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ABSTRACT

In recent years, interest in the capability of virus particles as a
treatment for cancer has increased. In this work, we present a
mathematical model embodying the interaction between tumour
cells and virus particles engineered to infect and destroy cancerous
tissue. To quantify the effectiveness of oncolytic virotherapy, we
conduct a local stability analysis and bifurcation analysis of ourmodel.
In the absence of tumour growth or viral decay, the model predicts
that oncolytic virotherapy will successfully eliminate the tumour cell
population for a large proportion of initial conditions. In comparison,
for growing tumours and decaying viral particles there are no stable
equilibria in the model; however, oscillations emerge for certain
regions in our parameter space. We investigate how the period and
amplitude of oscillations depend on tumour growth and viral decay.
We find that higher tumour replication rates result in longer periods
between oscillations and lower amplitudes for uninfected tumour
cells. From our analysis, we conclude that oncolytic viruses can reduce
growing tumours into a stable oscillatory state, but are insufficient
to completely eradicate them. We propose that it is only with the
addition of other anti-cancer agents that tumour eradication may be
achieved by oncolytic virus.
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1. Introduction

Oncolytic virotherapy is fast becoming a successful cancer treatment. Recent advances in
genetically modified cancer-killing viruses have shown increasing promise both experi-
mentally and clinically (see Aghi & Martuza, 2005; Jebar et al., 2015; Lawler, Speranza,
Cho, & Chiocca, 2017; Prestwich et al., 2008; Russell, Peng, & Bell, 2012; Wang et al.,
2016). Many naturally occurring viruses are being investigated for their use in cancer
treatments, for example: Herpes Simplex Virus, adenovirus, measles, reovirus, Vesicular
Stomatitis Virus (Russell et al., 2012). These viruses are currently being tested in clinical
trials and are used to treat a range of cancer types such asGlioma,Ovarian cancer, Sarcoma,
Pancreatic cancer, Prostate cancer and Bladder cancer (Prestwich et al., 2008; Russell et al.,
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2012). Recent success has been reported in treating metastatic melanoma with the herpes
simplex virus (Andtbacka et al., 2015). However, oncolytic virotherapy is considered to be
at a conceptual stage and consistent success in cancer eradication or control still remains
elusive. Much is still unknown about the sensitivity of oncolytic virotherapy to tumour
and viral heterogeneity. For example, protocols detailing doses, treatment lengths etc, are
not yet universally established.

Interest in oncolytic virotherapy arises from its capacity to combine tumour-specific
lysis with delivery properties for other anti-cancer drugs (Lawler et al., 2017). Oncolytic
viruses are engineered to express genes that promote viral replication within tumour cells
and inhibit replication within healthy cells. As such, the viral load remaining after the
tumour cells have been eradicated will not affect the rest of the body and will decay over
time. Once inside a tumour cell, virus particles will replicate until they reach a tumour-
cell-filling capacity, at which point the cell will burst, undergoing lysis, and release the viral
progeny inside. By replicating within tumour cells, oncolytic viruses are able to rapidly
increase their population at the tumour site. This makes oncolytic virotherapy, in theory,
a successful cancer treatment.

Mathematical models can be used effectively to predict the long-term behaviour of
tumour cells under different therapies. For many years now, researchers have been turning
to mathematical modelling as a way of understanding the complex interactions in the
tumour micro-environment (see De Boer, Hogeweg, Dullens, De Weger, & Den Otter,
1985; de Pillis, Radunskaya, & Wiseman, 2005; Goldstein, Faeder, & Hlavacek, 2004;
Kronik, Kogan, Vainstein, & Agur, 2008). While there are no fundamental laws that
can assist with the formulation of a mathematical description for a cancer-killing virus,
previous modelling can be used to gain insight into the derivation process. There are many
models in the literature that describe the interaction between an oncolytic virus and a
tumour, either on a theoretical basis, see Wodarz (2001, 2003), Komarova and Wodarz
(2014), Berezovskaya, Novozhilov, and Karev (2007), Karev, Novozhilov, and Koonin
(2006), Komarova & Wodarz (2010), Novozhilov et al. (2006), or applied to data, see
Titze et al. (2017), Bajzer, Carr, Josić, Russell, and Dingli (2008), Dingli, Cascino, Josić,
Russell, and Bajzer (2006), Dingli et al. (2009), Jenner, Yun, Kim, and Coster (in press).
The derivation of the model proposed here is based on these references.

For example, two of the first mathematical models for oncolytic virotherapy were
developed by Wodarz (2001, 2003). Wodarz et al. modelled a virus interacting with a
population of uninfected and virus-infected tumour cells using a system of two ordinary
differential equations (ODEs). Based on this work, Komarova and Wodarz developed
a generalized system of two ordinary differential equations for oncolytic virotherapy
(Komarova & Wodarz, 2010). All of these models provided valuable insight into the dy-
namics between an oncolytic virus and tumour cell population despite the viral population
being modelled implicitly.

One of the first models that explicitly modelled the viral population was developed by
Bajzer et al. (2008). Conducting a bifurcation analysis of their system, these authors discov-
ered stable oscillations in the tumour cell population emerging from a Hopf bifurcation.
While the concept of an oscillating tumour may seem unusual, such behaviour has been
observed experimentally.Most recently, Titze et al. (2017) developed amathematicalmodel
to characterize the relationship between tumour cell growth and different oncolytic viruses.
Their model, analogous to that of Bajzer et al. (2008), used a system of three ordinary
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Figure 1. Flowdiagram for the interaction between a population of uninfected tumour cells, represented
by U, virus-infected tumour cells, represented by I and virus particles, represented by V. The diagram
lists parameters relating to the original model, Equations (1)–(3), in grey boxes and parameters relating
to the non-dimensionalized form of the model, Equations (4)–(6), in blue boxes.

differential equations to embody glioblastoma cell growth in vitro under treatment from
three different oncolytic adenoviruses. Optimizing their model to data, they obtained
parameter estimates and predicted long-term tumour recurrence. Through the use of their
models, both Bajzer et al. (2008) and Titze et al. (2017) were able to provide insight into
the long-term behaviour of virus–tumour interactions.

Building on the work by Titze et al. (2017), we present a reduced system of ODEs
that model an oncolytic virus interacting with a tumour cell population. While research
has progressed and is still advancing, oncolytic virotherapy is at an early stage in its
development and this work is primarily motivated by the study of model dynamics. We
conduct a local stability analysis and bifurcation analysis of our system and find that stable
equilibria only exist in the absence of tumour growth or viral decay. When considering a
growing tumour with decaying viral treatment, we see the emergence of long period orbits
in the model solution. Numerical evaluation of how the period and amplitude of the orbits
depend on the parameter space is used to suggest improvements to oncolytic virotherapy.
As we will see, these types of oscillations can biologically be interpreted as recursion or
remission of the tumour. In this article, the focus is on which aspects of virus–tumour
interactions drive the success of oncolytic virotherapy from a mathematical and biological
point of view. Possible outcomes of oncolytic virotherapy predicted by our model are
finally analyzed and discussed.
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2. Model description

To model the interaction between an oncolytic virus and a growing tumour, we use a
system of three ODEs.While ODEmodels do not address spatial spread, they do provide a
mathematical framework within which the mean-field interactions between tumour cells
and viral particles can be explored. The state variables in our model consist of

• u(τ ) – uninfected tumour cells,
• i(τ ) – virus-infected tumour cells,
• v(τ ) – free virus particles,

where τ represents the number of days.
In this article wemodel an aggressive form of tumour, assuming that uninfected tumour

cells replicate at a rate r proportional to their population. Biologically, this unbounded
exponential tumour growth is infeasible due to nutrient and space limitations. However,
exponential growth can still be seen as a sufficient approximation for tumour growth
under treatment with an oncolytic virus, since the time scale of the interaction between
virus particles and tumour cells is short.

To model the process of tumour cell infection, we use the law of mass action. Assuming
that the rate of infection of the uninfected tumour cell population is proportional to the
product of the virus and tumour cell populations (Novozhilov et al., 2006) and that this
occurs with rate constant β . While there are other more complex ways of modelling the
viral infection of cells, e.g. a frequency-dependent infection rate or ratio-dependentmodel,
see Hews, Eikenberry, Nagy, and Kuang (2010), Jenner et al. (in press), Novozhilov et al.
(2006), we adopt a basic framework that will allow for analytical results, as it will be shown
shortly. Further, it is assumed that, once infected, tumour cells are incapable of division as
the virus particle within the cell takes control of the cellular machinery for self-replication.
Virus-infected tumour cells will then burst due to lysis at a rate dI , releasing α new free
virus particles.

Figure 1 shows a schematic of the interaction between the uninfected tumour cell
population u (or U in non-dimensional form), infected tumour cells i (or I in non-
dimensional form) and the virus population v (or V in non-dimensional form). The
corresponding system of equations describing the interaction is given below:

du
dτ

= ru − βuv, (1)

di
dτ

= βuv − dI i, (2)

dv
dτ

= −dVv + αdI i. (3)

Thismodel complements other oncolytic virotherapymodels in the literature, see Bajzer
et al. (2008), Berezovskaya et al. (2007), Dingli et al. (2006, 2009), Jenner et al. (in press),
Karev et al. (2006), Komarova and Wodarz (2010), Novozhilov et al. (2006), and is very
close to the model by Titze et al. (2017). It differs to that of Titze et al. (2017), as tumour
cell death due to factors unrelated to treatment are neglected. Unrelated tumour cell death
is considered to be negligible in comparison to virus-induced tumour cell death.
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Our equations also resemble some previous modelling work by Baccam, Beauchemin,
Macken, Hayden, and Perelson (2006) on the kinetics of influenza in humans, i.e. the so
called TIV model. Baccam, Beauchemin, Macken, Hayden, and Perelson (2006) derived a
model for target-cell limited influenza infection, which is equivalent to Equations (1)–(3)
when r = 0. Being our model essentially minimal and quite generic some of its results can
be easily translated to influenza and infectious disease modelling.

With an appropriate change of variables, detailed in Appendix 1, the model in Equa-
tions (1)–(3) can be simplified to a dimensionless form:

dU
dt

= ξU − UV , (4)

dI
dt

= UV − I , (5)

dV
dt

= −mV + I , (6)

where ξ = r/dI andm = dV/dI andU , I ,V and t represent the newdimensionless tumour
and virus populations and time. This reduces the number of independent parameters and
simplifies the mathematical analysis while preserving the essential properties of the model.

The model dynamics are sensitive to initial conditions and there is a need to consider
realistic initial tumour sizes and viral dosages. As we have assumed exponential growth in
ourmodel, if the initial tumour to virus ratio, i.e.U0/V0, is too high then the tumour growth
will outcompete the virus and we will have unbounded growth in the tumour population.
In this article, we present numerical simulations of Equations (4)–(6) for initial conditions
close to the equilibria, and discuss the dynamical behaviour of the model.

Let us remark that thismodel pertains to an idealized situation of homogeneous tumour
properties and virus spread. It is well documented that oncolytic virotherapy can fail due
to intratumoural obstructions, such as the extracellular matrix, pressure and impermeable
veins (Ariffin, Forde, Jahangeer, Soden,&Hinchion, 2014).Here, obstacles thatmay inhibit
treatment efficacy are simply ignored.

3. Results

While parameter estimates for tumour cell replication, viral decay and viral infectivity are
readily available in the literature (see Jenner et al., in press; Komarova & Wodarz, 2010;
Titze et al., 2017), they represent only one adaptation of the tumour-virus interaction.
In this section, we undertake a detailed local stability analysis and bifurcation analysis to
quantify how our system behaves under various tumour and viral characteristics.

3.1. Equilibrium solutions

Tounderstand long termbehaviour,we calculate the equilibria for thenon-dimensionalized
system, Equations (4)–(6). We find one equilibrium at the origin and one non-zero
equilibrium:

U = 0, I = 0, V = 0, and (7)
U = m, I = mξ , V = ξ. (8)
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Figure 2. Stability of the equilibrium at the origin as a function of the (ξ ,m)-parameter space. The
shaded region of the parameter space represents the (ξ ,m)-parameter set corresponding to a stable
node at the origin.

For the specific case ofm = 0 or ξ = 0, two more equilibria exist. Form to be equal to
zero, we need dV = 0, i.e. viral particles are not decaying. This biologically represents the
case when we have a virus that is not cleared by the immune system, for example because
it is coated in an immunogenic polymer such as polyethylene glycol as in Kim et al. (2011).
The resulting equilibrium form = 0 will be U = 0, I = 0 and V ∈ IR.

Similarly, when ξ = 0, we have r = 0, i.e. tumour cells are not replicating. This can be
thought of biologically as a stagnant or non-growing tumour. The oncolytic viruses will,
therefore, only be removing existing tumour cells. The resulting equilibrium at ξ = 0 will
be at I = 0, V = 0 and U ∈ IR. Therefore, we have four equilibria in total, two of which
only exist for the specific casesm = 0 or ξ = 0.

3.2. Stability of the equilibrium at the origin: U = 0, I = 0,V = 0

To achieve complete tumour eradication in our model, the equilibrium at the origin must
be stable. Evaluating the Jacobian of the non-dimensionalized model, Equations (4)–(6),
for the equilibrium at the origin we obtain the eigenvalues:

λ1 = ξ , λ2 = −1, λ3 = −m.

Thus, the equilibrium is a stable node form ≥ 0 and ξ ≤ 0 and a saddle point for all other
regions in the parameter space as summarized in Figure 2.

Biologically, both ξ andmneed to benon-negative real numbers.As such, the reasonable
parameter values resulting in a stable node at the origin will be ξ = 0 and m ≥ 0.
When ξ = 0, there is no tumour growth, i.e. r = 0, and we have a benign tumour or a
malignant tumour growing at a negligible rate. Figure 3 shows a numerical simulation of
Equations (4)–(6) for typical parameter values giving a stable node at the origin: all tumour
cells and virus particles die out over time.
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(a) (b)

Figure 3. Numerical simulation of the non-dimensionalized model, Equations (4)–(6), for the parameter
regime where the equilibrium at the origin is stable. The time-series model solution, (a) and 3-D model
curve, (b), are plotted for parameter values ξ = 0 and m = 0.1, and initial conditions U = 0.4, I = 0
and V = 0.1. The green star represents the stable equilibrium at the origin.

3.3. Stability of the non-zero equilibrium: U = m, I = mξ and V = ξ

As the equilibrium at the origin is unstable for ξ > 0 and m > 0, we now turn to the
non-zero equilibrium to see whether our model has a stable fixed point for this parameter
set. Evaluating the Jacobian for the non-dimensionalized model, Equations (4)–(6), at the
non-zero equilibrium U = m, I = mξ and V = ξ , gives the characteristic equation:

ρ(λ) = −λ3 − (1 + m)λ2 − mξ. (9)

The eigenvalues corresponding to the non-zero equilibrium are the roots of the char-
acteristic equation, Equation (9). To determine the stability of the non-zero equilibrium
we calculate the position and nature of the stationary points of the characteristic equation
and from this deduce the sign and number of real roots of Equation (9). See the diagram
in Appendix 2 for a more detailed explanation.

Stationary points of the characteristic equation, Equation (9), occur for two values of λ:

λ∗
1 = 0, λ∗

2 = −2
3
(1 + m).

The first stationary point listed,λ∗
1, is fixed on the vertical axisλ = 0. The corresponding

value of the characteristic equation at the stationary point λ∗
1 is ρ(λ∗

1) = −mξ . The second
derivative at the stationary point λ∗

1 is ρ′′(λ∗
1) = −2(1 + m) and therefore λ∗

1 will be a
maximum for m > −1 and a minimum for m < −1. This is summarized in Figure 4(a)
along with the sign of ρ(λ∗

1).
The location of the second stationary point, λ∗

2, depends solely on the value of m, i.e.
for m < −1 it is positive and for m > −1 it is negative. The value of the characteristic
polynomial at λ∗

2, i.e.

ρ(λ∗
2) = − 4

27
(1 + m3) − mξ ,

determines the nature of the stationary point, summarized in Figure 4(b).
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(a) (b)

Figure 4. The nature of the stationary points λ∗
1 , (a), and λ∗

2 , (b), as functions of the (ξ ,m)-parameter
space. In all figures the shaded regions represent a maximum and the white regions represent a
minimum. The sign of the characteristic equation ρ(λ) is noted as a function of the (ξ ,m)-parameter
space at the stationary point λ∗

1 , (a), and λ∗
2 , (b). Additionally, in (b), positive λ∗

2 occurs in the white
shaded and negative λ∗

2 occurs in the blue shaded region.

To determinewhether there exists a (ξ ,m)-combination resulting in stable solutions, i.e.
all roots of the characteristic equation having negative real part, we use the Routh–Hurwitz
criterion. The Routh–Hurwitz stability criterion is a necessary and sufficient condition for
the stability of a linear time invariant control system. For the Routh–Hurwitz criterion to
be satisfied, we needmξ < 0 andmξ > 0, which gives a contradiction. As such, there is no
set of m and ξ that will result in all roots of the characteristic equation with negative real
part and, therefore, the non-zero equilibrium will always be unstable.

The sign of the eigenvalues for the non-zero equilibrium, and hence the nature of the
non-zero equilibrium, are determined by the position of the two stationary points λ∗

1 and
λ∗
2 in the (λ, ρ(λ))-plane, refer to Appendix 2 for a summary of the eigenvalues based

on the position and nature of the two turning points. The nature of the equilibrium for
each region of the (ξ ,m)-parameter space is plotted in Figure 5. We have three possible
values of the non-zero equilibrium: an unstable focus node, a saddle focus and a saddle.
For biologically reasonable parameters, ξ > 0 and m > 0, we have a saddle focus, which
consists of one negative real eigenvalue and a pair of complex eigenvalues with positive
real part.

To illustrate the behaviour of the saddle focus, the numerical solution to the model,
Equations (4)–(6), is plotted in Figure 6 for initial conditions close to the non-zero
equilibrium. From this, we see that for biologically reasonable parameters we have growing
oscillations in all of the variables for the first 30 days of the interaction between the oncolytic
virus and the tumour cells.

3.4. One-parameter bifurcation analysis

To determine how the solutions change, we conduct a bifurcation analysis of the non-
dimensionalized model. In Figure 7, the branches of equilibria are plotted for a typical
value of m = 0.1. Given that ξ > 0, both equilibria are unstable, as previously illustrated
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Figure 5. The nature of the non-zero equilibrium as a function of the (ξ ,m)-parameter space. The three-
shaded regions correspond to the three possible equilibrium stabilities: unstable focus node, saddle
focus and saddle.

(a) (b)

Figure 6.Numerical simulations of the non-dimensionalized model, Equations (4)–(6), form = ξ = 0.5.
The time-series, (a), and 3-D solution curve, (b), are plotted for initial conditions U = 0.4, I = 0.0243
and V = 0.56. The stars represent the equilibrium at the origin (green) and the non-zero equilibrium
(purple).

in the local stability analysis. Asm approaches zero from above, the non-zero equilibrium
value forU and I decreases and the value for V remains constant, while the stability of the
equilibria stays the same.

In Figure 7(a), at ξ = 0 we have a zero eigenvalue on the branch of equilibria labelled
B2 (i.e. the axis U = 0). As such, between the two branch points (BP1 and BP2) and
below the branch point at the origin (i.e. BP1) we have two eigenvalues with negative real
part and one zero eigenvalue. Above BP2 we have one eigenvalue with negative real part,
one eigenvalue with positive real part and one zero eigenvalue. Therefore branch B2 has
a two dimensional manifold that is stable below BP2 and a one dimensional stable and
one-dimensional stable manifold above BP2. To illustrate the behaviour of this branch,
in Figure 8, we present a numerical simulation for Equations (4)–(6) when ξ = 0 and
m = 0.1. Recall that this case represents a non-growing tumour so treatment will only
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(a) (b)

Figure 7. One-parameter bifurcation plot for (a) U and (b) V as functions of ξ withm = 0.1. A solid line
represents a stable branch and a dotted line represents an unstable branch. A branch point is labelled
BP. The equilibrium branches have been labelled B0, B1 and B2 for referencing.

(a) (b)

Figure 8.Numerical simulations for the non-dimensional model form = 0.1 and ξ = 0. The time-series,
(a), and 3-D solution curve, (b), are plotted for initial conditions U = 0.15, I = 0 and V = 0.1. The green
star represents the equilibrium at the origin and the purple star represents the non-zero equilibrium
U = m, I = mξ , V = ξ .

amount to eradicating already existing cells. The model solution tends to a stable fixed
point where I = V = 0 and U ≈ 0.02.

From Section 3.2, Figures 2 and 3, we know that for ξ = 0 the equilibrium at the origin
is also stable. This means, in general, that we have a set of initial conditions that will tend
to the origin and a set of initial conditions that will tend to a non-zero fixed point for
ξ = 0 and m ≥ 0 (the case when the tumour cells are not replicating). In Figure 9, we
have plotted the solution curves for the model for a fixed m = 0.1 and ξ = 0 and a range
of initial conditions. We can see that for a subset of initial conditions in the parameter
space, the resulting stable equilibrium will be non-zero for the uninfected tumour cells.
This occurs for small vales of initially infected cells, I , and virus particles,V , and is a subset
of the (larger) basin of attraction of the portion of branch B2 between BP1 and BP2.
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Figure 9. Numerical solution curves for the non-dimensional model for a range of initial conditions. The
colour of the line corresponds to the equilibrium value for U, labelledUtf .

(a) (b)

Figure 10. Numerical simulations for the non-dimensional model for m = 0 and ξ = 0.1. The time-
series (a), and 3-D solution curve (b), are plotted for initial conditions U = 0.5, I = 0.05 and V = 0.2.
The green star represents the equilibrium at the origin and the purple star represents the non-zero
equilibrium U = m, I = mξ , V = ξ .

An interesting case occurs whenm = 0, representing a decay rate of the virus of zero, i.e.
the virus is not cleared from the tumour site. In Figure 10, we show the numerical model
solution for m = 0 and ξ ≥ 0 and see that uninfected and infected tumour populations
are quickly eradicated whilst the virus population tends to a non-zero fixed point. This
corresponds to the branch of stable equilibria at U = I = 0 and V ∈ IR (see Section 3.1).
While the virus population is still non zero in this situation, the tumour populations have
been eradicated and, therefore, we have a positive outcome for oncolytic virotherapy. These
results suggest that if we can eliminate viral decay by introducing an immunosuppressant
material (such as polyethelene glycol), effective treatment, irrespective of the tumour
growth rate, could be achieved.
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3.5. Incomplete eradication and long period orbits

The goal of our analysis so far has been to determine a parameter regime for ourmodel that
will result in complete tumour eradication. As we have shown in the previous section, the
equilibrium at the origin is unstable for m > 0, and ξ > 0 and tumour eradication cannot
be achieved. Numerically simulating Equations (4)–(6) for a long time period shows the
existence of stable long period orbits, see Figure 11. These orbits could be indicating that
in the limit for m → 0+, the system shows a homoclinic state. This investigation will be
part of a forthcoming more theoretical communication. The meaning of these dynamics
will be discussed in more detail below.

Simulating the non-dimensionalized system presented in Equations (4)–(6) for three
biologically reasonable initial conditions, we produce time-series and phase portraits for
a range of parameter values. Choosing m = 0.01 and ξ = 0.1 produces the plots in
Figure 11(a) and (b). Similarly, fixing ξ = 0.06, we have plotted U as a function of time
and the U vs I phase portrait form = 0.01 andm = 0.001, see Figure 11(c)–(f). It is clear
from Figure 11 that the lower the value ofm or ξ , the closer the orbit gets to the long period
orbit state.

To quantify the dependence of the orbits on the parameter values, the amplitude and
period are numerically calculated as a function of m and ξ . In Figure 12(a), the period
between oscillations has been calculated as a function of m (i.e.: dV/dI , the ratio of viral
death to cell burst rate) and ξ (i.e.: r/dI , the ratio of tumour cell replication to cell burst rate).
Decreasing m and increasing ξ results in a longer period of time between the oscillations.
Therefore, a slower growing tumour relative to cell burst rate will produce longer intervals
of no growth between its rapid burst-like growths. Equivalently, a more rapid clearance
of the viral particles relative to cell burst rate would result in longer periods between the
oscillations. This can happen when the immune system’s response to a virus is heightened,
for example through the expression of immunostimulatory cytokines.

Figure 12(b)–(d) shows how the amplitude of the oscillation depends on m and ξ . We
see an inverse relationship between the amplitude of the oscillation for uninfected tumour
cells, U , and the amplitude of oscillation for infected tumour cells, I , and virus particles,
V . Increasing ξ results in a lower amplitude for U , and a larger amplitude for I and V .
Improving treatment correlates to obtaining the lowest possible tumour population and
therefore the lower the amplitude of the uninfected tumour cells close to the long period
orbit state, the more effective the treatment.

4. Discussion

In this article, we presented amathematical model that captured some of the key dynamics
of the interaction between an oncolytic virus and a population of tumour cells. To develop
ourmodel we drewonpreviousmodelling in the literature, primarily thework of Titze et al.
(2017). Titze et al. (2017) calibrated experimental viral titre and tumour measurements to
obtain parameter estimates for a system of ODEs similar to the model we presented in
Equations (1)–(3).

Before considering the specific effects of individual tumours and viral characteristics,
an understanding of the main determinants of the general dynamic interaction between
viruses and tumours is crucial. This was embodied in the parametersm and ξ representing
the ratio or tumour replication and viral decay to cell burst rate. To discuss the possible
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Numerical simulations of the non-dimensionalized model in Equations (4)–(6) for ξ = 0.1
and m = 0.01 (a)-(b), for ξ = 0.06 and m = 0.01 (c)-(d) and for ξ = 0.06 and m = 0.001
(e)-(f). Each coloured line represents a different initial condition: U = 0.9, I = 0, V = 0.5 (green),
U = 0.8, I = 0, V = 0.1 (red) and U = 0.15, I = 0, V = 1 (blue). We show long period orbit attractors
as black dotted curves. After a transient, all shown orbits appear to collapse onto the attractor.

long-term behaviour of the interaction between an oncolytic virus and tumour for a range
of possible characteristics, we conducted a local stability analysis and bifurcation analysis
of the reduced model, see Equations (4)–(6). We found that the equilibrium at the origin
is unstable for all biologically reasonable parameter values, except the case where ξ = 0
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(a) (b)

(c) (d)

Figure 12.Numerical calculation of the period, (a), and amplitude, (b)-(d), for the orbits produced by the
non-dimensionalized model in Equations (4)–(6) as a function ofm and ξ . The colourbar links the colour
of the circles to the corresponding value of ξ used in the calculation.

and m = 0. When ξ = 0, there will be no tumour growth in the model: this can only
occur for a specific type of tumour, i.e. a benign tumour or a tumour whose growth is
extremely low. For this tumour type, the model predicts that complete tumour eradication
can be obtained for a specific range of initial conditions. In Figure 9, we have plottedmodel
solution curves as a function of the initial conditions, noting by the colour of the line the
uninfected tumour cell number at the stable equilibrium. High enough initial viral dosages
and initial tumour sizes result in complete tumour eradication: benign or slow growing
tumours would do well under this treatment, given the right initial tumour sizes and viral
dosages.

Considering the stability of the non-zero equilibrium, we found that this is stable in
the absence of viral decay, i.e. for m = 0. In Figure 10 we have plotted the corresponding
model simulation for m = 0 and ξ ≥ 0 and show how the system tends to equilibrium
U = I = 0 and V ∈ R. Whilst developing a virus that rigorously does not decay is
impossible, experimentalists are currently investigating ways to shield viral particles from
immune detection and clearance (an example of this is the polymer polyethylene glycol
discussed in Kim et al. (2011)). However, at the moment, we propose this as a purely
hypothetical scenario, as the non-decaying virus, while harmless, will still need to be
removed after it has eliminated the tumour. Our model predicts that if it were possible to
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genetically engineer an oncolytic virus to remain within the system indefinitely, complete
tumour eradication can be obtained.

Analysis of equilibria for the case of an exponentially growing tumour and viral particles
undergoing decay, i.e. m > 0 and ξ > 0, suggested that there is no way for treatment to
eradicate the tumour, as both equilibria are unstable. As shown in Figures 5 and 6, the
non-zero equilibrium is a saddle focus and the origin is a saddle, causing model solutions
to spiral outwards with increasing amplitude. Further, numerically simulating the non-
dimensionalized model for a long time period showed the appearance of long period
orbits, see Figure 11.

Oscillations in tumour cell population size have been seen in vivo in several other viral
dynamic models (see Bajzer et al., 2008; Dingli et al., 2009; Wodarz, 2016). Komarova and
Wodarz (2010), show that using mass action to model the viral infectivity leads to strong
oscillations in the population of viruses and cancer cells. Titze et al. (2017) suggested
that the rise and fall of tumour growth, seen in oscillations, could be due to the lack of
bioincubators for viral replication. This is analogous to behaviours typical of predator–prey
systems, where we see oscillations occurring due to a heavy dependence of each population
on the other for survival.

There are two primary ways to interpret biologically the presence of long period orbits
in oncolytic virotherapy: complete tumour eradication or tumour remission. A long period
orbit can be considered as an example of complete tumour eradication: if the population
of cells drops below certain levels, this could mean extinction. This in a more realistic
setting could occur if we take into account increased likelihood of clearance or death due
to nutrient deficiency. By definition of a long period orbit, themodel solution spends a long
period of time close to zero, and in this time frame we predict that other effects eradicate
the negligible number of remaining cells.

Previously, Novozhilov et al. (2006) showed that for a model of oncolytic virotherapy
there is a region of the parameter space where trajectories form a family of homoclinics
to the origin. From the biological point of view, this occurrence implies that tumour cells
can be eliminated with time and complete recovery is possible. Similarly, Berezovskaya
et al. showed that the origin can have its own basin of attraction in the phase space
(Berezovskaya, Karev, and Arditi, 2001), which corresponds to deterministic extinction of
both species (Berezovskaya et al., 2007; Berezovsky, Karev, Song, & Castillo-Chavez, 2005;
Hwang&Kuang, 2003; Jost &Arditi, 2000). Berezovskaya et al. (2007) showed how certain
models possess a dynamical regime of deterministic extinction, through the presence of
homoclinics.

Long period orbits can also be examples of tumour remission and recurrence. Analysis
of the characteristics of the orbits as a function of the parameter space provides us with
information about how to improve treatment effectiveness. Reducing the amplitude of
the orbit and increasing the period between oscillations correspond to a more successful
treatment. To quantify how the behaviour depends on parameter space, we compute the
period of oscillations as a function of both m (the ratio of the decay of viral particles to
cell burst rate) and ξ (the ratio of tumour replication to cell burst rate). In Figure 12(a) we
see that decreasing the ratio of viral death to cell death, i.e. m, irrespective of the rate of
tumour cell replication r and to cell burst rate dI , i.e. ξ , results in a longer period between
oscillations, i.e. more time between tumour regrowth. Alternatively, decreasing the ratio
of tumour cell replication to cell burst rate, i.e. ξ , the period increases. Therefore, one
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important insight the model provides is that decrease in both the ratio of the decay of viral
particles to cell burst rate and the ratio of tumour replication rate to cell burst rate is a very
effective strategy.

Another key feature of the oscillations in Figure 11 is their amplitude. In Figure 12(b)–
(d) we examine the dependence of the amplitude of the oscillation on m (the ratio of the
decay of viral particles to cell burst rate). We find that in all cases, the lower the value
of m the lower the amplitude of the oscillation. However, if we look at ξ (the ratio of
tumour replication to cell burst rate), we find that increasing ξ increases the amplitude of
the oscillation for infected tumour cells and virus particles and decreases the amplitude
for uninfected tumour cells. One of the primary objectives of a therapy is to reduce the
number of uninfected tumour cells, and therefore reduce the amplitude of the oscillation
forU . In that respect, we suggest a decrease in the ratio of the decay of viral particles to cell
burst rate, m, and an increase in the ratio of tumour replication to cell burst rate, ξ . This
will result in the lowest possible amplitude for the uninfected tumour cells. We note that
this suggestion is also associated with a long period between oscillations, so it represents
overall the most effective way of improving oncolytic virotherapy.

5. Conclusion

This paper has provided a detailed local stability and bifurcation analysis of a coupled
ODE model that investigates the dynamics of an oncolytic virus and tumour cells. This
model is a minimal embodiment of a complex intricate interaction and contains a number
of biological limitations such as the absence of the immune interaction, the ability of the
virus to infect already infected tumour cells and spatial heterogeneity. Despite this, we feel
that our model still captures important aspects of the overall dynamics of the interaction
between cancerous cells and oncolytic viruses.

From our analysis, we have determined that treatment of a benign or slowly growing
tumour with oncolytic virotherapy will result in complete tumour eradication when the
right viral dosage for a given initial tumour size is used. We show that modification of
viral particles to remove the possibility of viral decay would also result in complete tumour
eradication. For a growing tumour and decaying viral particles, long period orbits emerge
indicating either eradication or remission. From our analysis, decreasing the ratio of the
decay rate of viral particles to cell burst rate and increasing the ratio of tumour replication
rate to cell burst rate results in low amplitudes for the uninfected tumour cells and long
periods between oscillations.

Our results highlight potential difficulties in the treatment of aggressive tumours with
virus therapy alone and suggest the need for combination therapies if complete tumour
eradication is always to be achieved. Recent advancements in oncolytic virotherapy have
looked at genetically modifying a virus to contain other cancer treatments. In this way,
viral infection and drug delivery would occur simultaneously, increasing the treatment’s
antitumour potency. Combining the tumour-killing capability of oncolytic viruses with
anti-tumour drugs, such as Cisplatin, Herceptin and chemotherapeutic agents Inoue et al.
(2000), Toyoizumi et al. (1999), or with immunostimulatory cytokines such as IL-12, GM-
CSF, 4-1BB ligand (Choi, Zhang, Choi, Kim, & Yun, 2012; Huang et al., 2010), allows
for a dual attack on cancer. Increasing evidence suggests that, for a complete eradication,
oncolytic virotherapy might need to be used in conjunction with other cancer therapies.
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Appendix 1
We discuss here how non-dimensionalization is carried out. First, consider the original equations

du
dτ

= ru − βuv,

di
dτ

= βuv − dI i, (A1)

dv
dτ

= −dVv + αdI i.

Let k1U = u, k2I = i, k3V = v and k4t = τ , so:

k1
k4

dU
dt

= rk1U − βk1k3UV ,

k2
k4

dI
dt

= βk1k3UV − dIk2I , (A2)

k3
k4

dV
dt

= −dVk3V + αdIk2I ,

which become, after simple algebra:

dU
dt

= rk4U − βk3k4UV ,

dI
dt

= β
k1k3k4
k2

UV − dIk4I , (A3)

dV
dt

= −dVk4V + αdI
k2k4
k3

I.

Finally, letting k1 = k2 = dI/αβ , k3 = dI/β and k4 = 1/dI gives:

dU
dt

= ξU − UV ,

dI
dt

= UV − I , (A4)

dV
dt

= −mV + I ,

giving ξ = r/dI andm = dV/dI as explained in Section 2. In terms of the scaled variables we have:

U = u
k1

= αβ

dI
u, (A5)

I = i
k2

= αβ

dI
i, (A6)
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V = v
k3

= β

dI
v, (A7)

t = τ

k4
= dIτ. (A8)

where for all numerical simulations, the state variables have also been scaled by the initial conditions:
i.e. U/U(0), I/I(0) and V/V(0).

Appendix 2

Figure B1. All possible cubics for the characteristic function in Equation (9). Collection of the possible
shapes displayed by the cubic determining the sign and nature of the eigenvalues for the non-zero
equilibrium: U = m, I = mξ , V = ξ .
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