–b plane for (a) d2 = 6; (b) d2 = 12: red curve marks the boundary
of region I; black and back dashed curves represent the Hopf and Turing bifurcation curves respectively;
region II lies between the red, black and black dashed curves; ‘*’ symbols represent region III; ‘o’ symbols
represent region IV; ‘×’ symbols represent stationary patterns that belong to pure Turing domain V and
Turing-Hopf domain VI. Other parameter values are c= 0.2, d1 = 2.
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Figure 11. Plot of solutions at time t= 1500: (a) a= 0.2; (b) a= 0.215; (c) a= 0.22; (d) a= 0.27; (e)
a= 0.35; (f ) a= 0.8. Other parameter values are b= 0.15, c= 0.2, d1 = 2 and d2 = 6.

instability are satisfied for some parameter sets of the a –b plane in presence of cross-
diffusion. Hence, Turing patterns start to evolve which give rise to pure Turing domain
V that lies between the Hopf and Turing bifurcation boundaries. We also have region VI
below the Hopf bifurcation boundary that correspond to the Turing-Hopf domain in the
a –b plane (see Figure 10(a,b)). Regions II and III of Figure 3 become smaller in sizes due
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to addition of regions V and VI. Parameter sets giving travelling wave solutions for d2 = 0
may now produce Turing patterns as d2 increases. Also the parameter sets giving periodic
in time solutions may satisfy the Turing instability conditions and produce Turing patterns
as an effect of cross-diffusion. Turing patterns are produced for parameter sets around the
Hopf bifurcation curve. On the other hand, chaotic patterns exhibited by parameter sets
away from the Hopf bifurcation curve, become less enhanced and periodic in time solu-
tion occurs as a result of cross-diffusion. Thus, region IV also becomes smaller with an
increase in d2. The bifurcation diagrams for d2 = 6 and d2 = 12 in Figure 10(a ,b), respec-
tively, clearly show that regions V and VI increase leading to diminution of regions II, III
and IV with increase in d2. It should be mentioned here that appropriate boundaries for
the regions III and IV and lower boundary for region VI can not be obtained analytically
rather they are identified through the numerical simulation results.

For better understanding of the change in patterns in the a –b plane of Figure 10(a),
we choose a particular parameter set with b=0.15, d2 = 6 and increase a gradually to
observe the changes in the patterns. Figure 11 depicts that, travelling wave transforms
into Turing patterns followed by the emergence of periodic travelling wave in the transient
phase leading to periodic in time solutions with increase in a. Figure 11(b) represents how
the travelling wave transforms into Turing patterns. Turing patterns emerge at the mid-
dle of the domain followed by travelling wave moving towards the boundary after which
the whole domain is filled with Turing patterns if the simuations are run for a longer time
for a=0.215. Turing patterns are observed at a=0.22 and periodic travelling waves at
a=0.35. For some values of a in between 0.22 and 0.35, Turing like stationary patterns are
observed in some parts of the domain along with periodic travelling wave in the remain-
ing parts (see Figure 11(d)). Further increase in a leads to transformation of periodic in
time solutions to chaotic patterns. For Figure 10(b), we keep a=0.8 and d2 = 12 fixed and
increase b gradually to observe the changes in the patterns. For this set of parameter values,
chaotic patterns followed by periodic solutions, Turing patterns and travelling waves are
observed.

If continuation technique for numerical simulations with respect to parameter a is used
keeping b and d2 fixed, various interesting phenomena are observed. In the forward con-
tinuation technique, we simulate the cross-diffusion model (8) for a=0.181 using initial
condition (18) which gives travelling wave solution. Using the travelling wave solution as
initial condition, we increase a by small increment to see the changes in patterns. The pro-
cess is continued using the last simulation result at each step as initial condition for the
next step. Turing patterns, periodic in time solutions and chaotic solutions are observed
(see Figure 12(a,b)). Periodic in time solutions are found for a larger range of a, than the
range found when the model (8) was simulated at each value of a with the given initial
condition (18).

We have also used backward continuation technique for the same set of parameter val-
ues. Here, we simulate the model (8) for a=1 using initial conditions (18) and no-flux
boundary conditions. This gives rise to chaotic solution. Next we decrease a by small
decrement and use the solution for a=1 as initial condition. This process is continued
till a=0.181 and the resulting patterns are noted. We observe periodic in time solutions,
Turing patterns and stationary homogeneous steady state with decrease in a. In this case,
the chaotic pattern prevails for a longer range of a than it does for the case in which initial
condition (18) is used for each value of a (see Figure 12(c)).
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Figure 12. (a) Resulting patterns obtained for prey population by forward continuation technique for
b = 0.15, d2 = 6 and a ∈ [0.181, 1]; (b) Plot of time series for u(600, t) showing chaotic pattern for
a= 0.8 (upper panel), periodic in time solutions fora= 0.4 (middlepanel) andTuringpattern fora= 0.22
(lower panel); (c) Resulting patterns obtained for prey population by backward continuation technique
for b = 0.15, d2 = 6 and a ∈ [0.181, 1].

5. Conclusions

We have considered a common prey–predator model with Rosenzweig–MacArthur type
reaction kinetics as our temporal model. After deriving the Hopf bifurcation conditions
for the same, we have introduced the spatio-temporal extension of the model in terms
of a system of reaction–diffusion equations together with given initial conditions and
no-flux boundary conditions. In addition to self-diffusion, we have considered density-
dependent cross-diffusion for the predator population to include the effects of presence,
absence, abundance of the prey population on the predators. Existence of Turing pat-
terns has been investigated for the spatio-temporal model with cross-diffusion. Effects of
cross-diffusion on the patterns produced by the corresponding self-diffusion model such
as travelling waves, periodic travelling waves leading to periodic in time solutions, mod-
ulated periodic travelling waves leading to chaotic solutions are also elaborately studied.
Main goal of this work is to explain howone type of pattern changes to another type in pres-
ence of cross-diffusion. Extensive numerical simulations are used to validate the analytical
results and to explore the other possible spatio-temporal patterns like periodic and chaotic
solutions.

The self-diffusion model (6) does not produce Turing patterns since the conditions
for Turing instability are not satisfied. On the other hand, the Turing instability condi-
tions can be satisfied for an appropriate parameter set in presence of cross-diffusion terms.
Turing bifurcation curve which does not exist for the self-diffusion model appears in the
a–b parametric plane for non-zero cross-diffusion parameter d2. Furthermore, the Turing
domain and Turing-Hopf domain also increase in size with increase in the cross-diffusion
parameter.

Travelling wave solutions are produced by the self-diffusion model (6) connecting two
or three homogeneous steady-states. The solutions may remain same or may bifurcate to
Turing patterns due to inclusion of cross-diffusion terms. In case of similar solution, the
speed of the travelling wave increases with an increase in the cross-diffusion parameter.
Also the Turing patterns depict that areas with high concentration of prey population cor-
respond to low predator concentration and vice versa which is ecologically realistic since
the prey population tend to be away from regions where high concentration of predator
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population is present. Also the predators gather near the boundary of the regions where
prey population is high to catch hold of the same.

For some sets of parameter values just below the Hopf bifurcation curve in the a –b
parametric plane, the model with self-diffusion (6) generates periodic in time solutions
which are converted into Turing patterns as well as into a combination of Turing patterns
and periodic travelling waves as the cross-diffusion parameter is introduced and gradu-
ally increased. For the parameter values below and away from the Hopf bifurcation curve,
chaotic solutions are produced by the self-diffusion model (6). Numerical simulations for
some of these parameter sets lead to conversion of chaotic patterns into periodic in time
solutions. Periodic in time solutions prevail over a larger range of parameters when for-
ward continuation technique is used in simulations whereas the same occurs for chaotic
patterns in the backward continuation procedure.

Travellingwaves and periodic in time solutions produced by the self-diffusionmodel (6)
convert into Turing patterns as a result of cross-diffusion even for the case where the
self-diffusion parameters are same for both the prey and predator populations. For lower
values of self-diffusion parameter, the speed of the travelling wave increases first with
increase in cross-diffusion parameter before it attains a saturation level. For higher val-
ues of self-diffusion parameter, the speed of the travelling wave is almost independent of
the cross-diffusion parameter. Chaotic patterns generated by the self-diffusion model (6)
may get subdued and periodic in time solutions appear as a result of cross-diffusion. The
temporal model shows global stability for predator free equilibrium point as well as sta-
ble limit cycle under proper parametric restriction and the corresponding spatio-temporal
model with self-diffusion shows patterns which are variable with respect to time. However,
it is possible to find solutions which are stationary with respect to time due to introduction
of cross-diffusion terms. Thus, density dependent cross-diffusion has significant effects on
the pattern formation scenario of themodel with self-diffusion and is solely responsible for
the formation of Turing patterns in prey–predator model with Holling type II functional
response.

Thus, travelling wave, periodic in time solutions and chaotic patterns are observed
under certain parametric conditions in the self-diffusion model. On the other hand, Tur-
ing pattern along with the combination of Turing pattern and periodic travelling wave,
are additional patterns that are observed in presence of cross-diffusion. This approach can
be extended to two spatial dimensions for other prey–predator models with different func-
tional responses and a comparative study of the pattern formation scenario can be explored.
Also, other forms of cross-diffusion terms can be used and the resulting patterns can be
studied as well.
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