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ABSTRACT

In this paper, we present a mathematical model at the cellular level
of the tumour–immune competition mediated by the cytokines.
The model consists of a system of nonlinear differential equations
describing the intracellular interactions between the tumour and
the immune cells in the presence of the cytokines. A detailed
phenomenological description of the model based on the kinetic
theory for active particle approach is carried out to formulate the
model. Well-posedness is presented to establish local and global
existence. Numerical simulations are addressed to show how initial
conditions and model parameters influence the output of the model.
Under a suitable choice of the model’s key parameters and the
cytokines’ initial activation levels, the simulation results show that
the activated immune system is able to achieve a total elimination of
the cancer cells.
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1. Introduction

The significance of the immune system in tumour development, progression and destruc-
tion, as well as the complexity of the tumour–immune interactions have been extensively
studied in recent decades (see reviews and references therein (Zamarron & Chen, 2011;
Kim, Emi, & Tanabe, 2007; Cal, Molon, & Viola, 2017; Finn, 2012;Wargo, Reddy, Reuben,
& Sharma, 2016). The evolution of tumour cells in a host is governed by more than
just the activities of cancer cells alone. It is largely due to a plethora of inter- and intra-
cellular interactions within the tumour microenvironment (Whiteside, 2010; Wargo et al.,
2016). The immune cells play a key role in the tumour microenvironment, which contains
heterogeneous cell populations such as cancer stem cells, stromal cells, fibroblasts and
endothelial cells (Hanahan, Lisa, & Coussens, 2012).

Complex cellular interactions and crosstalks take place within the tumour microen-
vironment and are governed by an intricate network of biological pathways (Bor-Ching
et al., 2018). The various cell types in the tumour microenvironment upon activation,
secrete multiple signals also known as cytokines (Chen & Mellman, 2017). These signals
control the strength and timing of the anticancer response and play an important role in
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tumour pathogenesis (Burkholder, 2014). The cytokines are lowmolecular weight proteins
that bind on a responsive target cell and act as intracellular messenger invoking particular
biological activity (Landskron, De la Fuente, Thuwajit, Thuwajit, & Hermoso, 2014). The
cytokines produced by the cells in the tumour microenvironmentare are key factors in
modulating immune response either against or in favour of tumorigenesis (Showalter
et al., 2017 September). Depending on the cytokines and other signals in the tumour
microenvironment, recruited immune cells will either form a pro-tumour immunity or
an anti-tumour immunity (Burkholder et al., 2014). Cytokines are also considered for
potential therapeutic and preventive targets as well as prognostic factors. They have been
recently explored in cancer immunotherapy (i.e. the use of the immune system to treat
cancer) (Hong-Mei, 2014; Sylvia & Margolin, 2011).

Understanding such a complex and continuously changing network of multiple signals
that control cancer–immune interactions not only does it require ongoing and sophis-
ticated experimental and clinical research, but it also calls for mathematical modelling.
Severalmathematicalmodels of tumour–immune system interactions have been developed
over the past decades. They have included a broad range of mathematical methods such
as differential equations, spatial and nonspatial multiscale models and agent-basedmodels
to name just a few. These models have examined different characteristics of the cancer–
immune complex interactions both in general and in other specific cases such as immune
surveillance, suppression and escape, and during therapies. For a comprehensive survey of
these models, the reader is referred to excellent review articles in (Altrock, Liu, & Michor,
2015; Adam & Bellomo, 2012; De Pillis, Eladdadi, & Radunskaya, 2014; Eladdadi, Kim, &
Mallet, 2014).

Our mathematical model describes the interactions between single cells of the tumour–
immune system and is developed according to the kinetic theory for active particle
approach. This mathematical framework applied to cancer modelling was pioneered by
(Bellomo, Preziosi, & Forni, 1996) and developed further in numerous publications as
documented in the review paper (Bellomo, Elaiw, Althiabi, & Alghamdi, 2015). The main
advantage of the kinetic theory is that it provides a deeper insight into the interactions
between the tumour and immune cells at a cellular level at an early stage of tumour
development, that is before the tumour becomes a macroscopically observable spatial
structure. This early stage is significant since the competition between the tumour and
immune cells can still lead to a complete elimination of cancer cells by the activated
immune system (Kim et al., 2007). In fact, the tumour immuno-surveillance hypothesis,
first formulated by Burnet back in 1954, indicates that the immune system is capable of
inhibiting the growth of very small tumours and eliminating them before they become
clinically recognized (Burnet, 1954).

The tumour–immune competition involves several interacting cell populations within
the tumour microenvironment each characterized by a unique microscopic internal bi-
ological function. The immune system consists of various cell subpopulations each with
different biological functions. They are recruited into the tumour microenvironment as
a result of the immune system activation by different cytokines (Nagarsheth et al., 2017).
Similarly, there is a large network of active cytokines with different biological activities
and attributes in the tumour microenvironment (Bor-Ching et al., 2018). To simplify
the complexity generated by a large number of cell subpopulations and to concentrate
on capturing the overall evolution of the immune system activation by the cytokines, we
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consider the immune cells as onewhole population. Similarly for the cytokines, we consider
all type of cytokines as one population.

In this paper, we build upon our previous model in (Bellouquid & CH-Chaoui, 2014),
wherewe presented a nonlinear integro-differentialmodel of the tumour–immune compe-
titionmediated by the cytokines activity. Themodel describes the conservative interactions
between the tumour and immune cells, that is, the competition where no cell prolifera-
tion/destruction occurs. In this work, we extend this model to include the activation
density of the cytokines by considering both the conservative and proliferative/destructive
interactions of the tumour and immune cells. Particularly, we investigate how and under
which conditions the immune activation by cytokines leads to a complete elimination of
cancer cells in their early stage of development.

This paper is organized as follows. The formulation of the mathematical model is
detailed in Section 2. Thewell-posedness of the initial value problem is presented in Section
3. Numerical study is given in Section 4. The conclusion and discussion are presented in
Section 5.

2. Model formulation

In this section, we present the mathematical model describing the interactions between
the tumour cells and the cytokines-activated immune cells at the cellular level. We first
start by briefly reviewing the kinetic approach in modelling a system of a large number of
interacting cells (Sec 2.1), followed by the main assumptions (in Section 2.2) needed for
the formulation of the mathematical model which is detailed in (Section 2.3).

2.1. The kinetic theory for active particles approach

The kinetic theory for active particles approach refers to the classical models of kinetic
theory defined by the Boltzmann equations which are also known as the generalized
kinetic Boltzmannmodels. They are the fundamental models of nonequilibrium statistical
mechanics that provide the conceptual framework for generalizing the methods of kinetic
theory to various fields of applied sciences (Cercignani, Illner, & Pulvirenti, 1994). The
kinetic theory is praised for its ability to help understand phenomena of nonequilibrium
statistical mechanics which are not described by the traditional macroscopic approach
(Bellomo&Pulvirenti, 2000). Themodels basedon the kinetic theorydescribe the evolution
of the one-particle distribution function over the physical state of a large systems of
interacting particles/cells. Each particle/cell is characterized by a certain microscopic
state that describes its functional state such as the position, velocity and the biological
activity. The overall system can be divided into finite subsystems, where each subsystem is
a collection of particles/cells showing common activities (or biological expressions). These
subsystems usually consist of interacting populations with the possibility of shifting from
one population to the other. The state of each subsystem is described by a distribution
function over the microscopic state of the interacting cells, whereas the evolution of the
system is defined by local cells interactions. For a comprehensive derivation of the kinetic
theory for active particles mathematical frameworks, the interested reader is referred to
the books in (Bellouquid & Delitala, 2006; Bellomo, 2008; Bellomo & De Angelis, 2008).
Readers interested in the kinetic approach applied to cancer modelling is referred to these
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excellent papers and the references therein (Bellomo, Bellouquid, &Delitala, 2004; Bellomo
& Delitala, 2008; Bellouquid, De Angelis, & Knopof, 2013; De Angelis, 2014; Bellouquid &
De Angelis, 2011; De Angelis & Lods, 2008; De Angelis & Jabin, 2003; De Angelis & Jabin,
2005).

2.2. Model description

In this section, we present the assumptions for our model based on the discussion above
and the scientific literature on the interaction and competition at the cellular level between
the tumour and immune cells (Zamarron & Chen, 2011; Kim et al., 2007; Cal et al., 2017;
Finn, 2012; Wargo et al., 2016). The early stage of cancer development includes activation
and inhibition of the immune system through cytokine signals which regulate cellular
activities. We start by detailing the first four steps of the kinetic theory that will help in
formulating our mathematical model.

2.2.1. Cell populations
The biological system considered in this model consists of three interacting populations in
the tumour microenvironment: cancer cells, immune cells and cytokine signals labelled,
respectively, by the indices 1, 2 and 3.

2.2.2. Themicroscopic state
The tumour and immune cells as well as the cytokine signals are viewed as active particles
with a microscopic state describing a unique internal biological function or activity. From
a mathematical viewpoint, this biological activity is represented by a real variable u ∈
Du ⊂ R. The value of u is a measure of the cell’s ability to prevail in the cell–cell or
binary interactions. For the cancer cells, u represents the progression from the normal to
cancerous state, whereas for the immune cells and the cytokines, u describes activation.
Cells with a positive activation state value are called active, whereas cells with a negative
value are called passive (or inhibited). Specifically, in the case of cancer cells, negative
values of u correspond to normal endothelial cells, while positive values of u correspond to
pathological state or cancer cells. For the immune cells and the cytokines, positive values
of umeans activation, while negative values means inhibition.

Based on the generalized kinetic Boltzmann equations (Bellouquid and Delitala 2006),
the microscopic state of the system of each population is described by the normalized
density functions fi (where i = 1, 2, 3) over the activity u as follows:

fi = fi(t, u) = 1
ν0
Ni(t, u), (1)

where the densitiesNi(t, u) are such that dni = Ni(t, u)du denotes the number of cells per
unit volume whose state is, at time t, in the interval [u, u + du], and that ν0 is the total
number of cells at t = 0.

2.2.3. Themacroscopic quantities
The macroscopic quantities portray the behaviour of the system and are usually computed
using the normalized density functions fi(t, u). The two main macroscopic quantities
that we focus on in our mathematical model are the size (or number density) of the cell
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populations denoted by n(t) and the activity of each population denoted by A(t), which
are respectively defined as follows:

• Size or number density of each of the populations at time t is recovered as zeroth-
order momenta of the distribution function fi = fi(t, u) (i = 1, 2, 3) and is given
by:

ni(t) =
∫
Du

fi(t, u) du, with ni0 = ni(0) =
∫
Du

fi(0, u) du,

while the total number of cells at time t is given by N(t) =
∑m

i=1
ni(t), which may

depend on time due to the birth (proliferation) and death (destruction) processes
related to the nature of the cell interactions, as well as to the flux of cells through the
boundaries of the volume.

• The activation of each cell population at time t is given by the first-order momenta:

Ai(t) =
∫
Du

ufi(t, u) du, with Ai0 = Ai(0) =
∫
Du

ufi(0, u) du.

The sizes and activation of each cell type and their meanings are summarized in
Tables 1 and 2, respectively:

where the total endothelial cell density is given by, n1[f1](t) = nT1 [f1](t) + nE1 [f1](t) and
the total immune cells is given by, n2[f2](t) = nA2 [f2](t) + nI2[f2](t).

2.2.4. Microscopic interactions
Below, we detail the binary cellular interactions in our proposed model both biologically
and mathematically. We first start by describing the conservative interactions followed by
the proliferating/destructive interactions.

• Conservative interactions: they modify the progression of the endothelial cells, the
activation of the immune cells and the cytokines. Mass conservative encounter rates
between two population, say i and j, with microscopic states u∗ and u∗, respectively,
are quantitatively represented by the transition probability density mij(u∗, u∗). It
is assumed to be a Gaussian distribution function with the most probable output
defined by the mean value mij(u∗, u∗) which are described by the δ function over
mij. The conservative interactions (C.1 - C.7) are listed below.

Table 1. Number densities and their meaning.

Densities Description

nT1 [f1](t) =
∫ ∞
0

f1(t, u)du Tumour cells

nE1[f1](t) =
∫ 0

−∞
f1(t, u)du Normal endothelial cells

nA2 [f2](t) =
∫ ∞
0

f2(t, u)du Active immune cells

nI2[f2](t) =
∫ 0

−∞
f2(t, u)du Inhibited immune cells

nA3 [f3](t) =
∫ ∞
0

f3(t, u) du Cytokine signals
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Table 2. Activation and their meaning.

Activations Description

AT1 [f1](t) =
∫ +∞
0

u f1(t, u)du ≥ 0 Tumour cells

AE1[f1](t) =
∫ 0

−∞
u f1(t, u)du ≤ 0 Normal endothelial cells

AA2 [f2](t) =
∫ +∞
0

u f2(t, u)du ≥ 0 Active immune cells

AI2[f2](t) =
∫ 0

−∞
u f2(t, u)du ≤ 0 Inhibited immune cells

AA3 [f3](t) =
∫ +∞
0

u f3(t, u)du ≥ 0 Cytokine signals

Table 3. The model parameters and their description.

Parameters Meaning

c11 The inner tendency of endothelial cells to
degenerate and progress towards a pathological state

c12 The ability of the active immune cells to
reduce the progression of progressing cells

c21 The ability of tumour cells to inhibit immune cells
c23 The activation of immune cells by cytokine signals
c32 The progressive decay of the cytokine signals activity
p11 The proliferation rate for progressing cells due to

the interaction with normal endothelial cells
p12 The destructive ability of the immune system
p21 The proliferation of immune cells due to interaction

with progressing cells

(C.1) Interactions between the endothelial cells: endothelial cells show an inner
tendency to degenerate and progress towards a pathological state with most
probable output given by: u∗ ∈ R : m11 = u∗(1+ c11), where c11 is the ability
of endothelial cells to degenerate and progress towards a pathological state.

(C.2) Interactions between the tumour and immune cells: Tumour cells means that
u∗ > 0, and in this case there are two scenarios depending on the activity of the
immune cell:

• if the immune cell is not active, i.e. u∗ ≤ 0, then the state of the tumour
cell does not change and:u∗ ≤ 0, u∗ ∈ R, u∗ ≥ 0, u∗ ≤ 0 : m12 = u∗

• if the immune cell is active, i.e. u∗ ≥ 0, then the most probable output
is given as follows: u∗, u∗ ≥ 0 : m12 = u∗(1 − c12), where c12 refers
to the ability of the active immune cells to reduce the evolution of the
progressing cells

(C.3) Interactions between the immune and endothelial cells:
• if the endothelial cells is not progressing (normal), i.e. u∗ ≤ 0, the state
of an immune cell (u∗ ∈ R) does not change.

• if the endothelial cell is progressing (i.e. u∗ > 0), then the state of
the immune cell does not change after interaction with normal the
endothelial cell: u∗ ∈ R, u∗ ≤ 0, u∗ < 0, u∗ > 0 : m21 = u∗

• if the endothelial cell is progressing (i.e. u∗ ≥ 0), after interaction with
an active immune cell, the progressing cells will inhibit the activation of
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the immune cell, and the mean value is given as follows: u∗ ≥ 0, u∗ ≥
0 : m21 = u∗(1 − c21), where c21 is a parameter which indicates the
ability of tumour cells to inhibit immune cells: u∗ ≥ 0, u∗ ≥ 0 : m21 =
u∗(1 − c21)

(C.4) Interactions between the immune cells: interactions between immune cells do
not change their respective states: u∗, u∗ ∈ R : m22 = u∗

(C.5) Interactions between the immune cell and cytokines: Interaction between an
immune cell (either activated or inhibited)withmolecules of cytokines increases
the activation of the immune cell. Themean value is then given by: u∗ ∈ R, u∗ >
0, m23 = u∗ + c23, where c23 indicates the activation of immune cells by
cytokine signals.

(C.6) Interactions between the cytokines and the immune cell: Interaction between
a molecule of cytokines and an immune cell decreases the activation of cytokine
signals, and the mean value is given by: u∗ > 0, u∗ ∈ R m32 = u∗ − c32, where
c32 depicts the progressive decay of the cytokine signals activity

(C.7) Interactions between the cytokine and endothelial cells: interaction between
endothelial cells and cytokine signals do not lead to any modification of their
states. u∗, u∗ ∈ R : m13 = m31 = m33 = u∗

• Modelling microscopic proliferating/destructive interactions: the nonconserva-
tive interactions involving the three populations are modelled via the proliferating/
destructive rateμij(u∗, u∗), referring to every possible nonconservative interactions
between the cell pairs and are listed below ((P.1)–(P.6)):

(P.1) Cancer cells undergo uncontrolled mitosis stimulated by encounters with nor-
mal cells due to their angiogenic ability:

μ11(u∗, u∗) = p11 χ[0,∞)(u∗) χ(−∞,0)(u∗),

where:
• χ[a,b](x) denotes the stepwise function, such that χ[a,b](x) = 1 if x ∈

[a b], and χ[a,b](x) = 0 if x /∈ [a b]
• The term μ11(u∗, u∗) models the net proliferation into progressing en-
dothelial cells due to interaction with normal endothelial cells

• p11 is a parameter which characterizes the proliferating ability of tumour
cells.

(P.2) The proliferation rate of normal endothelial cells, u∗ ≤ 0, due to encounters
with other endothelial cells, is equal to zero. Encounters between tumour cells
do not lead to any proliferation or destruction.

(P.3) Tumour cells are partially destroyed due to encounters with active immune cells
(u∗ ∈ [0,∞)),

μ12(u∗, u∗) = −p12 χ[0,∞)(u∗) χ[0,∞)(u∗),

where p12 is a parameter that characterizes the destructive ability of active
immune cells.

(P.4) The proliferation rate of nonprogressing cells u∗ ≤ 0 due to encounters with
immune cells is equal to zero.
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(P.5) Active immune cells (u∗ ∈ [0,∞)) proliferate due to encounters with progress-
ing cells, although some of them may be inhibited:

μ21(u∗, u∗) = p21 χ[0,∞)(u∗) χ[0,∞)(u∗),

where p21 is a parameter that describes the proliferation ability of active immune
cells.

(P.6) The proliferation rate of inhibited immune cells (u∗ ≤ 0) due to encounters
with cells of the first population is equal to zero.

2.3. Mathematical model

Based on the phenomenological assumptions ((C.1)–(C.7)) and ((P.1)–(P.6)) listed above,
we now proceed to formulate the mathematical model by putting all of them together.
This model which describes the tumour–immune competition mediated by the cytokines
at the cellular level consists of a system of three coupled nonlinear integro-differential
equations. The dynamics of the system refers to an early stage of the competition with
both conservative and nonconservative cellular interactions. The evolution equations are
derived by suitable mass balance equations between the rate of change in the number of
cells per unit volume and the gain (positive flow) and loss (negative flow) of cells entering
or leaving this volume due to binary interactions as described in (Arlotti, De Angelis,
Fermo, Lachowicz, & Bellomo, 2012; Bellouquid & Delitala, 2006) and are given by the
following mathematical framework:

∂fi
∂t

(t, u) = Ci[f ](t, u) + Pi[f ](t, u)

=
3∑

j=1

[ ∫
R

∫
R

δ(u − mij(u∗, u∗))fi(t, u∗)fj(t, u∗)du∗du∗ − fi(t, u)
∫

R

fj(t, u∗)du∗
︸ ︷︷ ︸

Inlet and outlet flux due to conservative interactions

]

+ fi(t, u)
3∑

j=1

∫
R

μij fj(t, u∗) du∗

︸ ︷︷ ︸
Net flux due to Proliferation/destruction interactions

(2)

for i = 1, 2, 3, where Ci and Pi are suitable smooth operators acting over the distribution
functions [f ](t, u), which lead to the calculation of the net flow of active particles in the
elementary volume of the micro-states as follows:

• Ci[f ](t, u) is the net flow at time t due to conservative interactions.
• Pi[f ](t, u) is the net flow at time t due binary interactions that are either proliferative
or destructive.

Technical calculations (Bellouquid & Delitala, 2006) of the mathematical structure
defined in Equation (2) lead to the following evolution system of equations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f1
∂t

(t, u) = n1[f1](t)
(

1
1 + c11

f1(t,
u

1 + c11
) − f1(t, u)

)
︸ ︷︷ ︸

Self progression toward pathological state

+ nA2 [f2](t)
(

1
1 − c12

f1(t,
u

1 − c12
)χ[0,∞)(u) − f1(t, u)χ[0,∞)(u)

)
︸ ︷︷ ︸

Reduction of the progression of progressing cells by active immune cells
+ p11nE1 [f1](t)f1(t, u)χ[0,∞)(u)︸ ︷︷ ︸

Proliferation of progressing cells

− p12nA2 [f2](t)f1(t, u)χ[0,∞)(u)︸ ︷︷ ︸
Destruction of progressing cells by active immune cells

∂f2
∂t

(t, u) = nT1 [f1](t)
(
f2(t, u + c21)χ[0,∞)(u + c21) − f2(t, u)χ[0,∞)(u)

)
︸ ︷︷ ︸

Inhibition of immune cells by progressing endothelial cells

+ nA3 [f3](t)
(
f2(t, (u − c23)) − f2(t, u)

)
︸ ︷︷ ︸
Activation of immune cells by cytokine signals

+ p21f2(t, u)nT1 [f1](t)χ[0,∞)(u)︸ ︷︷ ︸
Proliferation of activated immune cells

∂f3
∂t

(t, u) = n2[f2](t)
(
f3(t, u + c32)χ[0,∞)(u + c32) − f3(t, u)χ[0,∞)(u)

)
︸ ︷︷ ︸

Utilization and decay of cytokine signals

(3)

The corresponding macroscopic model related to the number densities nT1 [f1], nA2 [f2]
and nA3 [f3] is obtained by suitable integrations of Equation (3) over the biological activity
variable u ∈ (0,+∞):
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂nT1 [f1](t)
∂t

= nT1 [f1](t)
(
p11nE1 [f1](t) − p12nA2 [f2](t)

)
∂nA2 [f2](t)

∂t
= −nT1 [f1](t)

∫ c21

0
f2(t, u)du + nA3 [f3](t)

∫ 0

−c23
f2(t, u)du + p21nT1 [f1](t)nA2 [f2](t)

∂nA3 [f3](t)
∂t

= −n2[f2](t)
∫ c32

0
f3(t, u)du

(4)

The macroscopic model related to the activities AT
1 , A

A
2 and AA

3 corresponding respec-
tively to the tumour cells, activated immune cells and cytokines is obtained using Equation
(3):
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂AT
1 [f1](t)
∂t

= c11n1[f1](t)AT
1 [f1](t) − (c12 + p12)nA2 [f1](t)AT

1 [f1](t) + p11nE1 (t)[f1]AT
1 [f1](t)

∂AA
2 [f2](t)
∂t

= −nT1 (t)
∫ c21

0
(u − c21)f2(t, u) + nA3 (t)

∫ 0

−c23
(u + c23)f2(t, u)du

−c21nT1 [f1] nA2 + c23nA3 [f3](t)nA2 [f2](t) + p21AA
2 [f2](t)nT1 [f1](t)

∂AA
3 [f3](t)
∂t

= −n2[f2](t)
(∫ c32

0
(u − c32)f3(t, u)du + c32nA3 (t)

)
(5)
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System of Equation (5) is not in a closed form because f1(t), f2(t) and f3(t) are unknown
functions. This macroscopic model can, however, describe the evolution of the activations
of cells expressing common biological expressions. Specifically, it describes the effects of
the cytokine signals on the interaction between the tumour cells and activated immune
cells. The asymptotic analysis of this model is not possible because of its dependence on
both fi(t) and zeroth-order moment. In this case, we restrict the qualitative analysis of this
model to numerical simulations which give an insight into the behaviour of the system
with different activation values.

Themodel is characterized by eight phenomenological parameters describing the transi-
tions and proliferation/destructive rates of the cellular interactions. Transitions parameters
in conservative encounters are denoted by cij, while proliferation/destructive encounters
are denoted by pij. The first index denotes the population that undergoes a change, while
the second index indicates the population that causes the change. The model parameters
and their meaning are summarized in Table 3.

3. Well-posedness of the initial value problem

In this section, we present the well-posedness of the Initial value problem for the mathe-
matical model Equation (3). The problem is stated by linking the evolution equations to
suitable initial conditions as follows:{

∂t h(t, u) = H[h](t, u),
fi0 = fi(t = 0, u). (6)

where h = (f1, f2, f3) and fi0 = (f10, f20, f30).
The subscripts i = 1, 2, 3 correspond to tumour cells, immune cells and cytokines,

respectively, while H[h] represents the right-hand side terms of the system of Equation
(3).

Let L1
(
(1+|u|)mdu) denote the (1+|u|)m−weighted Lebesgue L1 space, with the norm

is denoted by ‖ . ‖1, with m ≥ 0, and let X = (
L1((1 + |u|)mdu))3 is the Banach space

equipped with the norm

‖ f ‖=‖ f1 ‖1 + ‖ f2 ‖1 + ‖ f3 ‖1 .

Let X+ be a positive cone:

X+ = {f = (f1, f2, f3) ∈ X : f1 ≥ 0, f2 ≥ 0, f3 ≥ 0},
and Y = C([0,T],X+) the space of the functions continuous on [0,T] with values in a
Banach space X+, endowed with the uniform norm

‖ f ‖Y= sup
t∈[0,T]

‖ f(t) ‖ .

The well-posedness of (6) is given by the following two theorems:
Theorem 3.1: Well-posedness of the problem and nonnegativity of the solution.

For any initial data f0 ∈ X+, there exist two positive constants T and a0 such that
Problem (6) has a unique local in time solution f ∈ C([0,T],X+), which satisfies the
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following estimate:

‖ f(t) ‖≤ a0 ‖ f0 ‖, ∀t ∈ [0,T]. (7)

Proof: The problem (6) can be written as follows:

f = �[f ] = f0(u) +
∫ t

0
J [f ](s)ds, (8)

where the operator J , defined by Equation 3, is written as follow:

J [f ](t) = (J1[f ](t),J2[f ](t),J3[f ](t))T .

Briefly, the proof of the local existence and uniqueness is based on standard fixed point
arguments. Let f and g in X, then J [f ] ∈ X, and

‖ J [f ] ‖ ≤ C ‖ f ‖2, (9)
‖ J [f ] − J [g] ‖ ≤ C( ‖ f ‖ + ‖ g ‖ ) ‖ f − g ‖ . (10)

Exploiting (9) and (10), one has

‖ �[f ] ‖Y≤‖ f0 ‖ +CT ‖ f ‖2Y , (11)

and

‖ �[f ] − �[g] ‖Y≤ CT( ‖ f ‖Y + ‖ g ‖Y ) ‖ f − g ‖Y . (12)

This implies, there exist two constant T and a0 determinate only by C, and ‖ f0 ‖, such
that

a0 = 1 −√
1 − 4CT ‖ f0 ‖
2CT ‖ f0 ‖

and

4CT ‖ f0 ‖≤ 1.

which implies that � is a contraction on a ball in Y of radius a0 ‖ f0 ‖ if T <
1

4C ‖ f0 ‖ .
Thus, there exists a unique local solution f(t) of (6) on [0,T].

Finally, in order to prove the nonnegativity of the solution, let us write the componen-
twise definition of Problem (6) in the following equivalent form:⎧⎨

⎩
∂t fi (t, u) + �i[f ] fi (t, u) = �i[f ] fi (t, u),

fi(t = 0, u) = fi0 > 0, i = 1, 2, 3,
(13)
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where

�1[f ] = 1
1 + c11

n1[f1](t)f1(t, u
1 + c11

) + 1
1 − c12

nA2 [f2](t)f1(t, u
1 − c12

)χ[0,∞)(u)

+ p11nE1 [f1](t)f1(t, u)χ[0,∞)(u),
�2[f ] = nT1 [f1](t)f2(t, u + c21)χ[0,∞)(u + c21) + nA3 [f3](t)f2(t, (u − c23))

+ p21f2(t, u)nT1 [f1](t)χ[0,∞)(u),
�3[f ] = n2[f2](t)f3(t, u + c32)χ[0,∞)(u + c32),
�1[f ] = n1[f1](t) + nA2 [f2](t)χ[0,∞)(u),
�2[f ] = nT1 [f1](t)χ[0,∞)(u) + nA3 [f3](t),

and
�3[f ] = n2[f2](t)χ[0,∞)(u).

Then, defining 	i(t) =
∫ t

0
�i[f ](s, u) ds, for i = 1, 2, 3, if f is a solution of (6), we can

conclude that
∂t

(
exp	i(t) f

)
= exp	i(t) �i[f ](t), (14)

which after integrating in t one obtain

f = fi0 exp−	i(t) +
∫ t

0
exp	i(s) −	i(t) �i[f ](s) ds. (15)

This conclude the proof, as long as f exist, due to nonnegativity of fi0, and nonnegativity
of �i[f ].

The existence of solution f of Problem (6) can be extended over the whole real positive
axis R

+, by the following:

Theorem 3.2 (Global existence): For any T > 0, there exists a unique solution f (t) ∈
C([0,T],X+), of (6) with initial data f0 ∈ X+ . Moreover the solution f satisfies

sup
t∈[0,T]

‖ f(t) ‖≤ CT , (16)

where CT constant depending on T and on the initial data.

Proof: Global existence can be proved for Equation (6) as follows. Bearing in mind the
results of Theorem 1,

it remains to find a priori estimates for the solution. Integrating the first equation of (3)
with respect to u in ( − ∞, 0) yields

nE1 (t) = nE1 (0),

then by integrating the first equation with respect to u in R one obtain

∂n1(t)
∂t

= nT1
(
p11nE1 (0) − p12nA2 (t)

)
,

LETTERS IN BIOMATHEMATICS S189



which implies

∂n1
∂t

(t, u) ≤ p11nE1 (0)n1, n1 ≤ n1(0)exp(p11nE1 (0)t). (17)

Hence the total number of progressing cells is bounded on each finite interval [0,T].
Integrating the second equation of (3) with respect to u yields

∂n2(t)
∂t

= p21nT1 (t)nA2 ≤ p21nT1 (t)n2. (18)

It follows, from Equations (17) and (18), that

n2(t) ≤ n2(0)exp

(
p21n1(0)
p11nE1 (0)

(exp(p11nE1 (0)t) − 1)

)
,

which gives that n2(t) is bounded on each finite time interval [0,T].
Now integrating the third equation of (3) with respect to u in R, one gets easily

n3(t) = n3(0),

which finally gives (17) with CT given by:

CT = n1(0)exp
(
p11nE1 (0)T

)+ n2(0)exp

(
p21n1(0)
p11nE1 (0)

(exp(p11nE1 (0)T) − 1)

)
+ n3(0).

4. Numerical study

Simulations are obtained using the so-called generalized collocation method (Bellomo,
1997). The activity variable u is discretized by suitable set of collocation points, then
the distributions functions f1(t, u), f2(t, u)and f3(t, u) are interpolated. Sinc functions is
used for interpolations in assuming the natural trend to zero at infinity (Bellomo&Ridolfi,
1995). The integral terms are approximated bymeans of weighted sums in each collocation
points. The integro-differential initial value problem is transformed into an initial value
problem for ordinary differential equations, describing the evolution of fi(t, u), i = 1, 2, 3
in the node of discretization (Bellouquid & Delitala, 2006). We are interested in the time
evolution of the activations AT

1 and AA
2 corresponding to the aggressiveness of the cancer

cells and the efficiency of the activated immune cells with and without the effect of the
cytokines, respectively.We are also interested in the time evolution of fi(t, u), for i = 1, 2, 3
represented in the evolution equations Equation (3). The aim of the numerical simulation
is to show some dynamics of the tumour–immune cell competition in the presence of the
cytokines. We are also interested in determining the conditions under which the activated
immune system can win the competition by achieving a total regression of the tumour’s
activity. In particular, we focus our numerical study on the twomain aspects of the immune
response against the onset of cancer cells:
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Figure 1. Time evolution of the activation of tumour cells (blue line) and the immune cells (green line)
in the time interval [0, 60]. In (a), the activation of immune cells decreases more than the one of tumour
cells, namely panel (a) shows a partial regression in the activation of tumour cells (blue line). Contrary
in (b), increasing c12 from 0.1 to 0.7, makes the immune system efficient in controlling the tumour cells’
activation, as showed in blue line in panel (b), the activation of the tumour cells has been completely
reduced.

• The ability of the tumour cells to inhibit the activated immune cells.
• The role of the cytokines’ activation of the immune cells and the progressive decay of
the cytokine signals activity.

Our model involves eight phenomenological parameters (Table 3), each one describes
a well-defined biological function. Of interest to our study are the following model param-
eters: c12 (the ability of the active immune cells to reduce the progression of the tumour
cells), c21 (the ability of tumour cells to inhibit immune cells), and c23 (the activation
of immune cells by cytokine signals), c23 (the progressive decay of the cytokine signals
activity). To investigate the effects of the cytokines activation on the immune response to
cancer cell progression, we first start by varying the values of c12, c21, c23 and c32 while
keeping the rest of the parameters’ values (in Table 3) fixed.

Particularly, we focus our simulations on a biological situation where endothelial cells
are characterized by a nonnegligible rate of progression toward a pathological state (c11 =
0.3), a low proliferation rate of cancer cells (p11 = 0.1) and an intermediate level of
the immune response (p12 = 0.3). We use a low proliferation rate of the immune cells
(p21 = 0.1) in the simulation. These parameters values were used in previous studies as
well (Afraites, Atlas, Bellouquid, CH-Chaoui, 2012; Bellouquid&Delitala, 2006; Bellomo&
Delitala, 2008; Bellouquid, CH-Chaoui, &DeAngelis, 2015). All simulations are performed
with the following nonzero initial conditions, unless otherwise noted:

f1(t = 0, u) = 0.6 e150(u−5)2 , f2(t = 0, u) = 0.3 e150(u−5)2 , AT
10 = 4.2 × 10−2, AA

20 = 7 × 10−2.

The results of these numerical simulations are shown in both 2D and 3D figures.
The vertical axis show the population under consideration over the state variable and time.
The population size is rescaled by dividing the population densities Ni(t, u), i = 1, 2, 3 by
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Figure 2. Distribution functions of the tumour cells (a) and the immune cells (b) in the case of c12 = 0.1
and c21 = 0.1. In panel (a), we observe a partial progressive destruction of tumour cells, while panel (b)
corresponds to a progressive inhibition of the immune system. Distribution functions of tumour cells (c)
and immune cells (d) in the case c12 = 0.1 & c21 = 0.8. In panel (c), we observe a total depletion of the
tumour cells while the immune system remains sufficiently active (panel (d))

the constant size of the total cell population, as explained in Equation (1). We describe the
numerical results in the following two sections.

4.1. The ability of the tumour cells to inhibit the activated immune cells

The first objective of the numerical study is to examine the ability of the tumour cells to
inhibit the activated immune system, in the absence of the immune activator. For that, we
focus on two-model parameters c21 and c12, which describe the ability of the tumour cells
to inhibit immune cells and the ability of the active immune cells to reduce the progression
of the tumour cells, respectively. To this end, we vary themodel parameters c21 with respect
to c12, in order to investigate their effects on the dynamics of the competition between the
tumour and immune cells.
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Figure 3. (a) Distribution functions of tumour cells in time interval [0, 60] for c12 = 0.6 and c21 = 0.1.
(b) Distribution functions of immune cells in time interval [0, 60] for c12 = 0.6 and c21 = 0.1.(c) Time
evolution of the activation of the tumour cells (blue line) and the immune cells (green line) for c12 = 0.6
and c21 = 0.1. In this figure, we observe a total elimination of the tumour cells (panel a) and accordingly
a faster decay in their activation (the blue line of panel c). Panel (b) highlights higher state of the immune
cells activation.

In this first scenario, we consider the onset of the tumour cells and their competition
with the immune system for increasing values of c21. Specifically, we set c12 = 0.1 which
represents a weaker active immune system and vary the numerical values of c21. It is
expected that increasing c21 will result in a increase in the ability of the immune system to
control cancer cells progression.

• For a low value of c21 = 0.1, the activation of the immune cells decreasesmore rapidly
than the activation of the tumour cells as depicted in Figure 1(a). This simulation
shows that the immune cells are not able to completely reduce the aggressiveness of
the tumour cells as a consequence of a weaker immune system. Figure 2(a) and (b)
depicts a 3D view of the distribution functions of the tumour and the immune cells,
respectively, in the case of c12 = 0.1 and c21 = 0.1.
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Figure 4. (a) Time evolution of the activations of tumour cells AT1 (blue line) and of immune cells
AA2(green line) for c12 = 0.6 & c21 = 0.7. (b) The distribution functions of the immune cells for c12 = 0.6
& c21 = 0.7. (c) The Time evolution of the activations of tumour cells AT1 (blue line) and of immune cells
AA2(green line) and the cytokines (red line) for c12 = 0.6 & c21 = 0.7, AA30 = 7 × 10−2, c23 = 0.4 and
c32 = 0.5 . (d) Distribution functions for the immune cells under the effect of the cytokines and under
c12 = 0.6 & c21 = 0.7.

• For a high value of c21 = 0.7, we observe that the immune cells activation is able to
reduce the activation of the tumour cells as represented by the blue line in Figure 1,
and consequently leads to a total reduction of the tumour cells’ density as depicted in
Figure 2(d).
In summary, Figures 1 and 2 show a comparison between the activation’s trends

of the competing tumour–immune cells. Specifically, Figures 1(b) and 2(d) highlight
the crucial role of an efficient immune system that led to a total regression of the
tumour cells.
In the second scenario, we set c12 = 0.6 (higher immune defence ability) and vary

c21 (the ability of the tumour cells to inhibit immune cells) accordingly.
• For a low value of c21 = 0.1, simulation results in Figure 3 show a higher defence
level of the immune system. Specifically, panels Figure 3(a) & (c) shows a complete
depletion of the tumour cells while panel Figure 3(b) illustrates an active immune
state. This higher state of activation is observed for an early stage of the competition
(Figure 3(c)). In addition, we observe that conservative interactions shift the immune
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Figure 5. (a) Time evolution of the activation of the tumour cells, the immune cells and the cytokines
for AA30 = 0.071, c23 = 0.3 and c32 = 0.7. (b) The distribution functions of the immune cells, for
AA30 = 7 × 10−3 c23 = 0.3 and c32 = 0.7. In panel (b), we observe the effect of the cytokines, which
reproduces higher level of defence against progression of tumour cells.

cells to a higher value of activation (Figure 3(b)). These simulation results show
that the tumour cells are asymptotically destroyed and completely go to extinction,
suggesting that the tumour cells are not able to inhibit the immune cells under a
higher immune defence ability (represented by c12 = 0.6).

• For a higher value of c21 = 0.7, the simulation results show a decrease in the immune
cells’ activation. Indeed, as shown in Figure 4(b) the immune system is able to reduce
the activation of tumour cells. On the other hand, this behaviour induce a progressive
weakness in the immune system and the final outcome depends on which of the two
competing populations is the strongest in inhibiting the other.

4.2. The role of the cytokines’ activation of the immune cells and the progressive
decay of the cytokine signals activity

The second objective of the numerical study is to investigate how the choice of the initial
activation AA

30 affect the dynamics of tumour cells contrasted by activated immune cells,
especially how the twomodel parameters c23 and c32 modify the output of the competition
with respect to the initial values of cytokines activation.

• Case of higher initial cytokines activation AA
30 = 0.071

As a first step, considering the case expressed in Figure 4(a). Introducing the cytokines
with the valueAA

30 = 0.071. This value is higher than both the tumour cells’ activation,
AT
10 = 0.070, and the immune cells’ activation AA

20 = 0.043. We set c23 = 0.4
and c32 = 0.5. Figure 4(c)shows a decrease in the tumour cells activation, and a
slow decrease in the immune cells activation. Figure 5(b) shows the distribution of
the immune cells at different instant of time. Nevertheless, increasing the value of
c32 = 0.7 induces immune cells towards a higher level of defence against progression
of tumour cells, while these one decay asymptotically to zero in time. This is due to
immune action reinforced by the cytokines.
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Figure 6. (a) Time evolution of the activation of the tumour cells, immune cells, and the cytokines for
AA30 = 0.007, c23 = 0.2 and c32 = 0.5. (b) The distribution function of the immune cells corresponding
to AA30 = 0.007. (c) The time evolution of the activation of the immune cells under the effect of the
cytokine for different values of α, and AA30 = 0.007.

• Case of small initial cytokines activation AA
30 = 0.007

Considering the same case where c12 = 0.6 & c21 = 0.7, as shown in Figure 4(a).
We choose a low value of AA

30 = 0.007, while AT
10 and AA

20 kept the same initial
values (AT

10 = 0.070 and AA
20 = 0.043). In Figure 6(a), the immune system contrast

more efficiently the tumour activation. In fact, the activation of the tumour cells is
decreased quickly and kept under control, while the immune system express rapid
manifestation toward killing the tumour cells. Figure 5(e) highlights this behaviour
of immune cells to overcome and eliminate the pathology. Nevertheless, introducing
the cytokines with a low initial activation value induces a rapid decay in the tumour
cells as reported in Figure 6 . If we stretch out the time simulation, a rapid initial
growth of immune cells is identified up to a maximum value which correspond to
an initial phase characterized by a rapid activation of immune cells up to maximum
value (corresponding to time 10) that slowly relax and return to it sentinel state (it
initial activations). However, in consistency with our previous work (Bellouquid &
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CH-Chaoui, 2014), considering the ration α = c23
c32

between these two parameters,
corresponding to the ability of immune cells to prevent the aggressiveness of tumour
cells, such that that increasingα from0.1 to 0.9 (Figure 6(c)) induces a strong immune
defence, and the tumour cells are controlled and can no longer return to grow.
Through simulations, we can conclude that immune cells contrasts the tumour
activation more efficiently when the cytokines is applied with low initial activation,
while the immune system displays a faster defence to kill tumour cells.

5. Conclusion

In this paper, we derived a phenomenological model based on the mathematical kinetic
theory describing the response of the cytokines-activated immune system to the onset of
tumour cells. The model consists of a system of integro-differential equations representing
the time evolution of the distribution functions over the microscopic biological state of the
interacting tumour, immune cells and cytokine signals. Comparing to the analysis devel-
oped in (Bellouquid & CH-Chaoui, 2014) which dealt only with the conservative intracel-
lular interactions, this model includes both the conservative and proliferative/destructive
interactions between the tumour and immune cells in the presence of the cytokines. The
addition of the proliferative/destructive interactions resulted in more tumour–immune
dynamics that are biologically relevant such as the immune defence need large time to
eradicate the pathology.

The numerical study aimed at visualizing specific features of the tumour–immune
competition dynamics. The simulation study concentrated on two main aspects of the
immune response against the evolution of cancer cells: (1) the ability of the tumour cells
to inhibit the activated immune cells, and (2) the role of the cytokines’ activation of the
immune cells, and the progressive decay of the cytokine signals. Numerical study also
helped in defining the conditions under which the activated immune system was able to
win the competition by achieving a total regression of the tumour’s activity as shown in
Figures 5 and 6. The numerical study showed that the tumour cells are completely depleted
when the ability of the active immune cells to reduce the progression of the tumour cells
was (six times) higher than the ability of tumour cells to inhibit immune cells. Other cases
where the tumour was completely eliminated is when the cytokines is introduced with a
low initial activation, an initial growth is observed up to a maximum value corresponding
to a faster activation of immune cells. In the main time, the tumour is suppressed and the
immune activation still being activated.

Identifying the phenomenological parameters of themodel is a challenge due to the lack
of the experimental data at the microscopic level. Nonetheless, developing such single-cell
mathematicalmodels of the tumour–immune competitionmay lead to the characterization
of these parameters by theoretical methods based on methods of immunology. In this
paper, we modelled the immune system as one whole population. Our model can be
easily extended to include other subpopulations of the immune system with the aim of
specializing the biological functions within each population. Additionally, in this model,
weonly considered the cytokineswithin the tumourmicroenvironment, andnot as external
therapeutic drug. Cytokines as natural mediators of the immune response and therefore,
considered for potential therapeutic and preventive targets as well as prognostic factors.
They have been recently explored in cancer immunotherapy (i.e. the use of the immune
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system to treat cancer) (Hong-Mei, 2014; Landskron et al., 2014). An extension of this
model could be to consider the cytokines as therapeutic drug by adding an external source
to the model or making the key model parameters time dependent to account for the
external actions modifying the immune response.
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