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Abstract

A diffusion equation can be used to estimate the oxygen concentration profiles
for a highly-regular capillary bed of skeletal muscle. In reality, the capillaries may
be arranged more or less randomly in normal tissues. The oxygen concentration,
along with its time-wise distribution, may be uneven. Heterogeneity in the tissue
bed is much more commonly considered. This article presents a mathemati-
cal analysis of the capillary-tissue exchange of substrate in microcirculation in
rectangular regions where multiple capillaries are embedded with arbitrary char-
acteristics. A matching technique is used to help solve the associated governing
equations.
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1 Introduction

A basic mathematical model to estimate the oxygen concentration profiles for a highly reg-
ular capillary bed of skeletal muscle was originally introduced by Krogh [3]. Oxygen orien-
tation is modeled by a central capillary surrounded by a circular tissue cylinder. Extensions
of the Krogh cylinder model have been made, including polygonal regions of supply, cap-
illary effects, axial dependence, oxygen pressure etc. Homogeneities were usually assumed.
However, homogeneities may not be applicable to experiments, and heterogeneity in supply
and demand is much more common (Egginton [1] and Middleman [4]).

The method described in the following exploits a matching technique which solves the
substrate diffusion within a rectangular tissue domain where multi-capillaries are unevenly
or randomly distributed. The ideal case is to have the diffusion equation ∇2C = 1 with no
flux in or out of the boundary. The pinpoint results benefit from the following: (1) filling
of circular regions leaves voids in the tissue area and thus is not suitable to be extended
to a greater tissue area; (2) in certain human functional capillaries, such as brain tissues,
a square or rectangular region is more suitable (Opitz and Schneider [5]); (3) it is easier to
take account of unevenness, heterogeneity and flow variations of multi-capillaries when we
study this supply region.

2 Formulation

Consider a large rectangular region Ω of length α and width β, containing N capillaries of
uneven locations and flux strength. Here flux strength gives the substrate diffusion. Within
skeletal muscle any given capillary may be surrounded by distinct fiber types. It follows
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Figure 1: (a) A general distribution of capillaries in a rectangular region, (b) the coordinate
system. Note that O represents its origin of the Cartesian coordinates.

that diffusion (flux strength) will then depend on local extraction pressures established by
differences in consumption (Egginton and Gaffney [2]).

We assume a uniform consumption rate κ per volume across Ω. Let qj be the rate of
oxygen perfusing into tissue area from the jth capillary source, with radius ρc centered at
x = xj , y = yj . Considering the steady state of the oxygen distribution, we have the mass
flux balance which gives the following condition on qj :

N∑
j=1

qj = κ · α · β. (1)

The governing equation in two dimensions is given by the diffusion equation:

Dr∇ · ∇C(x, y) = κ, C(x, y) ∈ Ω, (2)

where Dr is the diffusion coefficient of oxygen. On the boundary of the region there is no
flux exchange. This is due to the assumption that the target region reaches its steady state:

∂C

∂x

∣∣∣∣
x→0,α

= 0, (3)

∂C

∂y

∣∣∣∣
y→0,β

= 0. (4)

Let (ρj , ϕj) be local cylindrical coordinates centered at each capillary. Due to consistent
flux into the tissue area from the capillary wall, the value of κ is zero. The equation for
each capillary source is

Dp

( ∂2c
∂ρ2j

+
1

ρj

∂c

∂ρj

)
= 0. (5)

The boundary condition for each capillary is

qj = −Dp · ρr
∫ 2π

0

∂c

∂ρj

∣∣∣∣
ρj→ρr

dϕj , (6)

where Dp is the diffusion coefficient in capillary and ρr is the radius of capillary. Normalizing
the flux by αβ and the diffusion by Dp, the equations for diffusion in capillaries become
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

∂2c

∂ρ2j
+

1

ρj

∂c

∂ρj
= 0

qj = − ε
π

∫ 2π

0

∂c

∂ρj

∣∣∣∣
ε

dϕj , ε =
ρr
R
� 1

N∑
j=1

qj = 1.

(7)

Normalizing the concentration in (2) by κ/Dr, the equation for oxygen diffusion in
region Ω becomes

∆C(x, y) = 1, C(x, y) ∈ Ω (8)

with the following boundary conditions:
qj = − ε

π

∫ 2π

0

∂c

∂ρj

∣∣∣∣
ε

dϕj ,

∂C

∂x

∣∣∣∣
x→0,α

= 0,
∂C

∂y

∣∣∣∣
y→0,β

= 0.

(9)

3 Matching Technique and Scheme

Diffusion equations in a rectangular region Ω with Dirichlet or Neumann boundary condi-
tions have been studied and can be solved by using free Green functions and the method
of image. Notice boundary condition (9) is the specific case due to a constant flux out
of muticapillaries at different locations, i.e., singular points as ε → 0 within the region Ω
and it’s no longer a simple Neumann problem. Here we use a different strategy for solving
Equation (8) to assume general solution in the form

C(x, y) =
x2 + y2

4
−

N∑
j=1

qj/2 · ln ρj + T (x, y). (10)

The first term is a particular solution due to uniform consumption. The second term is
the combination of fluxes from Equation (7). The last term T is the homogeneous solution
which is constructed in order to satisfy the boundary condition on the rectangular region Ω.
To satisfy the boundary conditions with no substrate flowing across,we use the process
of matching of boundary conditions and apply the series method to construct a suitable
function T (x, y).

The boundary conditions are the particular Neumann conditions on a closed rectangular
boundary. We separate our solution to satisfy the required boundary conditions on four
walls along x = 0, x = α, y = 0 and y = β. Consider, to begin with, that a series solution
has flux zero along x = α, y = 0 and y = β and has an arbitrary sequence of values ψs(x)
(inhomogeneous conditions) along x = 0. After separation of variables from homogeneous
equation associated with Equation (8), the solution of the x equation which has derivative
zero at x = α is coshωβ(x − α), where n is integer and ωβ is the frequency representing
nπ/β, and the solution of the y equation which has derivative zero at y = 0 and y = β
is cosωβy.

Consequently the most general solution of ∇2ψ = 0, in two dimensions, which satisfies
the homogeneous Neumann conditions that ψ has derivative zero along x = α, y = 0 and
y = β can be represented by the series

ψ =
∞∑
n=0

An coshωβ(x− α) cosωβy. (11)
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The crucial step is to justify the functions in its above series form can satisfy all possible
Neumann conditions along x = 0 and thus can represent all possible solutions satisfying the
zero-flux conditions along the three sides. Because we know Neumann conditions along a
closed boundary specify a unique solution up to an additive constant, if we find another
form of conditions, we can be sure that this new form corresponds to the series and, vice
versa, that the series can represent the following new form:∮

[ψ(z)− F (z)]2dx = 0.

The eigenfunctions cos(nπ y/β) as a factor in the partial solution (11) given its depen-
dence along the boundary surface depends on a separation constant as well as on position y
along the boundary x = 0. This factor also satisfies the boundary conditions at the ends
y = 0 and y = β. Here the constants are specially determined to fit the conditions at the
chosen boundary sides. The other factor cosh[nπβ (x − α)] is then adjusted to fit the condi-

tions at the other end of the enclosed region Ω (x = 0 in our case), and the complete solution
is then the sum of these products for all permissible values of the separation constant.

We have so far only considered the portion x = 0 of the boundary with boundary
values ψ. To fit the conditions where ψ is different from zero along other parts of the
rectangular boundary we can use obvious modifications of the functions used in series (11).
For instance, for fitting conditions along y = 0 we use the series

∞∑
n=0

Dn cosωαx coshωα(y − β) (12)

where ωα = nπ/α. For x = α and y = β, we add the individual series to obtain the final
solution. Therefore, a corresponding unit function can be derived here to fit the integrand for
any boundary values at any point along the rectangular boundary. To solve the Equation (8)
and find the unit function in the series, we start with the choice of T for general solution to
Equation (8):

T = ψL + ψR + ψT + ψB . (13)

The four terms can be seen as representations of general solutions against four boundary
walls (left, right, top and bottom). Each term involves an unknown coefficient which is to
be determined by combination of nonhomogeneous part of equation. And conveniently the
four solution terms have the following properties:

∂T

∂x

∣∣∣∣
x→0

=
∂ψL
∂x

∣∣∣∣
x→0

,
∂T

∂x

∣∣∣∣
x→α

=
∂ψR
∂x

∣∣∣∣
x→α

, (14)

∂T

∂y

∣∣∣∣
y→β

=
∂ψT
∂y

∣∣∣∣
y→β

,
∂T

∂y

∣∣∣∣
y→0

=
∂ψB
∂y

∣∣∣∣
y→0

. (15)

4 Solution

The general form of T is

T =
∞∑
n=0

An coshωβ(x− α) cosωβy +
∞∑
n=0

Bn coshωβx cosωβy

+
∞∑
n=0

Cn cosωαx coshωαy +
∞∑
n=0

Dn cosωαx coshωα(y − β).

(16)

The relation between ρj , xj , yj is (Figure 1(b))

ρ2j = (x− xj)2 + (y − yj)2. (17)
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In order to determine the unknown coefficients An, Bn, Cn and Dn , we look at the
boundary conditions given by (3) and (4). The oxygen concentration along each capillary
wall depends on the characteristics of the capillary itself; therefore, the radial outward
normal at the boundary Ω̄ of (10) gives

∂C

∂x

∣∣∣∣
x→0, α

=
x

2
−

N∑
j=1

qj
4

2x− 2xj
(x− xj)2 + (y − yj)2

+
∂T

∂x
= 0 (18)

and

∂C

∂y

∣∣∣∣
y→0, β

=
y

2
−

N∑
j=1

qj
2

y − yj
(x− xj)2 + (y − yj)2

+
∂T

∂y
= 0. (19)

Equation (16) gives

∂T

∂x
=
∞∑
n=0

Anωβ sinhωβ(x− α) cosωβy︸ ︷︷ ︸
I

+
∞∑
n=0

Bnωβ sinhωβx cosωβy︸ ︷︷ ︸
II

−
∞∑
n=0

Cnωα sinωαx coshωαy︸ ︷︷ ︸
III

−
∞∑
n=0

Dnωα sinωαx coshωα(y − β)︸ ︷︷ ︸
IV

.

(20)

As x→ 0 the last three terms tend to approach zero: II → 0, III → 0, IV → 0. Therefore

∂T

∂x

∣∣∣∣
x→0

=

∞∑
n=0

Anωβ sinhωβ(−α) cosωβy =
∂ψL
∂x

∣∣∣∣
x→0

. (21)

As x→ α, I → 0, III → 0, IV → 0

∂T

∂x

∣∣∣∣
x→α

=
∞∑
n=0

Bnωβ sinhωβα cosωβy =
∂ψR
∂x

∣∣∣∣
x→α

. (22)

Equations (21) and (22) give the expression for zero flux flowing towards the boundary
x→ 0, α respectively, and similarly for the vertical boundary lines y → 0, β:

∂T

∂y
=

∞∑
n=0

−Anωβ(x− α) coshωβ(x− α) sinωβy︸ ︷︷ ︸
I

−
∞∑
n=0

Bnωβ coshωβx sinωβy︸ ︷︷ ︸
II

+
∞∑
n=0

Cnωα cosωαx sinhωαy︸ ︷︷ ︸
III

+
∞∑
n=0

Dnωα cosωαx sinhωα(y − β)︸ ︷︷ ︸
IV

.

(23)

As y → 0, we observe that I → 0, II → 0, III → 0 . Therefore,

∂T

∂y

∣∣∣∣
y→0

=
∞∑
n=0

Dnωα sinhωα(−β) cosωαx =
∂ψT
∂y

∣∣∣∣
y→β

. (24)

As y → β , we see I → 0, II → 0, IV → 0, and thus,

∂T

∂y

∣∣∣∣
y→β

=
∞∑
n=0

Cnωα sinhωαβ cosωαx =
∂ψB
∂y

∣∣∣∣
y→0

. (25)

Equations (21), (22), (24), and (25) show that the form of solution (16) satisfies (14)
and (15). Equation (16) is then used to obtain the values for unknown coefficients An, Bn,
Cn, and Dn.
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Using the boundary conditions (18) and (21), as x→ 0, we find

∂C

∂x

∣∣∣∣
x→0

= 0 +
N∑
j=1

qj
4

2xj
x2j + (y − yj)2

+
∞∑
n=0

An
nπ

β
sinh

[nπ
β

(−α)
]

cos
nπy

β
= 0 (26)

which implies that

∞∑
n=0

Am
nπ

β
sinh

[nπ
β

(−α)
]

cos
nπy

β
=

N∑
j=1

qj
2

−xj
x2j + (y − yj)2︸ ︷︷ ︸
g1(y)

. (27)

Multiplying Equation (27) by cos mπβ y and integrating from −β to β with respect to y,

Am
mπ

β
sinh

[mπ
β

(−α)
]
· π =

∫ β

−β
g1(y) · cos

mπ

β
y dy, (28)

where g1(y) =
∑N
j=1

qj
2

−xj

x2
j+(y−yj)2 . Let Y = (y − yj)2. Equation (28) yields

Am
mπ

β
sinh

[mπ
β

(−α)
]
· π

=
N∑
j=1

qj
2

∫ β

−β

−xj
x2j + (Y )2

(
cos

mπ

β
Y cos

mπ

β
yj − sin

mπ

β
Y sin

mπ

β
yj

)
dY

=
N∑
j=1

qj
2

∫ β

−β

−xj
x2j + (Y )2

cos
mπ

β
Y cos

mπ

β
yj dY

=
N∑
j=1

qj
2

(−xj) 2 cos
mπ

β
yj

∫ β

0

1

x2j + (Y )2
cos

mπ

β
Y dY

(29)

Thus

Am =
1

mπ sinh mπ
β (−α)

N∑
j=1

qj (−xj) cos
mπ

β
yj

∫ π

0

1
π2

β2 x2j + (y)2
· cosmy dy (30)

Here y = mπ
β Y , and again (xj , yj) gives the location of the jth source. Similarly, we achieve

the values for the unknown coefficients Bm, Cm, and Dm

Bm =
1

mπ sinh mπ
β (α)

N∑
j=1

qj (α− xj) cos
mπ

β
yj

∫ π

0

1
π2

β2 (α− xj)2 + (y)2
· cosmy dy, (31)

Cm =
1

mπ sinh mπ
α (β)

N∑
j=1

qj (β − yj) cos
mπ

α
xj

∫ π

0

1

(x)2 + π2

α2 y2j
· cosmxdx, (32)

Dm =
1

mπ sinh mπ
α (−β)

N∑
j=1

qj (−yj) cos
mπ

α
xj

∫ π

0

1

(x)2 + π2

α2 (β − yj)2
· cosmxdx. (33)

5 Examples and Discussion

Oxygen delivery to tissue has been studied in various ways. Popel [6], [7] used evenly dis-
tributed domains for multi-capillaries with heterogeneous flow. Schmidt-Nielsen and Pen-
nycuik [8] discovered a triangular regional feature for white skeletal muscles with capillary-
to-fiber ratio approximately equal to one. Opitz and Schneider [5] used a square region of
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supply for brain capillaries. These authors used polygonal region for capillary supply rather
than a disk and estimated minimum tissue pressure within the supply region. But their
target tissue contains only one single capillary and they assumed a uniform distribution of
capillary locations across the whole tissue region. A circular region was studied by Wang [9]
and analytical solutions were given. However, tiled circular regions will leave voids in tissue
area and therefore can not represent the entire tissue region. Rectangular regions can be
tiled without voids into sub tissue regions. We have applied a matching technique to achieve
complete solutions for oxygen concentration through a rectangular region. Some examples
will be illustrated in the following. In Example III, nine capillaries with random character-
istics will be used to illustrate concentration level from using its analytical solution. The
number of capillaries can always be increased in experiments. Note that complexity of the
analytical solutions in series form requires large computing time if the number of capillaries
becomes large (e.g., greater than 50). Future work will focus on refining the solutions in
series form and reducing the amount of time for computing large group of capillaries.

5.1 A single capillary in a diffusion-consumption rectangular region
with α = 1 and β = 1

Consider a single capillary in the center of the region with flux strength q = 1. The results
for coefficients are displayed in Table 1 to show the convergence of the series to the entire
rectangular region. We also show the plot of oxygen concentration C(x, y) in Figure 2. We
have truncated to only the first 40 terms in each set of coefficients. It reaches our accuracy
demand.

n = 1 n = 2 n = 10 n = 20 n = 30
An −0.1019 −0.1006 1.066× 10−5 −1.796× 10−6 −3.001× 10−9

Bn −0.1024 −0.1023 1.080× 10−5 −1.659× 10−6 −3.025× 10−8

Cn −0.1024 −0.1023 1.080× 10−5 −1.659× 10−6 −3.025× 10−8

Dn −0.1019 −0.1006 1.066× 10−5 −1.796× 10−6 −3.001× 10−9

Table 1: Coefficients of Example I for a rectangular domain up to n = 30 with α = 1 and
β = 1                     

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

3.5

x
y

Figure 2: Oxygen concentration in its steady state with one single capillary inside a suffi-
ciently oxygenated rectangular domain, α = 1 and β = 1 in Example I.
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5.2 Three random single capillaries in a well-supplied diffusion-
consumption rectangular region with α = 1 and β = 1

Consider three capillaries of uneven strength in a rectangular region. Locations and flux
strengths of the capillaries shown in Table 2 are randomly generated with the sum of flux
equal to 1. The results for coefficients are shown in Table 3 to show the convergence of the
solution to the entire rectangular region. We also show the plot of oxygen concentration
C(x, y) in Figure 3. We have truncated to only the first 40 terms in each set of coefficients
since it reaches our accuracy goal.

k xk yk qk
1 0.721 0.637 0.176
2 0.812 0.243 0.412
3 0.175 0.320 0.412

Table 2: Locations and flux strengths of three capillaries in Example II

n = 1 n = 2 n = 10 n = 20 n = 30
An 0.0035 −0.0003 −1.160× 10−6 −1.310× 10−8 1.227× 10−10

Bn 0.0037 −0.0006 −5.216× 10−7 −1.804× 10−8 −3.078× 10−10

Cn −0.6731 −0.0012 8.478× 10−5 −5.249× 10−8 4.606× 10−9

Dn −0.0011 0.0003 1.153× 10−7 −7.940× 10−9 1.049× 10−10

Table 3: Coefficients of Example II for a rectangular domain up to n = 30 with α = 1 and
β = 1                     

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

x
y

Figure 3: Oxygen concentration in its steady state with three capillaries inside a sufficiently
oxygenated rectangular domain, α = 1 and β = 1 in Example II.
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5.3 Nine random single capillaries in a well-sufficed diffusion-con-
sumption rectangular region with α = 1 and β = 1 and plot of
contour

Consider nine capillaries of uneven strength in a rectangular region. Locations and flux
strengths of the capillaries are randomly generated, shown in Table 4, with the sum of flux
equal to 1. The results for coefficients are given in Table 5 and 6 to show the convergence of
the solution in the entire rectangular region. We also show the plot of oxygen concentration
level curve in Figure 4. We have truncated to only the first 40 terms in each set of coefficients.

k xk yk qk
1 0.501 0.498 0.044
2 0.721 0.235 0.089
3 0.242 0.754 0.133
4 0.091 0.046 0.133
5 0.633 0.923 0.089
6 0.867 0.354 0.023
7 0.425 0.301 0.133
8 0.664 0.316 0.178
9 0.723 0.833 0.178

Table 4: Locations and flux strengths of nine capillaries in Example III

n = 1 n = 2 n = 10 n = 20 n = 30
An −0.2884 0.0065 1.534× 10−4 2.615× 10−6 8.110× 10−8

Bn −0.4366 0.0060 −5.671× 10−4 −6.174× 10−6 1.099× 10−7

Cn −0.2591 −0.0047 1.790× 10−4 −2.513× 10−6 −6.557× 10−8

Dn 0.2254 0.0049 1.906× 10−4 2.441× 10−6 3.121× 10−8

Table 5: Coefficients of Example III for a rectangular domain up to n = 30 with α = 1 and
β = 1.

n = 40 n = 50 n = 60
An 1.690× 10−12 3.871× 10−14 8.775× 10−16

Bn 8.553× 10−14 3.693× 10−15 1.263× 10−16

Cn 2.184× 10−12 −8.853× 10−16 −1.608× 10−15

Dn −8.142× 10−13 −8.648× 10−14 4.239× 10−15

Table 6: Coefficients of Example III for a rectangular domain up from n = 40 to n = 60
with α = 1 and β = 1.

– 75 –



Diffusion in Multicapillary Regions Sun                    

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 4: Oxygen concentration level curve in a sufficiently oxygenated rectangular domain
with nine capillaries, steady state, α = 1 and β = 1 in Example III.
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