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ABSTRACT

The use of immune checkpoint inhibitors is becoming more
commonplace in clinical trials across the nation. Two important
factors in the tumour-immune response are the checkpoint protein
programmed death-1 (PD-1) and its ligand PD-L1. We propose a
mathematical tumour-immune model using a system of ordinary
differential equations to study dynamics with and without the
use of anti-PD-1. A sensitivity analysis is conducted, and series of
simulations are performed to investigate the effects of intermittent
and continuous treatments on the tumour-immune dynamics. We
consider the system without the anti-PD-1 drug to conduct a
mathematical analysis to determine the stability of the tumour-
free and tumorous equilibria. Through simulations, we found that
a normally functioning immune system may control tumour. We
observe treatment with anti-PD-1 alone may not be sufficient to
eradicate tumour cells. Therefore, it may be beneficial to combine
single agent treatments with additional therapies to obtain a better
antitumour response.
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1. Introduction

The immune system works to differentiate between healthy cells and abnormal cells.
Immune cells, known as T cells, fight the abnormal cells while leaving the healthy cells
untouched. In accomplishing this, the use of ‘checkpoints’, molecules on immune cells
that enhance or suppress an immune response, is employed (Mahoney, Freeman, &
McDermott, 2015).

Two important factors in the tumour-immune response are programmed death-1 (PD-
1) and its ligand PD-L1. PD-1 is a protein expressed on activated T cells. PD-L1, found
mainly on various types of tumour cells and T cells (Maute et al., 2015; Talay, Shen, Chen,
& Chen,2009), is one of PD-1’s ligands. When PD-1 binds to PD-L1, the PD-1-PD-L1
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complex is formed, allowing the cell expressing PD-L1 to be unrecognized as a danger
when detected. In response to an immune attack, tumour cells may overexpress PD-L1
and PD-L2 which can bind to PD-1 receptors on T cells, reducing or eliminating the
effectiveness of T cells’ attacks (He, Hu, Hu, & Li, 2015).

Recently, instead of directly killing tumour cells, scientists have worked to exploit
the immune system through targeting the checkpoints and thus allowing the T cells
to recognize tumour cells (Mahoney et al., 2015). Drugs targeting PD-1 or PD-L1 can
prevent the formation of the PD-1-PD-L1 complex. In particular, many PD-1 inhibitors
(anti-PD-1s), including pembrolizumab and nivolumab, have been developed and shown
positive results in over 270 international clinical trials (Liu & Wu, 2017). A 2012 clinical
trial demonstrated the value of PD-1 inhibitors, as treated patients saw increases to their
overall survival (Topolian et al., 2012). Therapies involving immune checkpoint inhibitors
are being developed to treat a wide array of tumour types.

A mathematical model of the combination of anti-PD-1 and a tumour vaccine (GVAX)
was first developed in Lai and Friedman in 2017 (Lai & Friedman, 2017). According to
clinical trial data, the use of PD-1 inhibitors alone is not ideal due to high costs and
low antitumour effects. Instead, single agent treatments in combination with therapies
such as chemotherapy, radiotherapy and other forms of immunotherapy have shown
greater promise through ongoing clinical trials (Hamanishi et al., 2016). Combination
therapies are proposed with the objective to increase the antitumour response effects. Lai
and Friedman examine a combination treatment with a system of 13 partial differential
equations incorporating dendritic cells, activated CD4+ T cells, activated CD8+ T cells,
tumour cells, necrotic tumour cells, cytokines interleukin-2 (IL-2) and interleukin-12
(IL-12), PD-1, PD-L1, PD-1-PD-L1, anti-PD-1 and the tumour vaccine GVAX (Lai &
Friedman, 2017). Their model examines the synergy of the two drugs, suggesting that
the immune checkpoint inhibitor and tumour vaccine work better to reduce the tumour
volume in combination than individually. Their results are verified through a comparison
with data collected from mice experiments. An optimal combination level of each drug is
found, which lies within the bounds of the maximum tolerated dose allowed in clinical
trials.

Although we appreciate the need for a combination of treatments as addressed by
Lai and Friedman, we wish to solely examine the effects of a single treatment. We hope
an in-depth understanding of the immune checkpoint inhibitor therapy will enhance
our appreciation and comprehension of the combined treatment. The model in Lai and
Friedman (2017) is a complex system of partial differential equations which forbids a
comprehensivemathematical exploration and an insightful biological interpretation of the
model. Our main objective is to simplify their model into a tractable system of ordinary
differential equations to help gain a better mathematical and biological understanding of
its rich dynamics. We consider the case when only one treatment, anti-PD-1, is applied.
Our model depicts the tumour-immune interactions following the activation process of
T cells by interleukins. We compare the treatment in the case when continuous drug and
periodic injections are applied. In the Lai and Friedman paper (Lai & Friedman, 2017),
most of the main dependent variables in the model go to steady state. We take advantage
of these steady state values in our simplification, reducing the system to three nonlinear
ordinary differential equations. The effectiveness of intermittent vs. continuous therapy
will be examined in detail. Specifically, a study will be conducted into how altering the
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Table 1. Description of variables in the model system (1)–(3).

Variable Meaning Unit

C Density of tumour cells g/cm3

T Density of activated T cells g/cm3

P Free PD-1 concentration g/cm3

A Anti-PD-1 concentration g/cm3

Q PD-1-PD-L1 concentration g/cm3

Figure 1. The tumour-immune interactions following activation of T cells. Sharp arrows indicate
proliferation/activation. Blocked arrows indicate killing/blocking. Dashed lines indicate proteins on the
tumour or T cells. Tumour cells express PD-L1. Activated T cells express PD-1 and PD-L1. Activated T cells
kill tumour cells. When PD-1 and PD-L1 bind together, the complex PD-1-PD-L1 is formed, which inhibits
the function of activated T cells. Anti-PD-1 binds to PD-1, inhibiting the formation of the PD-1-PD-L1
complex.

dosage frequency, while maintaining the same total dosage, impacts the tumour volume.
We examine the drug-free system and perform an analysis on the existence and local
stability of the model equilibria. Moreover, we illustrate our findings through selective
simulation and bifurcation results.

2. Model formulation

The variables of the model, their meanings and their respective units are listed in Table 1.
The essence of our simplified mathematical model is captured by the following dra-

matically simplified tumour-immune interactions network following activation of T cells
shown in Figure 1.

Our model of tumour-immune interaction with immune checkpoint inhibitor anti-
PD-1 treatment is a vastly simplified and slightly modified version of the model presented
in Lai and Friedman (2017). Our model consists of three nonlinear ordinary differential
equations of the following form:

dC
dt

= λCC
(
1 − C

CK

)
︸ ︷︷ ︸

net growth

− ηCT ,︸ ︷︷ ︸
killed by T cells

(1)
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dT
dt

=
(

λTI12TN
I12

KI12 + I12︸ ︷︷ ︸
activation by IL-12

+ λTI2T
I2

KI2 + I2︸ ︷︷ ︸
stimulation by IL-2

)
· F1(Q)︸ ︷︷ ︸
inhibition by PD-1-PD-L1

− dTT ,︸︷︷︸
death

(2)

dA
dt

= A(t)︸︷︷︸
effective level of anti-PD-1

− μPAPA︸ ︷︷ ︸
depletion through blocking PD-1

− dAA,︸︷︷︸
natural degradation

(3)

where P is defined as:
P = (ρP − γA)T . (4)

The function for suppression of T cell activation and proliferation by the PD-1-PD-L1
complex is given by:

F1(Q) = 1
1 + Q

KTQ

.

As in Lai and Friedman (2017), we assume the dissociation (dQQ) and association (αPLPL)
of the complex PD-1-PD-L1 are fast so that we can apply the usual quasi-steady-state
argument to obtain αPLPL = dQQ. Thus,

Q = σPL, with σ = αPL/dQ.

As in Lai and Friedman (2017), we assume the level of free PD-L1 can be represented by

L = ρL(T + εCC),

since PD-L1 is expressed on both T cells and tumour cells, and upregulated on tumour
cells, indicated by εC > 1. Thus

Q = κP(T + εCC), with κ = σρL.

The parameters, their meanings and estimates of their values are given in Table 2. A
more detailed discussion of the parameter estimates is given in Appendix 1. The cytokines
IL-2 and IL-12 were estimated from their steady-state values. In our model, we consider
the process after the T cell population has been activated. Our hope is to focus primarily on
the interactions between the T cells, cancer cells and PD-1-PD-L1 complexes. As a result,
we base the values of IL-2 and IL-12 densities off the control case simulated in Figure 2 of
Lai and Friedman (2017). The simulation shows the IL-2 and IL-12 densities are not very
dynamic, as they both move within a tight range. Since the densities tend to a steady-state
in Lai and Friedman’s simulations, we assume a steady-state in our model and take IL-2 =
2.37 · 10−11 g/cm3 and IL-12 = 1.5 · 10−11 g/cm3.

Equation (1)models the tumour cell population, where logistic growth is used to denote
the net growth of the tumour cells in the presence of an anti-PD-1 immune checkpoint
inhibitor (Kirschner & Panetta, 1998). Through interactions between tumour cells and
activated T cells, the loss of tumour cells occurs at rate η. We assume that the PD-1/PD-L1
interaction reduces the number of activated effective T-cells with negligible inhibition on
the immune cytotoxicity. Equation (2) captures the rate of changeof the activated (effective)
T cell population. IL-12 and IL-2 play a major role in activation and differentiation of
the population of T-cells, shaping the immune response. The first source term accounts
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for the activation of naive T cells (TN ) by IL-12. The other source term represents the
proliferation of activated T cells, as stimulated by IL-2. Michaelis-Menten forms are used
to capture the saturation in the immune response (Kirschner & Panetta, 1998). Larger
values of PD-1-PD-L1 concentration inhibit the activation and proliferation of T cells,
reducing the source terms by a factor of 1

1+Q/KTQ
. Natural death of T cells occurs at rate dT .

The anti-PD-1 treatment is modeled by Equation (3), where A(t) = γA corresponds to an
intravenous, continuous injection. Intradermal injections are also considered with varying
dosage frequencies, as discussed in Numerical Simulations. PD-1 binds to anti-PD-1 at a
rate of μPA. We assume there is no dissociation of PD-1 with anti-PD-1 once bound due
to the very quick nature of the association and dissociation. The rates of association and
dissociation are relatively small values and lead to an assumption that the variables can be
approximated by their levels at quasi-steady state. Anti-PD-1 naturally decays at rate dA.
Finally, Equation (4) describes the density of the free PD-1. Newly activated T cells have a
fixed amount of PD-1 per T cell, ρP . As anti-PD-1 is injected and the drug binds to PD-1,
PD-1 is depleted at a rate of γA.

3. Treatment freemodel dynamics

It is easy to see that the functions contained in the full system (1)–(3) are differentiable,
which ensures its solutions with positive initial values exist and are unique by a direct
application of standard differential equation theory. Observe that the full system (1)–(3)
consists of three highly nonlinear differential equations that prevent us from conducting
a comprehensive mathematical analysis. In order to appreciate the full model complexity
and to gain an in-depth understanding of the natural tumour-immune interaction via the
lens of amathematical model, we examine the case when no anti-PD-1 treatment is applied
(A = 0) in the full system (1)–(3). In this case, Equation (4) becomes P = ρPT and

Q = βT(T + εCC),β = κρP.

The reduced system takes the form:

dC
dt

= λCC
(
1 − C

CK

)
− ηCT ,

dT
dt

= (M + NT)F(C,T) − dTT ,
(5)

where we use the assumptions on the complex-forming process to define F(C,T):

F(C,T) = 1

1 + βT(T+εCC)
KTQ

.

M and N are two positive parameters defined as:

M = λTI12TN
I12

KI12 + I12
,

N = λTI2
I2

KI2 + I2
.
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Table 2. Parameters of the model system (1)–(3).

Variable Meaning Value Reference

λC Tumour cell growth rate 0.18 − 0.67 day−1
Kuznetsov, Makalkin, Taylor, and
Perelson (1994); Eikenberry, Thal-
hauser, and Kuang (2009); Creasey et
al. (1979); Lai and Friedman (2017)

CK Carrying capacity of tumour
cells

0.8 − 0.945 g/cm3
De Pillis and Radunskaya (2001); De
Pillis et al. (2005); De Pillis, Gallegos,
and Radunskaya (2013); Rutter and
Kuang (2017)

η Kill rate of tumour cells by T
cells

57.5 day−1· cm3/g
Lai and Friedman (2017)

λTI12 Activation rate of T cells by
IL-12

8.81 day−1
Lai and Friedman (2017)

TN Density of naive T cells 6 · 10−4 g/cm3
Lai and Friedman (2017)

I12 IL-12 concentration 1.5 · 10−10 g/cm3
Lai and Friedman (2017)

KI12 Half-saturation of IL-12 1.5 · 10−10 g/cm3
Lai and Friedman (2017)

λTI2 Activation rate of T cells by
IL-2

0.5 day−1
Lai and Friedman (2017)

I2 IL-2 concentration 2.37 · 10−11 g/cm3
Lai and Friedman (2017)

KI2 Half-saturation of IL-2 2.37 · 10−11 g/cm3
Lai and Friedman (2017)

KTQ Inhibition of function of T
cells by PD-1-PD-L1

1.365 · 10−18 g/cm3
Lai and Friedman (2017)

ρL Expression level of PD-L1 on
activated T cells

3.56 · 10−7–1.967 · 10−6
Cheng et al. (2013)

ρP Expression level of PD-1 on
T cells

3.19 · 10−7–8.49 · 10−7
Cheng et al. (2013); Agata et al. (1996)

εC Expression of PD-L1 in
tumour cells vs. T cells

1 − 100 Estimated

dT Death rate of T cells 0.0–0.05 day−1
Eikenberry et al. (2009)

μPA Blocking rate of PD-1 by
anti-PD-1

4.9085 · 106 − 2.07 · 108 day−1· cm3/g
Youngnak et al. (2003); Cheng et al.
(2013)

γA Source of anti-PD-1 10−10 day−1· cm3/g
Lai and Friedman (2017)

dA Degradation rate of anti-
PD-1

3.3 · 10−2–1.39 day−1
Brahmer et al. (2010); Schalper,
Venur, and Velcheti (2014)

γ Blocking of PD-1 by anti-PD-
1

10 cm3/g Estimated

We seek to examine the local and global stability for our system. In doing so, we first
need to establish positivity and boundedness of the solutions with positive initial values.
Proposition 3.1: Solutions of (5) that start positive remain positive and bounded.

Proof: We first seek to show the proof of positivity, examining T first. We assume T(t0) ≥
0. Then for T(t) < 0 for some t > 0, we would require dT

dt ≤ 0 when T = 0. However, we
have dT

dt |T=0 = M > 0 since all parameters are positive. Thus T(t) > 0, ∀t > 0.
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In examining the positivity of C, we assume C(t),T(t) exist on [0, t1]. By a standard
separation of variables,

dC
dt

= λCC
(
1 − C

CK

)
− ηCT

becomes
dC
C

=
(

λC

(
1 − C

CK

)
− ηT

)
dt.

We can then conclude

C(t1) = C(0)exp
[∫ t1

0

(
λC

(
1 − C(s)

CK

)
− ηT(s)

)
ds
]
> 0,

since C(0) > 0.
Since solutions remain nonnegative, we now seek to prove boundedness. We start with

boundedness of C using a comparison argument:

dC
dt

= λCC
(
1 − C

CK

)
− ηCT

≤ λCC
(
1 − C

CK

)
,

which implies that
C(t) ≤ max{C(0),CK }.

In addition, we see that
lim
t→∞ sup C(t) ≤ CK .

Therefore C is eventually bounded above by CK + a for any positive constant a.
We then look to prove that T is bounded. First, let G(C,T) = (M +NT)F(C,T). Then

G(C,T) ≤ G(0,T) = M + NT
1 + β ′T2 ≤ α

where β ′ = β/KTQ and α = max{G(0,T)} =
√

β ′(β ′M2+N2)
β ′N − M

N . Now

dT
dt

= (M + NT)F(C,T) − dTT ≤ α − dTT .

By a standard comparison argument,

lim
t→∞ sup T(t) ≤ α

dT
.

Then T ≤ max{T0, α
dT } and T is bounded.

The reduced system (5) may contain two types of equilibria: the tumour-free equilibria
E∗
0 = (0,T∗

0 ) and tumorous equilibria E∗
1 = (C∗,T∗), C∗ > 0, T∗ > 0. Before examining

stability, we must establish the existence and uniqueness of the tumour-free equilibrium
E∗
0 = (0,T∗

0 ).
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Figure 2. p(T)when dT < N, withM = 0 andM > 0, respectively.

Proposition 3.2: The system (5) has a unique tumour-free equilibrium E∗
0 = (0,T∗

0 ). T∗
0

is a strictly increasing function of parameter M.

Proof: When C∗ = 0,

dT
dt

= 0 ⇒ M + NT∗

1 + β ′T∗2 − dTT∗ = 0, where β ′ = β

KTQ
.

The T∗ values corresponding to C∗ = 0 are the roots of the equation:

p(T) = β ′dTT3 + (dT − N)T − M = 0.

Assume that dT ≥ N . Then p′(T) > 0 if T > 0. Since p(0) = −M < 0 and
limT→∞p(T) = +∞, we see that p(T) = 0 has a unique positive root which is a strictly
increasing function ofM.

If dT < N , withM = 0, then p(T) = 0 has three real roots:

T∗
1 = −

√
N − dT
β ′dT

, T∗
2 = 0, T∗

3 =
√
N − dT
β ′dT

.

However, whenM > 0, the entire curve is shifted down, as shown in Figure 2.
There is only one real positive root T∗

3 , and T∗
3 increases strictly as M increases.

We now establish the existence and uniqueness of the tumorous equilibrium E∗
1 =

(C∗,T∗), C∗ > 0, T∗ > 0.
Proposition 3.3: The system (5) has a unique tumorous equilibrium E∗

1 = (C∗,T∗), C∗ >
0, T∗ > 0 if εCCK

η
λC

< 1, N
dT < 1 and f

(
λC
η

)
< 0.
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Proof: It is easy to see that

λC

(
1 − C∗

CK

)
= ηT∗, (6)

M + NT∗ = dTT∗(1 + β ′T∗(T∗ + εCC∗)). (7)

These together yield

f (T∗) ≡ β ′
(

εCCK
η

λC
− 1

)
(T∗)3 − β ′εCCK (T∗)2 +

(
N
dT

− 1
)
T∗ + M

dT
= 0. (8)

The number of positive roots of Equation (8) can be determined by the Descartes’ rule of
signs. For example, if εCCK

η
λC

< 1 and N
dT < 1, then the polynomial f (T∗) in Equation (8)

has only one change of signs in coefficients and hence has a single positive root; while if
εCCK

η
λC

> 1 and N
dT < 1, then the polynomial f (T∗) in Equation (8) has two changes of

signs in coefficients and hence may have two positive roots or none.
We also need to ensure the positivity of C∗. We have f (0) = M

dT > 0 and f ′(T∗) < 0.
Now by Equation (6), C∗ > 0 if and only if λC

η
> T∗. Thus, we require 0 < T∗ < λC

η
. By the

Intermediate Value Theorem, f (λC
η

) < 0 ensures the intersection of f (T∗) = 0 occurs for
0 < T∗ < λC

η
. Thus, there exists a unique positive equilibrium E∗

1 = (C∗,T∗) with C∗ > 0
when f (λC

η
) < 0.

We are now able to perform a stability analysis with our reduced system. The Jacobian
for the system (5) is given by:(

λC

(
1 − C

CK

)
− λC

C
CK

− ηT −ηC
(M + NT) ∂

∂CF(C,T) NF(C,T) + (M + NT) ∂
∂T F(C,T) − dT

)
.

We first examine the stability of the tumour-free equilibrium E∗
0 = (0,T∗

0 ).
Proposition 3.4: Assume that dT > N. Then for system (5) the following statements are
true:

(a) If λC < ηT∗
0 , then E∗

0 is locally asymptotically stable.
(b) If λC > ηT∗

0 , then E∗
0 is a saddle point.

Proof: For part (a) and the first part of (b), the Jacobian matrix for the tumour-free
equilibrium E∗

0 = (0,T∗
0 ) is :(

λC − ηT∗
0 0

(M + NT∗
0 ) ∂

∂CF(0,T∗
0 ) NF(0,T∗

0 ) + (M + NT∗
0 ) ∂

∂T F(0,T∗
0 ) − dT

)
.

Since we know F(C,T) ≤ 1 and F(C,T) is a decreasing function of C and T , ∂
∂T F(C,T),

∂
∂CF(C,T) < 0 and the eigenvalues are:

λ1 = λC − ηT∗
0 < 0 (by condition in part (a))

λ2 = NF(0,T∗
0 ) + (M + NT∗

0 )
∂

∂T
F(0,T∗

0 ) − dT < 0
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Thus, we have local asymptotic stability for E∗
0 . Similarly, if λC > ηT∗

0 , then E∗
0 is a saddle

point.

We can biologically interpret several of the conditions for the local stability. We have
that λC < ηT∗

0 implies that during the onset of tumour initiation, resident T cells can kill
the cancer cells faster than the cancer cells can multiply. Thus, it is unsurprising to find
that this condition is necessary for the local stability of the tumour-free equilibrium. The
condition dT > N can be interpreted as the death rate of the T cells being greater than the
stimulation rate of T cells by IL-2.

We next examine the stability of the tumorous equilibrium E∗
1 = (C∗,T∗).

Proposition 3.5: Assume that εCCK
η
λC

< 1, N
dT < 1 and f

(
λC
η

)
< 0, then the tumorous

steady state E∗
1 of system (5) is unique and is locally asymptotically stable.

Proof: The Jacobian matrix for the tumorous equilibrium E∗
1 is:(

−λC
C∗
CK

−ηC∗
(M + NT∗) ∂

∂CF(C∗,T∗) NF(C∗,T∗) + (M + NT∗) ∂
∂T F(C∗,T∗) − dT

)
.

Assume that dT > N . Then the trace for the tumorous equilibrium is

τ = −λC
C∗

CK︸ ︷︷ ︸
<0

+NF(C∗,T∗) − dT︸ ︷︷ ︸
<0

+ (M + NT∗) ∂

∂T
F(C∗,T∗)︸ ︷︷ ︸

<0

.

Therefore, τ < 0. The determinant is given by:

 =
(

−λC
C∗

CK

)(
NF(C∗,T∗) + (M + NT∗) ∂

∂T
F(C∗,T∗) − dT

)

− (−ηC∗) ((M + NT∗) ∂

∂C
F(C∗,T∗)

)
.

We can rearrange the terms in :

 = −λC
C∗

CK︸ ︷︷ ︸
<0

(NF(C∗,T∗) − dT)︸ ︷︷ ︸
<0

+ (M + NT∗)︸ ︷︷ ︸
>0

�C∗

where

� = −λC
1
CK

∂

∂T
F(C∗,T∗) + η

∂

∂C
F(C∗,T∗).

Recall Q = βT(T + εCC) and F1(Q) = 1
1+Q/KTQ

. We have ∂
∂T F(C,T) = dF1(Q)

dQ
∂Q
∂T with

dF1(Q)
dQ < 0. Likewise, ∂

∂CF(C,T) = dF1(Q)
dQ

∂Q
∂C . Hence

� = dF1(Q)

dQ

(
− λC

CK

∂Q
∂T

+ η
∂Q
∂C

)
.
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Observe that ∂Q
∂T > 0 and ∂Q

∂C > 0. We see that � > 0 if and only if

η
∂Q
∂C

<
λC

CK

∂Q
∂T

,

which is equivalent to

ηεCT <
λC

CK
(2T + εCC).

Clearly this is true if ηεC < 2 λC
CK

or 1
λC

ηεCCK < 2. The first condition of Proposition 3.3
ensures this is true. Therefore, > 0. Together with Proposition 3.3, we have the following
local stability result for the tumorous equilibrium E∗

1 .

We now establish global asymptotic stability of the tumorous steady state E∗
1 of system

(5). To this end, we need to identify conditions that can rule out the existence of nontrivial
positive periodic solutions from system (5).
Proposition 3.6: The system (5) has no nontrivial positive periodic solutions provided that
dT > N .

Proof: We employ the Dulac criterion to show there are no nontrivial positive periodic
orbits. Let h(C,T) = 1/C. We have:

� = ∂

∂C

{
1
C

[
λCC

(
1 − C

CK

)
− ηCT

]}
+ ∂

∂T

{
1
C

[ (
M + NT

)
F(C,T) − dTT

]}

= ∂

∂C

(
λC − λCC

CK
− ηT

)
+ ∂

∂T

{
1
C

[
(M + NT)F(C,T) − dTT

]}

= − λC

CK
+ 1

C

[
(M + NT)

∂

∂T
F(C,T) + NF(C,T) − dT

]
< 0.

Thus, the Dulac criterion ensures there will be no nontrivial positive periodic solutions for
system (5).

We are ready to state the following global stability results for system (5).
Theorem 3.7: Assume that dT > N . Then the following are true:

(i) If λC < ηT∗
0 and no tumorous equilibrium exists, then the tumour-free equilibrium

E∗
0 of system (5) is globally asymptotically stable.

(ii) If εCCK
η
λC

< 1 and f
(

λC
η

)
< 0, then the tumorous steady state E∗

1 of system (5) is
globally asymptotically stable.

Proof: Recall solutions of system (5) with respect to positive initial values are positive
and bounded. By Poincare–Bendixson Theorem, bounded positive solution must tend to
a nonnegative equilibrium, a nontrivial positive periodic solution, a homoclinic cycle or a
heteroclinic cycle. In case of (i), the system (5) admits no positive steady states, nontrivial
positive periodic solutions, homoclinic cycles or heteroclinic cycles. This implies that all
positive solutions of system (5) tend to the tumour-free equilibrium E∗

0 .
In case of (ii), the system (5) admits a unique positive steady state E∗

1 , which is locally
asymptotically stable. This eliminates the existence of heteroclinic cycles since system (5)
admits only two equilibria. It is easy to see that if E∗

0 is locally asymptotically stable, then
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Figure 3. PRCC values (left) and p-values (right) for density of tumour cells C(t) at time t = 200 days.

Figure 4. PRCC values (left) and p-values (right) for activated T cell density T(t) at time t = 200 days.

there can not be any homoclinic cycles originating from E∗
0 . Observe that the T axis is

invariant. If there is any homoclinic cycle originating from E∗
0 , then the cycle will contain

at least one branch of its stable manifold, which is unbounded, a contradiction to the fact
that positive solutions of the system (5) are bounded. Together, these arguments exclude
the possibility of the existence of any homoclinic cycle originating from E∗

0 . By Poincare–
Bendixson Theorem, the tumorous steady state E∗

1 of system (5) attracts all its positive
solutions.

4. Sensitivity analysis

By the method outlined in Marino, Hogue, Ray, and Kirschner (2008), we performed a
sensitivity analysis using partial rank correlation coefficients (PRCC) via Latin hypercube
sampling (LHS) to identify the main drivers of the tumour burden. We used LHS to
produce 1000 sets of randomly determined parameters, which were then used to compute
the PRCC and corresponding p-values. Parameters were tested within the ranges given
in Table 2. For parameters without ranges, sampling was completed within a range from
1/10 to twice the values in Table 2. The sensitivity analyses with respect to the tumour
cell density C and the activated T cell density T at day 200 are shown in Figures 3 and 4,
respectively.
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The density of tumour cells is most sensitive to changes in the tumour cell growth rate
(λC), kill rate of tumour cells by T cells (η) and death rate of T cells (dT ) (p-value < .01 for
each). We notice that C, the tumour cell density, is highly positively correlated with the
tumour cell growth rate (λC) and the death rate of T cells (dT ), and negatively correlated
with the kill rate of tumour cells by T cells (η).

The sensitivity analysis conducted with respect to T , the activated T cell density, reveals
the tumour cell growth rate (λC), death rate of T cells (dT ) and kill rate of tumour cells
by T cells (η) are the main parameters influencing T (p-value < .01 for each). As could be
expected, the activated T cell density is negatively correlated with the growth rate of the
tumour cells (λC) and death rate of T cells (dT ). The kill rate of the tumour cells by the T
cells (η) captures the most highly positively correlated parameter.

In making biological sense of the results, we note that the reaction of immune cells (T
cells) and tumour cells can either result in the death of tumour cells or the inactivation
of the immune cells. Our model solely represents the former case. Thus, the density of
tumour cells and activated T cells are sensitive to dT , the death rate of T cells, which
causes the T cells to decline. As the activated T cells decline, there are fewer reactions, and
thereby less deaths of tumour cells. The kill rate of tumour cells by T cells (η) increasing
or decreasing reflects a stronger or weaker immune response. As η increases, the tumour-
immune interactions result in more deaths of tumour cells. When the tumour cells are
decreased, less PD-L1 is in the system to bind to PD-1. Thus, less PD-1-PD-L1 complexes
are formed to inhibit the activation of T cells. Therefore, η is positively correlated with
the activated T cell density and negatively correlated with the density of tumour cells.
Finally, the production parameter for the tumour cells, λC , is positively correlated with the
density of tumour cells. As the number of tumour cells, and thereby the amount of PD-
L1, increases, more T cells are being inactivated as a result of the increased PD-1/PD-L1
bindings. Therefore, λC is negatively correlated with the activated T cell density.

The bifurcation plot of dT , as shown in Figure 5, suggests the existence of a critical value
for the maximum death rate of T cells dT , namely dT ≈ N , sinceN = 0.25.When dT < N ,
this causes an increase in the number of activated T cells, resulting in the killing of more
tumour cells. However, when dT > N , the tumour cells dramatically increase towards the
carrying capacity. The plot suggests our mathematical results can be improved upon to
find sharper conditions, as dT > N is not required for the tumour-free equilibrium E∗

0
to be stable. We can now discern that Proposition 3.4 and 3.5 provide sufficient, but not
necessary conditions for the stability of the tumour-free and tumorous equilibria. Further
exploration of the bifurcation plots for different parameters illustrate the approach of the
same steady state.

5. Numerical simulations

All simulations of the mathematical model were performed byMATLAB using the param-
eter estimates given in Table 2 and the initial conditions (in units of g/cm3)C(0) = 0.3968,
T(0) = 6 · 10−3, and A(0) = 0 (Lai & Friedman, 2017). We examine the cases when no
drug, a continuous drug and injections of varying periodicity are applied.

We first explore the control case when no drug is applied (Figure 6). We keep the
death of the T cells small enough so that the results closely resemble the behaviour
seen for those with a normally functioning immune system. The simulation is run for
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Figure 5. Bifurcation diagram corresponding to continuous treatment for parameter dT , the death rate
of T cells. Maximum/minimum tumour/T cell density in blue and red, respectively. To tend towards a
tumour-free steady state, the diagram suggests a maximum threshold of dT ≈ N (since N = 0.25), after
which the tumorous steady state is stable. It also suggests dT < N is not necessary for the stability of the
tumour-free equilibrium.

a duration of 150 days to determine the behaviour of certain cell densities/concentrations.
We observe that the number of activated T cells increases up to a certain level, and later
stabilizes, approaching a steady state. The density of tumour cells decreases significantly
until reaching a disease free equilibrium. Since the death rate of T cells is small, tumour
is controlled to a great extent. Consequently, people with a strong immune system have a
chance to eradicate tumour. However, for those with a weakened immune system, tumours
are significantly less responsive to treatment.

We next consider intermittent anti-PD-1 therapy compared to continuous treatment.
We seek to determine how the densities of tumour and activated T cells are affected by
varying dosage frequencies and maintaining the dosage level. The time period between
injections is varied from 3 days to 150 days. Simulations are run for 365 days to reflect a
clinically realistic treatment period. Figure 7 suggests a periodicity in the immune response,
resulting from the treatment acting as a forced oscillator. Each time the anti-PD-1 is
administered, the level of activated T cells increases due to less PD-1-PD-L1 complexes
being formed and thereby less inhibition of T cell activation. As a result, the tumour cells
sharply decrease. Following the decline, the tumour cells logistically grow, returning to
their previous level. A continuous therapy offers the best control for the tumour cells.

Figure 8 suggests that when treatments are less frequent (every 60, 90, 150 days), the
tumour cells periodically approach the same density as when no drug is applied before
decreasing with the next treatment. The more frequent treatments (every 3, 10, 30 days)
periodically approach a lower density, closer to that of the continuous drug. Thus, the
simulations suggest that more frequent treatments produce more effective results. As
the tumour-immune reactions and PD-1-PD-L1 complex formations are fast, the drug
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Figure 6. Densities/concentrations of tumour cells, activated T cells, free PD-1 and free PD-L1 without
treatment. Simulations are run for 150 days with dT = 0.05.

is entirely eliminated from the system before the next treatment begins. When the time
between treatments is smaller, the drug remains continuously in the system and is thus
more effective.

An interesting area we wish to explore with our model is the behaviour of the tumour-
immune system when the treatment is abruptly ended (switch on/off treatment). We have
chosen a period of 180 days (approximately half of a year) to apply the treatment, after
which the treatment will be terminated, as shown in Figure 9. Once the treatment has
ended, the density of the tumour cells and activated T cells eventually approach the same
steady state as if no drug had ever been applied. Similar results were found when the time
interval before treatment termination was increased.

6. Discussion

Tumour immunotherapy is one of the current focuses in oncology. One common form of
immunotherapy employs the use of immune checkpoint inhibitors, such as anti-PD-1, in
a variety of tumours, including melanoma and lung cancer. A growing number of clinical
trials using drugs with this mode of action seek to improve survival rates and quality of
life. Current trials suggest that the use of a single agent such as anti-PD-1 produces a low
tumour-immune response. Combinations of anti-PD-1 with other types of treatments are
the recommended protocol to produce the most effective results (Hamanishi et al., 2016).
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Figure 7. Densities/concentrations of tumour cells, activated T cells, free PD-1 and anti-PD-1 following
varying dosage frequencies (every 3, 10, 30, 60, 90, 150 days and the continuous case). Simulations run
for 365 days. The spikes in the T cell density correspond to injections of anti-PD-1, as the drugs allow
for an increased activation of T cells. The tumour cells are most effectively contained for the continuous
case. Drops in the PD-1 concentration correspond to injections of anti-PD-1 drugs, as more free PD-1
binds to the drug. As the dosage of the drug wears off, we notice an increase in the level of PD-1.

The primary purpose of this work is to gain insight into the tumour-immune response
while highlighting immune checkpoint therapy. Due to lack of data, many of the parameter
values are difficult to estimate. Therefore, we developed a simplified model in an effort to
explore interesting mathematical results. In particular, we assume that association and
dissociation of PD-1/PD-L1 are fast enough to be at a steady state at the scale of tumour
growth. Despite this simplification, our simulations reflect expected dynamics. Although
we cannot currently test the predictive capability of our model because of sparse data,
we can use the results to predict general behaviours of the tumour-immune response to
treatment.

Our approach contrasts and complements that of Lai and Friedman (2017). Theirmodel
is a system of 13 partial differential equations with 48 parameters. Their goal was to
explore the synergy of two drugs (anti-PD-1 andGVAX). One of Lai and Friedman’smajor
contributions is a detailed parameterization. Unfortunately, many of these parameters are
unexplored in the empirical literature, usually due to overwhelming technical challenges.
Because of these uncertainties, we arrived at quite wide ranges for many of the parameters.
In some cases, these ranges were not in agreement with Lai and Friedman. For example,
since many tumour cells express PD-L1, they set εC , the expression of PD-L1 in tumour
cells vs. T cells, to be 0−0.01. However, we concluded that εC = 1−100 based on literature
indicating PD-L1 is upregulated in some tumour types (Spranger et al., 2013).
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Figure 8. Zoomed in density of tumour cells following varying dosage frequencies (every 3, 10, 30, 60,
90, 150 days and the continuous case). One period is shown.
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Figure 9. Anti-PD-1 and PD-1 concentrations with the following varying dosage frequencies (every 3,
10, 30, 60, 90, 150 days and the continuous case). Treatments are shut off after 180 days. Simulations
run for 365 days.
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Due to a lack of data, our model cannot be validated, so there is limited predictive
capability. However, it provides insight into how the tumour and T cell densities depend
on parameter values. Our sensitivity analysis using PRCC via LHS showed λC , the tumour
cell growth rate, η, the kill rate of tumour cells by T cells, and dT , the death rate of T
cells, were the most sensitive parameters and are thus the main drivers of the tumour
burden. Furthermore, the bifurcation analysis for dT confirmed the findings of the sen-
sitivity analysis. The bifurcation diagram suggests that the stability of the tumour-free
and tumorous equilibria changes as dT varies. These results are biologically significant. If
the lifetime of T cells lasts less than four days, the tumorous equilibrium becomes stable,
resulting in a significant disease. Thus, our model suggests that cancers are likely to be
more common and significant for patients with weakened immune systems, whether from
age, emotional or physical stress. Our model further suggests that, if caught early enough
before the immune system becomes too weak, it is possible to eradicate the tumour with
minimal treatment.

The simulations suggest anti-PD-1 is most effective when it is applied continuously.
Without a continuous or frequent injection of the drug, the end results are as if no drug
was applied. However, even when applied continuously, it is not a sufficient treatment
to eradicate the tumour cells. It would be most beneficial to pair anti-PD-1 with another
treatment. Previous anti-PD-1 trials reached similar conclusions (Antonios et al., 2016).
When combined with a dendritic cell vaccination, the treatment produced a substantial
increase in survival. However, when anti-PD-1 alone was used, the benefit was not notable.

Recent clinical trials suggest that combining the immune checkpoint inhibitor with an
alternative treatment is the most effective way to treat tumours (Antonios et al., 2016).
Anti-PD-1 is not fully effective due to a lack of T cells (Kleponis, Skelton, & Zheng, 2015).
Although a single-agent checkpoint inhibitor increases T cell density, our simulations
suggest anti-PD-1 alone cannot raise the activated T cells to the level needed to eradicate
the tumour cells (Figure 7). When combined with a vaccine or therapy that increases the
amount of T cells, anti-PD-1 has a more substantial anti-tumour immune response, as it
can help more T cells remain active in killing tumour cells (Lai & Friedman, 2017).

Our stability analysis of the drug-free system established requirements for global stabil-
ity of the tumorous and tumour-free equilibria. Two conditions are required to eliminate
the tumour: λC < ηT∗

0 and dT > N . Biologically, we see that λC < ηT∗
0 means that

when the tumour is initially growing, the T cells can kill the cancer cells faster than the
cancer cells multiply. The condition dT > N can be interpreted as the death rate of the
T cells being greater than the stimulation rate of T cells by IL-2. Thus, the mathematical
analysis suggests that even patients with weakened immune systems, and thereby shorter
lifetimes of T cells, can see tumour elimination for slow-growing tumours. Though the
condition dT > N complements the mathematical analysis, the bifurcation diagram
suggests our mathematical results still have room for improvement. This condition proves
to be sufficient but not necessary for determining the stability of the tumour-free and
tumorous equilibria. Further exploration is required to determine necessary conditions.

Future work will include two competing tumour species: one sensitive and the other
insensitive to treatment. Such a model promises to help determine the most effective
frequency and dose of treatment, corresponding to patient-specific initial conditions, to
delay the onset of treatment resistance. To investigate the most effective reduction of
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the tumour burden, it would be beneficial to examine the effects of adding additional
treatments, like chemotherapy or radiation, to the model.
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Appendix 1. Parameter estimation
The parameter estimations presented below are determined based on a literature review and
additional calculations. They are grouped by their appearance in the model equations.

Equation (1): Based off of BCL1 tumour cells in the spleen, the growth rate of tumour cells is given
by 0.18 day−1 (Kuznetsov et al., 1994). A study involving culturing human melanoma cells showed
the population doubling of three measured tumour cell lines were 25, 48 and 82 hours (Creasey et
al., 1979. Thus, the growth rate of tumour cells can be computed as follows:
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ln(2)
25/24

≈ 0.67 day−1

ln(2)
82/24

≈ 0.2 day−1

Hence λC = 0.18 − 0.67 day−1.
The carrying capacity of tumour cells can be estimated using the assumption that a tumour

reaching 1 gram net weight contains 109 cells (Del Monte, 2009). By Szomolay, Eubank, Roberts,
Marsh, and Friedman (2012), the total capacity of living and dead tumour cells can be estimated to
be 9.45 · 108 cells/cm3. Then

9.45 · 108 cells
1 cm3 · 1 gram

109 cells
= 0.945 g/cm3

By Friedman and Hao (2017), the carrying capacity of tumour cells is 0.8 g/cm3. Hence CK =
0.8−0.945 g/cm3. By Lai and Friedman (2017), the killing rates of tumour cells by CD4+ and CD8+
T cells are estimated to be 11.5 day−1 · cm3/g and 46 day−1 · cm3/g, respectively. Thus, the killing
rate of tumour cells by T cells is η = 11.5 + 46 = 57.5 day−1 · cm3/g.

Equation (2): By Lai and Friedman (2017) the activation rate of CD4+ and CD8+ T cells by
IL-2 are both estimated to be 0.25 day−1. Hence, the activation rate of T cells by IL-2 is λTI2 =
0.25 + 0.25 = 0.5 day−1. Similarly, following the same process for the activation rate of T cells
by IL-12, we have λTI12 = 4.66 + 4.15 = 8.81 day−1. We consider the density of naive T cells as
TN = 4 · 10−4 + 2 · 10−4 = 6 · 10−4 g/cm3, as the density of naive CD4+ and CD8+ T cells are
estimated to be 4 · 10−4 g/cm3 and 2 · 10−4 g/cm3, respectively (Lai & Friedman, 2017).

By Grossman and Berke (1980), the lifetime of T cells is assumed to be 50 days (dT = 1/50 =
0.02 day−1). By McDonagh and Bell (1995), the lifespan for CD8+ T cells is given to be 68 days
(dT = 1/68 = 0.014 day−1). When fit to experimental data of a BCL1 tumour in the spleens of
chimeric mice, the death rate of T cells was estimated as dT = 0.0412 day−1 (Kuznetsov et al.,
1994). In Eikenberry et al. (2009), the death rate of T cells is estimated to be dT = 0.0− 0.05 day−1.
Collecting the findings, we take dT = 0.0 − 0.05 day−1.

Equation (3): In a Phase 1 study of anti-PD-1 (Brahmer et al., 2010), the serum half-life of PD-1
was found to be 12 to 20 days. By the half-life formula:

t1/2 = ln(2)
dA

,

where dA is the decay constant. Then

dA = ln(2)
20

− ln(2)
12

= 3.47 · 10−2 − 5.78 · 10−2 day−1.

In Schalper et al. (2014), the half-lives of several anti-PD-1 drugs are listed. Using the same process as
above, the decay constant dA can be computed. Nivolumab has a dose-dependent half-life, ranging
from 12–20 hours (dA = 0.83 − 1.39 day−1). Pembrolizumab has a half-life of around 2–3 weeks
(dA = 3.3 · 10−2 − 5 · 10−2 day−1). Pidilizumab has a half-life between 9 and 17 days (dA =
4.1 · 10−2 − 7.7 · 10−2 day−1). From these findings, we can conclude that

dA = 3.3 · 10−2 − 1.39 day−1.

As in Lai and Friedman (2017), we determine a range for μPA (blocking rate of PD-1 by anti PD-1)
using:

μPA = dA
9P

= 3.3 · 10−2

9 · (7.47 · 10−10)
− 1.39

9 · (7.47 · 10−10)
= 4.9085 · 106 − 2.07 · 108 day−1 · cm3/g.
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In Cheng et al. (2013), experiments found an average of 9282 PD-L1 on a single activated T cell,
with a general range of about 8000 − 11500 PD-L1 on a single activated T cell. Following the same
procedure as in Lai and Friedman (2017), we estimate ρL as follows:

ρL = 8000 · mL

mT
− 11500 · mL

mT
,

where mL andmT are the mass of one PD-L1 protein and the mass of one T cell (T1 or T8). We
assume that one T cell is approximately 10 microns in diameter, with the same density as water at
39 ◦C, 0.9926 g/cm3. Then we can calculate the mass of one T cell:

mT = 4π(0.005)3 cm3

3
· 0.9926 g

cm3 ≈ 5.24 · 10−10 g.

By Lai and Friedman (2017), the mass of one T cell is estimated to be 10−9 g. We can then take
mT = 5.24 · 10−10 − 10−9 g. Thus,

ρL = 8000 · 4.45 · 10−20

10−9 − 11500 · 9.3 · 10−20

5.2 · 10−10 = 3.56 · 10−7 − 1.967 · 10−6.

In estimating PD-L1 (L), as done in Lai and Friedman (2017), we have

L = ρL(T + εCC),

since PD-L1 is expressed on both tumour cells and tumour cells. As PD-L1 is upregulated on tumour
cells (Spranger et al., 2013), we suppose εC ∈ [1, 100]. We then calculate the lower bound of L by

L = ρL(T + εCC) = (3.56 · 10−7) · [6 · 10−3 + 1 · 0.4]
= 1.445 · 10−7 g/cm3

and the upper bound by

L = ρL(T + εCC) = (1.967 · 10−6) · [6 · 10−3 + 100 · 0.4]
= 7.87 · 10−5 g/cm3.

Thus we assume L ≈ 2 · 10−6 g/cm3 at steady state.
Equation (4): In Cheng et al. (2013), experiments showed an average of 3096 PD-1 on a single

activated cell, with a general range of 2000 − 5000 PD-1 on a single activated cell. Following the
same procedure as in Lai and Friedman (2017), we estimate ρP as follows:

ρP = 2000 · mP

mT
− 5000 · mP

mT
,

wheremP andmT are themass of one PD-1 protein and themass of one T cell. By Agata et al. (1996),
a flow cytometry shows themass of one PD-1 protein ismP = 50−55 kDa (8.3 ·10−20−9.13 ·10−20

g). As outlined above,mT = 5.24 · 10−10 − 10−9 g. We then calculate:
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ρP = 2000 · 8.3 · 10−20

10−9 − 5000 · 9.3 · 10−20

5.2 · 10−10 = 3.19 · 10−7 − 8.49 · 10−7.

In estimating γ we seek to balance (ρp − γA) in Equation (4) with the magnitudes observed in
simulations. In particular, we consider the magnitude of drug A to be ≈ 10−8 and ρp ≈ 10−7 as
listed in Table 2. Hence, we estimate γ = 10 cm3/g.
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