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ABSTRACT
Here we present a mathematical model of movement in an abstract
space representing states of cellular differentiation.Wemotivate this
work with recent examples that demonstrate a continuum of cel-
lular differentiation using single-cell RNA-sequencing data to char-
acterize cellular states in a high-dimensional space, which is then
mapped into R

2 or R
3 with dimension reduction techniques. We

represent trajectories in the differentiation space as a graph, and
model directed and random movement on the graph with partial
differential equations. We hypothesize that flow in this space can
be used to model normal and abnormal differentiation processes.
We present amathematical model of haematopoiesis parameterized
with publicly available single-cell RNA-Seq data and use it to simu-
late the pathogenesis of acute myeloid leukaemia (AML). The model
predicts the emergence of cells in novel intermediate states of differ-
entiation consistent with immunophenotypic characterizations of a
mouse model of AML.
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1. Introduction

The recent advance of single-cell RNA-sequencing (scRNA-Seq) technologies has enabled
a new, high-dimensional definition of cell states. In contrast to conventional gene expres-
sion analyses based on measuring the average levels in a tissue or given cell population,
single-cell analysis captures the cellular heterogeneity and provides resolution at the level
of individual cells within the tissue or cell population. This level of resolution coupled with
genome-wide gene expression provides an unprecedented opportunity to quantitatively
probe cellular behaviour, cellular variation and dynamics in a wide range of biological
contexts.

There are on the order of 20,000 protein encoding genes that compose the transcrip-
tome, which constitute a R

20,000 dimensional space. Therefore, the configuration of the
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transcriptome at a point in time can be represented as a coordinate vector in space. When
a cell expresses genes, it ‘moves’ in this high-dimensional gene expression phenotype
space. Over time, the sequence of locations in the space of a given cell creates a trajectory.
Dimension reduction techniques are commonly used to map the larger space into a lower
dimensional space, for instance, R2 or R

3, at which point the cells are clustered based on
a similarity metric and recategorized. This process has revealed a continuum of cell phe-
notypes, with intermediate states connecting canonical cell states. The most prominent
example of this process is in haematopoietic cell differentiation.

Normal haematopoiesis is long thought to occur through stepwise differentiation of
haematopoietic stem cells following a tree-like hierarchy of discrete multipotent, oligopo-
tent and then unipotent lineage-restricted progenitors (Figure 1A). The classical model of
haematopoiesis considers differentiation as a stepwise process of binary branching deci-
sions, famously represented as a potential landscape by Waddington (1957). However,
this model is based on bulk characterization of prospectively purified immunopheno-
typic cell populations. Recent advances in scRNA-Seq technologies now allow resolution of
single-cell heterogeneity and reconstruction of differentiation trajectories which have been
applied to a number of different cellular systems, from haematopoiesis to breast endothe-
lial cell differentiation (Bach et al., 2017; Hamey, Nestorowa, Wilson, & Göttgens, 2016;
Nestorowa et al., 2016; Velten et al., 2017).

Figure 1. (A) Classic representation of a linear hierarchy of discrete cell states, from long-term
haematopoietic stem cell (LT-HSC), short-term (ST)-HSC, multipotent progenitor (MPP) to commit-
ted common myeloid progenitor (CMP), pre-megakaryocyte/erythrocyte (Pre-Meg/E) and megakary-
ocyte–erythroid progenitor (MEP), pre-granulocyte/macrophage (Pre-GM), granulocyte–macrophage
progenitor (GMP), and lymphoid-primed MPP (LMPP), common lymphoid progenitor (CLP) cells,
on down to terminally differentiated cells such as erythrocytes (E) platelets (Plt), granulocytes (G)
macrophages (M), B and T-cells. (B) The classical view is contrasted with a nonlinear continuum rep-
resentation of haematopoietic cell differentiation states using diffusion map dimension reduction of
scRNA-Seq data (figure recreated from data available in Nestorowa et al., 2016). Colours representing
cell identities in (A) and (B) are coordinated. Cell types in (B) are a subset of cells represented in (A).
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These efforts have led to the new view that haematopoietic lineage differentiation occurs
as a continuous process, which can be mapped into a continuum of cellular and molecular
phenotypes (Figure 1B). Haematopoietic malignancies such as acute myeloid leukaemia
(AML) arise from dysregulated differentiation and proliferation of haematopoietic stem
cells and progenitor cells upon accumulation of oncogenic geneticmutations and/or epige-
netic alterations. Therefore, characterizing disordered haematopoiesis based on discretely
defined phenotypic populations can be challenging. Moreover, ‘discrete’ phenotypic cell
populations are in fact highly heterogeneous in terms of functional capacity and gene
expression profiles. It is now possible to view pathologic haematopoiesis through a contin-
uum of cellular and molecular phenotypes and capture the heterogeneity, differentiation
plasticity and dysregulated gene expression associated with malignant transformation.

This new view of biology forces us to reconsider the mathematical approaches we use to
model cell states and behaviours. Instead of building mathematical models which identify
discrete cell populations and assignmathematical rules for their evolution and interactions,
we may now consider a continuum of cellular states and model movement between these
states in aggregate as a flow ofmass on a structured graph.Modelling differentiation in this
manner reduces the number of parameters and thus the complexity of the mathematical
model by representing many cell populations and states in a single variable. At the same
time, this increases biological resolution of the system by characterizing an infinite number
of sub-states in a continuum representation. Here we consider a model of haematopoietic
cell differentiation and associated disorders as a flow and transport process in a continuous
differentiation space as a test system for amore general approach ofmodelling the temporal
evolution of a continuum of cell states.

This article is structured as follows: first, we review the state of the art of dimension
reduction methods that are used to construct and define haematopoietic differentiation
spaces that can be represented as graphs, including a review of Schienbinger et al.’s method
for modelling transport on a graph from reduced dimension gene expression data (2017).
Then we introduce our partial differential equation (PDE) model of flow and transport on
a graph, and illustrate the model on simple ‘Y’-shaped graph with symmetric and asym-
metric differentiation. We then calibrate our model to a graph constructed from publicly
available scRNA-Seq data of normal haematopoiesis. Finally, we use our model to simulate
abnormal haematopoietic cell differentiation processes observed during the pathogenesis
of AML, a form of aggressive hematologic malignancy. We conclude with a brief discus-
sion of prior literature on modelling differentiation as a continuum, and the limitations
and potential future applications of this modelling approach.

2. Construction of a differentiation continuum

In order to describe the entire modelling process, in this section, we briefly describe
methods for reducing the dimension of high-dimensional scRNA-data, before reviewing
pseudotime reconstruction techniques, and conclude this section by examining a tech-
nique from Schiebinger et al. (2017) for construction of a directed graph that represents
haematopoietic differentiation space.While the focus of this paper is not dimension reduc-
tion techniques or pseudotime reconstruction, we summarize some of these techniques
that aremost relevant to ourmodelling approach, without advocating for one over another.
We should emphasize that this is a review of already existing algorithms; the novel work
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begins in Section 3. The relationship between time and pseudotime within a mathematical
model of cell differentiation is analogous to the relationship between age-structured and
stage-structured models in ecology. Cell differentiation data yield information about cells
at various stages of differentiation, but generally do not provide time-specific data. A pseu-
dotime model is one that considers the differentiation stage of a cell population instead of
the time in which a cell is in a certain state.

In Figure 2, we lay out the steps required for going from high-dimensional data to
construction of the PDEmodel. Section 2.1 will review various dimension reduction tech-
niques, including a more thorough discussion of the technique used in our application,
diffusion mappings. Section 2.2 summarizes techniques such as Wishbone and Wander-
lust that are available for pseudotime reconstruction given dimension reduced data. Finally,
Section 2.3 will give an overview of the technique presented in Schiebinger et al. (2017) for
construction of a directed graph that indicates how cell populations evolve in pseudotime.

Figure 2. Flowchart of our modelling process: this chart organizes the steps taken toward constructing
the PDE model. First, high-dimensional data such as single-cell RNA-sequencing (scRNA-Seq) are repre-
sented in two- or three-dimensional space through one ofmany dimension reduction techniques. Then,
temporal events (pseudotime trajectories) are inferred from the dimension reduced data. We then use
the reduced dimension representation and pseudotime trajectories to model flow and transport in the
reduced space. Data is from Nestorowa et al. (2016).
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2.1. Dimension reduction techniques

A broad range of techniques have been developed to provide insight into interpretation
of high-dimensional biological data. These techniques provide a first step in our approach
to modelling the evolution of cell states in a continuum and play a critical role in charac-
terizing differentiation dynamics. We note that the application of different data reduction
techniques, clusteringmethods and pseudotime ordering on the same data set will produce
different differentiation spaces on which to build a dynamic model.We will use one partic-
ular dimension reduction approach as an example, but our framework allows one to select
from a variety of approaches. In this section, we provide a brief description of a subset of
such techniques to give the reader a sense of the field.

Several techniques have been developed to interpret the high-dimensional differ-
entiation space, including principal component analysis (PCA), diffusion maps and
t-distributed stochastic neighbour embedding (t-SNE). Each of these methods maps high-
dimensional data into a lower dimensional space. As discussed in this section, different
techniques produce different shapes and differentiation spaces, and so some techniques are
better suited to certain data sets than others. For instance, one commonly used dimension
reduction technique is PCA, a linear projection of the data. While PCA is computationally
simple to implement, the limitation of this approach lies in its linearity – the datawill always
be projected onto a linear subspace of the original measurement space. If the data show a
trend that does not lie in a linear subspace – for instance, if the data lie on an embedding of
a lower dimensional manifold in Euclidean space that is not a linear subspace – then this
trend will not be efficiently captured with PCA (Khalid, Khalil, & Nasreen, 2014).

In contrast, diffusion mapping and t-SNE , as well as a variant of t-SNE known as
hierarchical stochastic neighbour embedding (HSNE), are nonlinear dimension reduction
techniques. t-SNE, introduced by van der Maaten and Hinton (2008), is a machine learn-
ing dimension reduction technique that is particularly good at mapping high-dimensional
data into a two- or three-dimensional space, allowing for the data to be visualized in a
scatter plot.

Given a data set in R
n : X = {x1, x2, . . . xn}, we can transform the Euclidean distances

between two points into a probability distribution. Intuitively, this distribution gives the
probability that data point xj is a neighbour of point xi, where the probability of being a
neighbour of xi has a Gaussian distribution (van der Maaten & Hinton, 2008):

pj|i = e−(‖xi−xj‖2)/2σ 2∑
k�=i e−(‖xi−xk‖2)/2σ 2

. (1)

The t-SNE algorithm aims to find a map from the data set to two- or three-dimensional
Euclidean space that minimizes the Kullback–Leibler divergence between the probability
distributions in the original and reduced space. This optimization problem is often solved
using gradient descent methods.

In vanUnen et al. (2017), a new technique for examining high-dimensionalmass cytom-
etry data, known as HSNE is presented. Mass cytometry allows for the examination of
several cellular markers on samples made up of vast quantities of cells. These data sets are
truly ‘big’ in the sense that they are very large (a sample for each cell) as well has high-
dimensional. Therefore, pre-existing dimension reduction techniques are not optimal for
mass cytometry data. HSNE, as suggested by its name, is hierarchical by nature, allowing
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for refinement in the level of detail. HSNE ultimately constructs a hierarchy of subsets of
the dataset X:

X = L1 ⊃ L2 ⊃ · · · ⊃ Ln.

The hierarchy begins with the data set itself (X = L1). A weighted k-nearest neighbour
(kNN) graph is constructed on the data set, and individual points, or ‘landmarks’, are
selected from each node on the graph to represent the data set at the next, coarser, level,
L2. This process is repeated as desired. These subsets can each be embedded in lower
dimensional space. This hierarchical embedding scheme allows the user to view the data
at different resolutions, from a broad overview (levelLn) to a more refined understanding
of cell types associated with markers (intermediate levels). Starting with a certain subset
O ⊂ Ls, the user is able to ‘drill in’ to the data by selecting a subsetG ⊂ Ls−1. Thus, HSNE
is an approach that is useful for data that require different levels of detail at different scales.
An illuminating graphical representation of the HSNE process can be found in van Unen
et al. (2017) (Figure 1).

Diffusionmaps work by taking advantage of the relationship between heat diffusion and
random walk Markov chains. Let X be a data set of size n. The diffusion map algorithm
begins by considering a kernel function on pairs of data points; this function must be
symmetric and nonnegative. The Gaussian kernel

k(x, y) = e−
‖x−y‖2

ε

is one popular choice. Similar to the conditional probability defined in Equation (1), the
kernel k(x, y) is used to specify the probability of going from x to y in one step of a random
walk on the data, found by normalizing the kernel to ensure the randomwalk probabilities
integrate to 1:

p(x, y) = k(x, y)∑
y �=x k(x, y)

.

By letting the number of steps in this random walk go to infinity, we can consider the
stationary distribution pt of the Markov chain. This stationary distribution is used to
formulate a new metric on the data space, known as the diffusion distance:

d(xi, xj) =
∑
u∈X

|(pt(xi, u) − pt(xj, u)|2.

Intuitively speaking, the diffusion distance between two points will be low if there are
many paths in the random walk that connect them, and high if there are few. Because it
is computationally expensive to repeatedly compute the diffusion distance between each
pair of points, it is easier to map data points to a new Euclidean space using the function
φ : X → R

n defined as

φ(xi) =

⎡
⎢⎢⎢⎣
pt(xi, x1)
pt(xi, x2)

...
pt(xi, xn)

⎤
⎥⎥⎥⎦ .

The Euclidean distance in this space, known as the diffusion space, is then equivalent to the
diffusion distance in the data space. It can be demonstrated that the linearly independent
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eigenvectors of the diffusion matrix (the transition matrix associated with the aforemen-
tionedMarkov Chain) form a basis for the diffusion space. Therefore, by opting to keep the
k-eigenvectors corresponding to the k largest eigenvalues, we obtain a map from the orig-
inal data to a k-dimensional subspace of the diffusion space that most efficiently captures
the structure of the data; this map is called the diffusionmap. Amore in-depth explanation
can be found in Coifman et al. (2005).

Each of these dimension reduction methods has strengths and weaknesses depending
on the question(s) being asked of the data.Moreover, eachmethodwill produce a distinctly
different shape in the lower dimensional representation. Therefore, the choice of dimen-
sion reduction technique is a critical step in analysing any high-dimensional data set. For
the purpose of analysing cell transition probabilities and inferring trajectories within the
reduced space, Nestorowa et al. (2016) and others have chosen to use diffusion mapping to
analyse cell differentiation.

2.2. Pseudotime ordering of differentiation states

For data without temporal information, pseudotime methods are available to infer a
sequence of biological states from single time point data. Diffusion mapping can be
used to infer a ‘diffusion pseudotime’ (Haghverdi, Büttner, Wolf, Buettner, & Theis, 2016;
Nestorowa et al., 2016). In particular, Haghverdi et al. (2016) develop an efficient diffu-
sion pseudotime approach by rescaling the diffusion components by a weighted distance
in terms of the eigenvalues, derived by considering a randomwalk according to a transition
matrix that specifies the probability of transitioning from any single cell to another in an
infinitesimal amount of time. Alternative pseudotime approaches includeWishbone (Setty
et al., 2016) that uses shortest paths in a kNN graph constructed in diffusion component
space to construct an initial ordering of cells, TASIC (Rashid, Kotton, & Bar-Joseph, 2017)
that is able to incorporate time information and identify branches and incorporate time
information in single-cell expression data by considering it as developmental processes
emitting expression profiles from a finite number of states, and Monocle (Qiu, Hill,
et al. 2017; Qiu, Mao, et al. 2017) that fits a principal graph (Mao, Wang, Goodison,
& Sun, 2015) and uses a reversed graph embedding technique which simultaneously learns
a low-dimensional embedding of the data and a graphical structure spanning the dataset.

Finally, when the data are collected at multiple time points, the transition rates between
the nodes can be obtained after partitioning the cell data. For instance, Schiebinger
et al. (2017) employ graph clustering (Levine et al., 2015; Shekhar et al., 2016) and opti-
mal transport (OT) methods to understand the dynamics in the reduced space of cell data.
We describe the OT method in an effort to provide a clear distinction between the OT
algorithm and our modelling approach.

2.3. Optimal transport

Schiebinger et al. (2017) have proposed a model and algorithm for constructing a directed
graph oriented in pseudotime given temporal data. The OT algorithm itself is a classical
problem studied in the mathematical area of Transportation Theory, which aims to opti-
mally transport and allocate resources given certain cost functions. Schiebinger et al. (2017)
apply this theory to a time series of reduced dimension single-cell gene expression profiles.
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The time series is made up of a sequence of samples {S1, . . . , Sn}, at different times ti for
i ∈ {1, . . . , n}. Suppose that each sample consists of points in R

m. A distribution P̂ti is
defined by each sample Si. For each set A ⊂ R

m:

P̂ti(A) = 1
|Si|

∑
x∈Si

δx(A),

where δx represents a Delta Distribution centred at x:

δx(A) =
{
1 x ∈ A,
0 x /∈ A.

Together, as a sequence, these inferred distributions {P̂ti} formwhat is known as an ‘empir-
ical developmental process’. The goal is then to determine, as closely as possible, what
the true underlying Markov developmental process Pt is by examining what are known
as transport maps between pairs P̂ti−1 and P̂ti . A transport map for a pair (P̂ti−1 , P̂ti) is a
distribution π defined on R

m × R
m such that P̂ti−1 and P̂ti are the two marginal distribu-

tions of π . Thus, given a function c(x, y) that represents the cost to transport some unit
mass from x to y, the goal is to minimize∫∫

Rm×Rm
c(x, y)π(x, y) dx dy

subject to ∫
Rm

π(x, ·) dx = P̂ti−1 ,∫
Rm

π(·, y) dy = P̂ti .

Schienbinger et al. further refine this algorithm by including a growth term in their trans-
port plan to allow for cellular proliferation between time points. This differs from the
classical OT algorithm in that the classical OT algorithm is formulated with conserva-
tion of mass in mind. OT can thus be used to estimate the ancestors and descendants of a
set of cells. Cells are clustered using the Louvain-Jaccard community detection algorithm
on the reduced dimension gene expression data in 20-dimensional space. Schienbinger
et al. thus identified 33 cell nodes, which were then used as starting populations from
which developmental trajectories could be analysed. These can be thought of as nodes on
a graph visualized with force-directed layout embedding, and edges represent the motion
in pseudotime.

In the following section, we assume that the first two steps in Figure 2 have been com-
pleted by one of the methods described above. In other words, we start with samples in
high-dimensional space, we map the data to a lower dimensional space and then we pro-
duce pseudotime trajectories in this lower dimensional space. In the final step, we model
the differentiation process in continuous (pseudo)-time and (reduced-dimensional) space
using PDEs.



LETTERS IN BIOMATHEMATICS S77

3. Modelling on the differentiation continuum

To illustrate our modelling technique, we assume that we have constructed a simple
branched manifold or graph situated in the differentiation space. This graph is not a
set of discrete nodes, rather, the graph and its edges represent a continuum of canon-
ical states and intermediate states of differentiation. Assuming that the graph and the
temporal evolution on the graph is obtained by any one of the various data analysis
techniques summarized in Section 2 including OT (Schiebinger et al., 2017), diffusion
pseudotime methods (Haghverdi et al., 2016; Nestorowa et al., 2016), Wishbone (Setty
et al., 2016), TASIC (Rashid et al., 2017) and Monocle (Qiu, Hill, et al. 2017; Qiu, Mao,
et al. 2017), we develop a PDE model that describes the dynamics in this differentia-
tion continuum. Cell differentiation models in the continuous space have been developed
in Gwiazda, Grzegorz, and Marciniak-czochra (2012) and Doumic, Marciniak-Czochra,
Perthame, and Zubelli (2011) that extend the discrete multicompartment models (Lander,
Gokoffski, Wan, Nie, & Calof, 2009; Lo et al., 2008; Marciniak-Czochra, Stiehl, Ho, Jäger,
& Wagner, 2009; Stiehl & Marciniak-Czochra, 2011).

3.1. PDEmodel on a graph

Let us define the graph G obtained in the differentiation continuum space. We comment
that although we can consider a cell distribution on the actual reduced space, we further
reduce our model on a graph that makes it convenient to employ the biological insights
from the classical discrete models. The node set of G is denoted as {vk}nv

k=1, where nv is the
total number of nodes, and the edge of the graph connecting in the direction from the ith
to the jth node as eij. We also introduce an alternate description of the graph with respect
to the edge that is more convenient for describing the PDE model. If the total number of
nontrivial edges is ne, we take {ek}nek=1 with the index mapping I : J → {1, . . . , ne} on the
set of nontrivial edges (i, j) ∈ J , and the end points in the direction of cell transition as
{ak}nek=1 and {bk}nek=1, respectively. We remark that

⋃ne
k=1{ak, bk} = {vk}nv

k=1.
We denote u(x, t) as the cell distribution on the graphG at the differentiation continuum

space location x ∈ G and time (or pseudotime) t. Thus, we follow the dynamics of the
cell density at x ∈ G. We annotate the cell distribution on each edge ek as uk(x, t) such
that u(x, t) = {uk(x, t)}nek=1, andmodel the cell density by an advection–diffusion–reaction
equation (Evans, 2010) as

∂uk
∂t

= − ∂

∂x
(Vk(x)uk) + Rk(x)uk + Dk(x)

2wk(x)
∂

∂x

(
wk(x)

∂uk
∂x

)
, x ∈ ek = akbk, (2)

where x is a one-dimensional variable parameterized on each edge ek from ak to bk. The
advection coefficient Vk(x) models the cell differentiation and the transition between the
different cell types, that is, the nodes. The transition rate per unit time (e.g. day−1) or
pseudotime can be taken as Vk(x) computed using the periods of cell differentiation. For
instance,Vk(x) can be computed by smoothly interpolating the speed of cell differentiation
from the multicompartment discrete models as Vk(x) = VI(i,j)(x) = φ(ci, cj), where cn is
the differentiation rate of cell type vn and φ is an interpolation function.1

Cell proliferation and apoptosis can be modelled by the reaction coefficient Rk(x). Sim-
ilar to Vk, if only the proliferation at the discrete cell types are available, we interpolate as
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Rk(x) = RI(i,j)(x) = φ(ri, rj), where rn is the growth rate at node vn. In addition to natural
proliferation and apoptosis, this term can also model abnormal tumorous cell growth or
the effect of targeted therapy by localized Gaussian or Dirac-delta functions centred at the
location of the corresponding cell type on the graph.

The diffusion term represents the instability on the phenotypic landscape of the cells
that should be taken account into when modelling the macroscopic cell density. In par-
ticular, we consider the diffusion term in Equation (2) in such form that is appropriate to
model the dynamics on a graph that is reduced from a higher dimensional narrow domain.
It involves two parameters Dk(x) and wk(x) describing the magnitude of cell fluctuation
and the width of the narrow domain around the edge, respectively. Considering the pheno-
typic fluctuation of the cell density as a random process subject to Brownian motion with
magnitude σ , the diffusion term becomesDk = σ 2 andwk = 1 (Evans, 2010). In addition,
the width or the area of the cross section of the narrow domain that is vertical to the pro-
jecting edge can be taken as wk(x), which is called Fick-Jacobs equation for deterministic
PDEs (Valdes & Guzman, 2014; Zwanzig, 1992) and can be similarly derived for stochastic
PDEs (Cerrai & Freidlin, 2017; Freidlin & Hu, 2013). wk(x) can be measured as the length
of maximal fluctuation in the vertical direction along the graph.

In addition to the governing equation on the edges, the boundary condition at the
nodes are critical when describing the dynamics on the graph. The boundary condition
on the cell fate PDE model can be classified into three types, the initial nodes that do not
have inflowNI

.= {vk /∈ ⋃ne
j=1{bj}, k=1,...,nv

}, e.g. stem cells, the final nodes without outflow
NF

.= {vk /∈ ⋃ne
j=1{aj}, k=1,...,nv

}, e.g. the most differentiated cells, and the intermediate
nodes,

NT
.=

⎡
⎣ ne⋃

j=1
{aj}

⎤
⎦ ⋂ ⎡

⎣ ne⋃
j=1

{bj}
⎤
⎦ .

On the intermediate nodes vn ∈ NT , mixed boundary conditions can be imposed to
balance the cell inflow and outflow as∑

(i,n)∈J
BI[i,n](u, bI[i,n]) =

∑
(n,j)∈J

BI[n,j](u, aI[n,j]), (3)

where BI[i,j](u, x)
.= VI[i,j](x)u(x) − DI[i,j](x)(∂/∂x)wI[i,j]u(x)|xI[i,j] , and bI[i,n] is the right

end point of the edge between nodes i and n. Similarly, aI[n,j] is the left end point of the edge
between nodes n and j. In addition, continuity conditions are taken as Dirichlet boundary
conditions as follows:

u(bI[i,n]) = u(aI[n,j]), for all (i, n) ∈ J , (n, j) ∈ J ,

for a fixed n. The cell outflow boundary conditions on the final nodes vn ∈ NF are imposed
as reflecting boundary conditions∑

(i,n)∈J
BI[i,n](u, bI[i,n]) = 0,

and u(bI[i,n]) = u(bI[j,n]) for all (i, n) and (j, n) in J . Similarly this can be imposed on the
initial nodes vn ∈ NI as (∂/∂x)u(aI[n,j]) = αn, (n, j) ∈ J or u(aI[n,j]) = αn, (n, j) ∈ J ,
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Figure 3. We use a simple ‘Y’-shaped graph to illustrate our model. (A) The graph is defined by four
nodes {vk}4k=1 and three edges e1 = eI(1,2), e2 = eI(2,3) and e3 = eI(2,4) within two components of a dif-
fusion map (DC1, DC2). The transfer rate from v2 to v3 and v4 is taken to be proportional to 1−p and p,
respectively. (B) The evolution of the cell density solution from the initial condition (t= 0) concentrated
at the left end, DC1 = −1, to a density concentrated at the right end, DC1 = 1, at t= 15. In the sym-
metric case, p= 0.5, the two branches evolve in the same way; (C) in the asymmetric case, p= 0.25, the
cell density is larger at t= 15 on the upper branch, shown in blue dashed line, compared to the lower
branch, shown in red dash-dotted line. (Color online).

depending on whether the model describes the cell inflow flux or a prescribed density.
In particular, the prescribed value when u(aI[n,j]) represents the density of stem cells, one
can model the discrete stem cell state as a separate ordinary differential equation (ODE)
and impose its solution as the boundary condition at aI[n,j] (Doumic et al., 2011; Gwiazda
et al., 2012). This approach makes it possible to distinguish stem cell proliferation into the
division that remains as stem cell and the one that differentiates to a matured cell.

3.1.1. Example on a Y-shaped graph
To illustrate our approach, we apply the PDE model given in Equation (2) to a simple
Y-shaped graph. This example is motivated by cell differentiation data that reveal multi-
ple branching procedures in the continuous space (Haghverdi, Buettner, & Theis, 2015;
Moris, Pina, & Arias, 2016; Rizvi et al., 2017; Velten et al., 2017), therefore we assume the
simplest case that the differentiated cells have two different cell fates with one branching.
For instance, assume that the cell data projected onto the first two diffusion components,
DC1 and DC2, are as in Figure 3A and the temporal direction of cell differentiation is
from left to right, as indicated by the arrows in the Figure. We define the Y-shaped graph
with four nodes v1 = (−1, 0), v2 = (0, 0), v3 = (1, 1) and v4 = (1,−1), and three edges
e1 = eI(1,2)= v1v2, e2= eI(2,3)= v2v3 and e3= eI(2,4)= v2v4. This corresponds to the set
of nontrivial edges J = {(1, 2), (2, 3), (2, 4)} and index mapping I on J as I(1, 2) = 1,
I(2, 3) = 2 and I(2, 4) = 3 that yields the end points of the edges ak and bk as v1 = a1,
v2 = b1 = a2 = a3, v3 = b2 and v4 = b3. For simplicity, we assume that the edges are
straight lines and parameterize the variables on each edge as e1(x) = (x − 1, 0), e2(x) =
(x, x) and e3(x) = (x,−x), so that x ∈ [0, 1]. When there is possibility for confusion, we
use subscripts on the x-variables to specify which edge is parameterized. So, for example,
x2 parameterizes e2. Then, the PDE model on each parameterized edge ek can be written
as

∂uk(x)
∂t

= −Vk(x)
∂uk(x)

∂x
+ Dk

2wk

∂

∂x

(
wk

∂uk(x)
∂x

)
x ∈ ek, k=1,2,3. (4)
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We consider the case that the cells transfer from v1 to v2 in nT = 5 unit time, dif-
ferentiate into each cell type with proportion p and 1−p, and accumulate at DC1 = 1,
where the cells are fully differentiated.2 Here, we simplify the differentiation rate to be
constants assuming that the single branching Y graph lies locally and close enough in the
differentiation space that the differentiation rate does not change. Then,

V1(x) = 1
nT

, V2(x) = 1 − p
nT

(1 − x2), V3(x) = p
nT

(1 − x2), (5)

where V2 and V3 reflect the accumulation at cell types v3 and v4 (x=1). Also, we assume
that the differentiation process is subject to fluctuations such as trans-differentiation (cross-
lineage) and de-differentiation (stem state reversion) that is modelled as Brownian motion
with a constant variance σ so that Dk = σ 2 = 0.02. Also, the maximal fluctuation in the
vertical direction of the edge is assumed to be a constant that is independent of x and
w1 = 2w2 = 2w3 so that the fluctuation in the vertical direction reduces by half in e2 and
e3. wk cancels out in the diffusion term in Equation (4). Figure 3 plots the two examples of
symmetric differentiation p=0.5 and asymmetric differentiation p=0.25.

In this example, to demonstrate our model focusing on the cell differentiation and
branching, we assume that the proliferation is zero asRk = 0 (see Appendix for the detail of
modelling Rk). The boundary type of the nodes are classified, according to our description
above, as NI = {v1}, NT = {v2} and NF = {v3, v4}. Thus, we impose the gluing boundary
condition, as in Equation (3) at v2, as

−V1(b1)u(b1) + Dw1
∂

∂x
u1(b1) =

2∑
k=1

(
−Vk(ak)uk(ak) + Dwk

∂

∂x
uk(ak)

)
,

with continuity conditions u1(b1) = u2(a2) = u3(a3). In addition, an inflow bound-
ary condition is imposed at v1, and reflecting boundary conditions at the end nodes
v3 and v4 as u1(a1, t) = (1/

√
0.08π) exp[−(−(1/nT)t)2/0.08], ∂u2(b2)/∂x2 = 0 and

∂u3(b3)/∂x3 = 0. The Dirichlet condition of u1(a1, t) is given to resemble the transition
of a certain cell state to fully differentiated cells from the initial distribution

u1(x, t = 0) = 1√
0.08π

exp
[
− x2

0.08

]
,

ui(x, t = 0) = 1√
0.08π

exp
[
− (x + 1)2

0.08

]
, i = 2, 3.

Simulations of this simple model are shown in Figure 4, where densities on edges e2
and e3 are plotted in different colours. We see that an initial cell distribution concentrated
near the cell state v1 moves to the right as the cells differentiate, branches at v2 and becomes
absorbed at the fully differentiated cell states v3 and v4. In the symmetric case, when p=0.5,
the density is the same on each of the two branches to the right of v2, so that the two
curves are plotted on top of each other.When p=0.25, the density profile is not symmetric:
more cells move along the upper branch than on the lower branch. This provides a simple
illustration of the mathematical details of our modelling framework, which we apply to
more complicated graph structure derived from data as follows.
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4. Simulation results

In this section, we employ the framework developed in Section 3.1 to mouse haematopoi-
etic stem and progenitor cell (HSPC) data in Nestorowa et al. (2016). See Appendix for
details, including the model parameters and simulation codes.

4.1. Model of normal adult haematopoiesis

To calibrate our model, we first apply it to normal haematopoietic cell differentiation
trajectories identified in Nestorowa et al. (2016). Nestorowa et al. characterize early
stages in haematopoiesis with 12 cell types, shown in Table 1 and Figure 4, including E-
SLAM (CD48−CD150 +CD45+EPCR+), long-term HSCs (LT-HSCs), short-term HSCs
(ST-HSCs), lymphoid-primed multipotent progenitors (LMPPs), multipotent progeni-
tors (MPPs),megakaryocyte–erythroid progenitors (MEPs), commonmyeloid progenitors
(CMPs), and granulocyte–macrophage progenitors (GMPs). We consider these 12 cell
types as the 12 nodes, vk, in our graph, and add 51 edges to model the haematopoietic

Table 1. Index of cell identities and labels.

Cell identities and labels

ID Cell type ID Cell type

1 E-SLAM 7 MPP2
2 L-S+K+ CD34− 8 MPP3

Flk2+ CD48− CD150+
3 LT-HSC 9 LMPP
4 MPP 10 CMP
5 ST-HSC 11 MEP
6 MPP1 12 GMP

Notes: LT-HSC, ST-HSC: long- and short-termhaematopoietic stem cells;MPP:multipotent potent
progenitors, lymphoid-primed multipotent progenitors; CMP: common myeloid progenitors;
MEP: megakaryocyte–erythroid progenitors; GMP: granulocyte–macrophage progenitors.

Figure 4. (A) For the 12 cell types identified in Nestorowa et al. (2016), the centre of mass of each cell
type is used to define a node on an abstracted graph. (B) Edges between nodes are constructed based
on inferred trajectories on the graph based on diffusion pseudotimes starting from nodes 1–3 to nodes
4–8, then to the progenitor nodes 9–12. The graph represents a continuum of cell states (edges) that
includes identification of canonical cell states along the continuum (nodes 1–12) (Table 1).
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Figure 5. (A) The cell data coloured by pseudotime analysis produced by the Wanderlust algorithm
applied to data mapped to diffusion space in Nestorowa et al. (2016). The initial point in pseudotime
is taken from the HSC cells and the final pseudotime from the progenitor cells. (B) Cell distribution com-
puted by the PDE model on the graph from t= 0 to t= 5. The cells flow from E-SLAM and LT-HSC nodes
on the right to the LMPP, CMP,MEP andGMPnodes on the other three ends (bottom, top and left), follow-
ing the pseudotime trajectories identified in (A). (C) Comparison of the cell type distribution computed
by the PDE model described in Equation (2) and the reference data from Nestorowa et al. (2016). The
reference distribution (Nestorowa et al.) is computed by clustering the initial, middle and final pseudo-
time cells from (A) into 12 cell nodes. By considering t= 4 as the final pseudotime in the PDEmodel, the
values of the solution at the nodes agree well with the reference data.

cell hierarchy (see Figure 1A) and pseudotime computed in Nestorowa et al. (2016) (see
Figure 5A). This graph represents a continuum of canonical and intermediate states of
haematopoietic differentiation with nodes and edges, respectively. The spatial variable in
our PDE model represents the differentiation state of the cell.

The coloured and labelled clustered cell data and the corresponding graph are shown in
Figure 2. The location of the nodes on the graph is not chosen to be identical to the data,
but for an illustrative purpose to represent DC2 and DC1/DC3. The edges are chosen
according to the pseudotime progression from the E-SLAM and HSCs (nodes 1–3) to the
progenitor cells (nodes 9–12).

The parameters of the PDE model of cell differentiation under normal conditions are
chosen to reproduce the distribution of cell types from Nestorowa et al. (2016) at the ini-
tial and final pseudotime (Figure 5C). Considering the data in Nestorowa et al. (2016)
grouped by sorting gate of LT-HSC, HSPC, and progenitor cells, we denote the subsets of
nodes that are representative of each group as I1 = {1, 2, 3} for HSC, I2 = {4, . . . , 8} for
HSPC and I3 = {9, . . . , 12} for progenitor cells, where we also takeNI = I1,NT = I2 and
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NF = I3. The reference distribution is computed by counting the relative number of cells
in each cluster at the initial and final pseudotime. The initial and final cell distribution is
concentrated on nodes 1–3 of I1 and 9–12 of I3, respectively.

The distribution of cells in the remaining states, represented by nodes 4–8 of I2, goes
from 0 at time t=0 to positive at time t=2, and reduces at t=4.We remark that the ratios
of the number of cells in each node are used to compute the advection coefficients Vk in
Equation (A3), where we take the drift VI[i,j] from cell type i to another cell type j to be
proportional to the ratio plotted in Figure 5C. For instance, the outflow from v5 to nodes
9–12 is taken to be proportional to the reference distribution at pseudotime t=4. With
the ratios fixed, we assume a constant parameter that represents the differentiation rate
on each node, and find the values that reproduce the given cell data by simple root-finding
algorithms such as the secantmethod. The range of the values are 0 ≤ Vk ≤ 3. The detailed
procedure is explained in Appendix.

The diffusion coefficient is taken as Dk = DI(i,j) = 10−2 within either subsets of nodes
i, j ∈ I1 or i, j ∈ I3, and Dk = 10−3 on the other edges. The magnitude Dk = 10−2 cor-
responds to the phenotypic fluctuation of 2.5456 × 10−2 in the diffusion space and Dk =
10−3 takes into account of the increased average distance between the nodes that yields
smaller diffusion coefficient due to relatively smaller fluctuation. We assume that the pro-
liferation of the progenitor cell nodes are a constant as rn = 1.3648 at t ≤ 2 and rn = 0.4
at t>2 for n ∈ I2 ∪ I3, where the proliferation rate reflects the increment of cell num-
ber from HSCs to progenitor cells in the data. Also, the proliferation at the HSC nodes is
assumed to be negligible compared to progenitor cells as rn = rn∈I2∪I3 × 10−2 for n ∈ I1
(Passegué, Wagers, Giuriato, Anderson, & Weissman, 2005). See Appendix for the model
parameters and detailed discussion.

For the implementation, we discretize the system using a fourth-order finite difference
method and 100 grid points on each edge, and a third-order Runge–Kutta method in time
with time step 10−4. Figure 5C compares the solution to the PDE in the normal condition to
the reference distribution. The initial condition of the PDE is taken as the initial reference
distribution, and we compute the solution up to time t=5. The solution at t=4 is similar
to the reference distribution at final pseudotime. Also, the solution at t=2 is close to the
distribution of the remaining cells excluding the initial and final cells. Figure 5B shows the
cell distribution on the graph from time t=0 to t=5.We observe that the cell density shifts
from the initial nodes 1–3 representing HSCs, to nodes 9–12 representing progenitor cells.

4.2. Acutemyeloid leukaemia

AML results from aberrant differentiation and proliferation of transformed leukaemia-
initiating cells and abnormal progenitor cells. Parallel to the hierarchy of normal
haematopoiesis, malignant haematopoiesis has also been considered to follow a hierar-
chy of cells at various differentiation states although with certain levels of plasticity (see
Figure 6). Given the aberrant differentiation and plasticity associated with the pathol-
ogy of AML, modelling in a continuous differentiation space offers the advantage over
discrete models that all pathological and intermediate cell states can be captured. With
our model calibrated to data obtained from normal haematopoietic differentiation tra-
jectories, we now model the progression of AML using a genetic knock-in mouse model
that recapitulates somatic acquisition of a chromosomal rearrangement, inv(16)(p13q22)
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Figure 6. (A) AML is a cancer of aberrant differentiation and proliferation of haematopoietic progenitor
cells. Previous studies demonstrated that expression of inv(16) leukaemogenic fusion protein CBFβ-
SMMHC results differentiation block at multiple haematopoetic stages along with the expansion of
preleukaemic stem/progenitor cells and abnormal myeloid progenitors, including CMP, Pre-Meg/E and
MEP. These preleukaemic stem/progenitor cells and abnormal myeloid progenitors are susceptible to
malignant transformation into leukaemia-initiating cells that drive and sustain AML pathogenesis. (B)
Schematic illustration of AML pathogenesis in the differentiation continuum. To simulate inv(16)-driven
AML, the proliferation Rk(x) connecting the nodes 3, 5 and 11 is increased and the flow toward the node
11, Vk(x) and Dk(x) for k = I(i, 11) is blocked.

(Liu et al., 1993,9), commonly found in approximately 12 % of AML cases. Inv(16)
rearrangement results in expression of a leukaemogenic fusion protein CBFβ-SMMHC,
which impairs differentiation ofmultiple haematopoietic lineages at various stages (Castilla
et al., 1999; Kuo, Gerstein, & Castilla, 2008; Kuo et al., 2006).

Our previous studies using the inv(16) AML mouse model demonstrate that expres-
sion of CBFβ-SMMHC leukaemogenic fusion protein results in expansion of preleukaemic
haematopoietic stem and progenitor populations susceptible to transformation into
leukaemia-initiating cells which can initiate and propagate AML. Most notable was the
increase in abnormal myeloid progenitors, which had an MEP-like immunophenotype
and a CMP-like differentiation potential (Kuo et al., 2006). Further separation of MEPs
with additional phenotypic markers (Pronk et al., 2007) show a predominant increase
in pre-megakaryocyte/erythroid (Pre-Meg/E) population (ranging from 5 to 12 fold)
accompanied by impaired erythroid lineage differentiation (Figure 6A) (Cai et al., 2016).
This refined phenotypic Pre-Meg/E population consists partly of the CMP and MEP
populations using conventional markers (Akashi, Traver, Miyamoto, & Weissman, 2000;
Nestorowa et al., 2016).

The simulation of inv(16)-initiated AML pathogenesis is motivated by our previous
observations that AML is preceded by expansion of preleukaemic myeloid progenitor
cells, particularly the Pre-Meg/E and MEP-like populations with impaired differentiation.
These abnormal progenitors are predisposed to subsequent cooperating events necessary
to transform to overt AML (Cai et al., 2016; Castilla et al., 1999; Kuo et al., 2006). To
simulate AML pathogenesis, we increase the proliferation rate of MEP (node 11) by 10
times, that is, rI[i,11] = 10rnormal, to reflect the abnormal expansion ofMEP-like cells (rang-
ing from 5 to 12 fold based on previous data) (Cai et al., 2016; Kuo et al., 2006). Here,
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rnormal is the value that is used in the normal condition in Section 3.1. Thus, the pro-
liferation is assumed to be maximal at the MEP node, Rk(v11) and the proliferation of
intermediate cells that are phenotypically close to MEP, that is, RI[i,11](x) near x = v11,
also increase. Also, the flow to the MEP is blocked by taking zero advection coefficient
on the edge that is connected to v11, i.e. VI(i,11)(x) = 0. We also lower diffusion by 10 as
DI(i,11)(x) = Dnormal/10 to model the phenotypic fluctuations and imperfect differentia-
tion block involved in AML pathogenesis. The differentiation block is imperfect because
there is a continuum of leukaemic cell phenotypes (states).

In addition, the proliferation rate of LT-HSC and ST-HSC (nodes 3 and 5), that is, r3
and r5, is increased by 2.5 times as 2.5rnormal (Figure 6B). We model the induction of the
leukaemogenic fusion protein CBFβ-SMMHC resulting from the chromosome inversion
inv(16) (p13q22) as the ‘start of AML’. In this murine model of AML, inv(16) is the initial
founder event that results in differentiation block and expansion of abnormal progenitors,
which are predisposed to subsequent cooperating events necessary to transform to overt
AML (Cai et al., 2016; Castilla et al., 1999; Kuo et al., 2006). The approach used here directly
models the sequence of events observed during leukaemia initiation. Finally, we denote
tAML as the effective time that the aforementioned 10-fold proliferation change in MEP
and other abnormal differentiation and proliferations due to AML are observed. The other
parameters except the ones described in this section follow the ones from Section 4.1.

Figure 7 shows the total number of cells in each cell type in the normal and AML con-
ditions starting at t=4. In the normal condition, the CMP,MEP and LMPP cells dominate
the population after t ≥ 4. However, in the AML case, the MEP cells increase up to 100
times of the normal condition after a single psuedotime and dominate the population.
Figure 7C plots the number of cells in each cell type separately, where we can observe the
increasing number of cells not only in MEP, but also in the intermediate cell types, 4–8.
Figure 8 compares the cell distribution on the graph between the normal and the AML
case. In the AML case, the peak is shown on the edges near MEP cells.

The continuum of intermediate cell types, represented as numbers of cells along the
edges of the graph are plotted in Figure 9. The cell distribution in the normal case at t=1
and t=3 shows the cell population moving on the edges from HSCs to progenitors states.
Under normal haematopoiesis, we observe the flow of cells along the continuum from a
stem cell like state to a progenitor state, with an even distribution of all types of progenitor
cells. However in the AML case, we predict the emergence of novel intermediate cell types,
including a mixed CMP-MPP3 and CMP–MEP cell type. These indeterminate cells may
exhibit phenotypic and/or functional properties of both cell types on either side of the
edge (node i and/or node j). This cell state may be unstable, phenotypically plastic, may be
in an abnormal state or process of differentiation, or perhaps even undergoing a selection
pressure to induce transformation. Of note, this prediction of amixed CMP–MEP cell type
echoes the biological observation that abnormal myeloid progenitors seen during AML
progression exhibit an MEP-like immunophenotype with a CMP-like functional readout
(Kuo et al., 2006). This mixed identity/functionality coincides with a strong differentiation
block toward erythrocyte and megakaryocytes (Cai et al., 2016).

This highlights the advantage of modelling pathologic conditions in a continuum of cell
states as the phenotypic properties and the differentiation processes are often abnormal
during pathogenesis. This approach also circumvents the limitations of varying pheno-
typic definitions used in different studies in the literature (e.g. MEP vs. Pre-Meg/E) and the



S86 H. CHO ET AL.

Figure 7. Total number of cells in each node up to t= 7 in (A) normal condition and (B) AML pathogen-
esis. The AML simulation started at t= 4. Compared to the normal case, cells in MEP, LT-HSC and ST-HSC
increase as well as other cell types. (C) compares the number of cells between the normal and the AML
case for each cell type individually.

varying degree of heterogeneity within phenotypically defined cell populations in health
and in disease.

We also simulated AML starting at different time points from t=1 to t=6. Since our
initial condition assumes that the cells have not yet developed to MEP, the total number
of cells is maximized when the AML occurs after a critical amount of cells have differ-
entiated into an MEP state. Figure 10 shows the results of model simulations, where we
observe that the number of cells is maximal at later times when AML is started at t=3.
From these simulations, we infer that the short- and long-term evolution of AML may
depend on the state and composition of the haematopoietic landscape at the time of AML
initiation.
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Figure 8. The cell distribution on the graph in a log10 scale, comparing the normal and AML conditions
at t= 7. The AML condition shows increased density on the edges near the MEP state (node 11) at t= 7.

5. Discussion

We present a mathematical model of movement in an abstract space representing states
of cellular differentiation. We represent trajectories in the differentiation space as a graph
and model directed and randommovement on the graph with PDEs. We demonstrate our
modelling approach on a simple graph and then apply our model to haematopoiesis with
publicly available scRNA-Seq data. We calibrate the PDEmodel to pseudotime trajectories
in the diffusion map space and use the model to predict the early stages of pathogenesis of
AML.

A more traditional approach for modelling the process of cell differentiation is to use a
discrete collection of ODEs that describe dynamics of cells at n different maturation stages
and the transition between those stages (cf. Lander et al., 2009; Lo et al., 2008; Marciniak-
Czochra et al., 2009; Stiehl & Marciniak-Czochra, 2011). These discrete models are also
referred to as ‘multicompartmental models’, and are based on the biological assumption
that in each lineage of cell precursors there are discrete steps in thematuration process that
are followed sequentially (cf. Lord, 1997; Uchida, Fleming, Alpern, & Weissman, 1993).

This view of the differentiation process being discrete does not capture biological obser-
vations that indicate that cell differentiation is more likely a continuous process, and that
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Figure 9. The continuum of cell states can be visualized as the density of cells along the 51 edges of the
graph (rows) connecting node i (left) to node j (right) for all nodes i,j. Cell distribution (log10 scale) on
the edge comparing the normal condition and AML. In addition to an accumulation of MEP cells, novel
intermediate cell states emerge resulting from the differentiation block and increased proliferation rate
resulting fromAML. Thesenovel cell states are indicatedwithwhite arrowsandgenerally fall between the
CMP,MPPandMEPcanonical cell states. Thepresentededges in thefirst row (t < 4) are lexicographically
ordered with respect to the left end (an) to visualize which nodes are the differentiating cells departing
from and with respect to the right end (bn) in the second row (t > 4) to visualize which nodes are the
arriving cells differentiated into.

Figure 10. (A) Cell distribution on the graph at t= 7 for AML occurring at different times, tAML = 1, 2,
4 and 6. MEP (11) blows up when AML occurs after t ≥ 2. The dominating intermediate cells are also
distinct. (B) Relative total number of cells when AML occurs at tAML = 1 to tAML = 6 compared to the
normal case (dashed line) up to time t= 7. The total number of cells is maximized when AML occurs at
tAML = 3.
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maturation may, in fact, even be decoupled from cell division (cf. Dontu, Al-Hajj, Abdal-
lah, Clarke, &Wicha, 2003; Doumic et al., 2011). A number of mathematical models have
been created that aim to capture the continuous process of cell differentiation (Adimy,
Crauste, & Ruan, 2005; Alarcon, Getto, Marciniak-Czochra, & Vivanco, 2011; Bélair,
Mackey, & Mahaffy, 1995; Colijn & Mackey, 2005; Doumic et al., 2011; Doumic-Jauffret,
Kim, & Perthame, 2010; Gwiazda et al., 2012; Pujo-Menjouet, Crauste, & Adimy, 2004).

For example, in Doumic et al. (2011), the authors present a model of cell differentia-
tion that assumes that the dynamics of differentiated precursors can be approximated by a
continuous maturation model. The model is created by extending the multicompartment
discrete system of Marciniak-Czochra et al. (2009). The authors provide a careful compar-
ison that shows that the continuous structured population model is not a mathematical
limit of the discrete multicompartment model. In particular, the dynamics of the continu-
ousmodel allow commitment andmaturation of cell progenitors to be a continuous process
that can take place between cell divisions. They do show, however, that there is overlap in
model dynamics with a particular choice of maturation rate. In Gwiazda et al. (2012), the
authors subsequently developed a continuous model that can be viewed as a generaliza-
tion that admits both the continuous model of Doumic et al. (2011) and the discrete model
of Marciniak-Czochra et al. (2009) as special cases. In Prokharau, Vermolen, and García-
Aznar (2014), the authors develop a PDE-based continuous model of cell differentiation
that allows cells to differentiate into an arbitrary number of cell types. A particular differ-
entiation trajectory can be determined by any number of parameters, such as biochemical
factors, the current differentiation state or just by a random variable, so their approach
allows differentiation to be either a deterministic or a stochastic process.

The modelling approach we present differs from previous cell differentiation models in
that it is centred on capturing cell differentiation dynamics that take place within a space
that has been created via a dimension reduction transformation of high-dimensional data.
Within that reduced space, our model assumes that maturation and differentiation take
place along a continuous trajectory. (The dimension reduction outcomes on the data sets
we tested indicate that the trajectory will, in fact, be continuous.) Cells can differentiate
along an arbitrary number of paths with an arbitrary number of end states, all of which
are determined by the data set and dimension reduction technique employed. Thus, the
reduced differentiation space is not predetermined, but is generated as a function of the
dimension reduction technique and the data set of interest.

Although methods exist to characterize differentiation trajectories, such as OT
(Schiebinger et al., 2017) and diffusion pseudotime methods (Haghverdi et al., 2016), an
advantage of our approach is the ability to use a mathematical model to predict the out-
comes of abnormal trajectories and to perturb the system mathematically with the model.
We use this advantage of the mathematical model to simulate and explore AML patho-
genesis based on immunophenotypic characterization of a mouse model for inv(16) AML.
Our simulation results are consistent with the evolution of inv(16)-driven AML and pre-
dict dynamics in canonical cell populations as well as cells in novel, intermediate states
of differentiation. The intermediate cell states such as CMP–MEP seen in our simulation
is consistent with previous observations that CBFβ-SMMHC expressing phenotypic MEP
cells confer CMP-like progenitor cell activity (Kuo et al., 2006). Given the phenotypic plas-
ticity and aberrant differentiation occurring during leukaemia evolution, it is particularly
informative to model cell dynamics in a continuum of differentiation space.
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The novelty and power of this modelling approach is the ability to capture and predict
dynamics of many interconnected cell types. We now consider a continuum of cellular
states, and model movement between these states in aggregate by representing many cell
populations and states in a single variable. This approach increases biological resolution of
the system by characterizing an infinite number of sub-states in a continuum representa-
tion and allows us to make predictions with one equation and very few model parameters,
which can be directly calibrated to experimental data, for example, with time-series cell
differentiation experiments. These data could be used in place of the inferred pseudo-
time methods to construct more realistic differentiation trajectories, as well as estimate
parameters such as the transport rates between locations in the differentiation space. We
note that this is not equivalent to rates of cellular differentiation, since this allows infer-
ence of transition between intermediate states of differentiation which may not be directly
calculated from differentiation assays which rely on specific lineage markers.

A limitation of our approach is that it does not include physical properties of the living
biological system, such as the cellular microenvironment, which is known to play a crit-
ical role in the transformation of cell state and function. Furthermore, we recognize and
acknowledge that cellular state transition dynamics as represented as a projection in a low-
dimensional space is an approximation of the dynamics in the original high-dimensional
space. Moreover, the dynamics observed and predicted in the lower dimensional space
critically depend on the method of dimension reduction. This logic motivates our use of
diffusion maps as the method to construct the differentiation space.

In addition, our current model assumes that the cell properties of the intermediate cell
types change linearly between the node cell types. Although it is reasonable to assume that
the overall cell properties in the macro scale changes linearly depending on the distance
in the phenotypic space when no other information in between is given, our future work
involves using the expression levels of the intermediate cells that are related to cell dynam-
ics, e.g. cell cycle, differentiation and proliferation, to developmore appropriate models for
the intermediate cells. A limitation of the Nestorowa et al. (2016) data set is that it includes
only stem and committed progenitor cells, and lacks a population of fully differentiated
cells (e.g. erythrocytes, platelets, B-cells, T-cells, etc.), which yields an incomplete differ-
entiation trajectory. Although we note that the stem and progenitor cell populations are
the leukaemia-initiating cell populations most immediately relevant to the pathogenesis of
inv(16)-driven AML (Cai et al., 2016). Data sets covering the full spectrum of differentia-
tion trajectory during normal and abnormal (AML) haematopoiesis will enable modelling
of differentiation blocks occurring at later stages of differentiation.

However, despite these limitations, we contend that this kind of analysis is a critical and
valuable first step toward understanding the evolution of the higher dimensional system,
and that low-dimensional approximations have value, particularly when predictions in the
lower dimensional space can be experimentally validated. We postulate that when dynam-
ics in low-dimensional representations are sufficiently characterized, they may eventually
be used as a surrogate for high-dimensional data, thus reverting the trend of ‘big data’ back
down to more informative ‘small data’.

We note that our modelling approach can be applied to any data set or manifold shape.
As more normal and abnormal cellular state transitions are characterized at single-cell
resolution, we may apply similar computational and modelling methods to those sys-
tems. We emphasize our modelling approach is general and is not tailored or adapted to
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haematopoiesis in particular. Future applications of this approach may be useful to model
the effects of therapies which target specific states of differentiation or the differentiation
process itself, including other hematologic malignancies.

Notes

1. The interpolation function can be taken, for instance, as a linear function φ(ci, cj) = (cj −
ci)(x − ak)/(bk − ak) + ci, where k = I(i, j). This assumes that the cell property changes lin-
early in terms of the distance in the diffusion component space (Doumic et al., 2011; Gwiazda
et al., 2012). In addition, the values of VI(n,j)(x) near x = vn will take into account of the ratio
of cells that branch out to different cell types vj, while the values of VI(i,n)(x) consider the ratio
of cells that are flowing in from different cell types vi.

2. Using the notation in Appendix, γ3 = p and γ4 = 1 − p.
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Appendix. Model and parameters

Here we present the PDEmodel and parameter calculations used to produce the results presented in
Section 4. MATLAB files used to generate the figures and results can be downloaded from https://
github.com/heyrim/Modeling-acute-myeloid-leukemia-in-a-continuum-of-differentiation-states.
The cell distribution u(x, t) is computed on the graph G as

∂uk
∂t

= − ∂

∂x
(Vk(x)uk) + Rk(x)uk + Dk(x)

2
∂2uk
∂x2

, x ∈ ek, k=1,...,51, (A1)

where uk is the solution projected on the edge ek as uk(x, t)
.= u(x, t)|x∈ek and {ek}51k=1 are the 51

edges connecting the 12 nodes {vn}12n=1 as in Figure 2B. We assume that the edges are unit length
as ek = [ak, bk] = [0, 1] and find the coefficients in Equation (A1) that are scaled to the unit length
edge.

The total number of cells can be computed as ρ(t) .= ∑51
k=1

∫
ek
uk(x, t) dx, and we compute the

number of cells in the nth cluster as

ρn(t)
.=

∑
k=I(n,j)

∫ (ak+bk)/2

ak
uk(x, t) dx +

∑
k=I(i,n)

∫ bk

(ak+bk)/2
uk(x) dx. (A2)

Alternatively, since the boundary of the cell types are not distinctive, one can compute it as aweighted
sum along the edges adjacent to the node nwith linear weight functions such asω(x) = −x + 1 and
1 − ω(x) along the entire edge.

To obtain the transfer rate between the cell nodes, we assume three discrete psuedotimes at those
three sorted groups starting from LT-HSC to HSPC, and finally to progenitor cells. As remarked
in Section 4.1, we consider subsets of nodes I1 = {1, 2, 3} as HSC, I2 = {4, . . . , 8} as HSPC and
I3 = {9, . . . , 12} as progenitor cell group. This follows the cell data in Nestorowa et al. (2016) that is
classified with ComBat from the SVA package using the sorting gate of LT-HSC, HSPC and progen-
itor, and then processed with diffusion mapping initialized from a subpopulation of LT-HSC to the
progenitor cells of different lineage of erythroid, granulocyte–macrophage and lymphoid. Accord-
ingly, we consider three discrete psuedotimes considering LT-HSC (t0), HSPC (t1) and progenitor
(t2) and compute the number of cells in each node that is summarized in Table A1. We comment
that diffusion pseudotime is not a physical time unit (i.e. days) and that the differentiation process is
modelled based on the inferred pseudotime trajectories with the following mapping of pseudotimes
t0 = 0, t1 = 2 and t2 = 4. The time mapping procedure can be refined with time-series differentia-
tion assay data. The transfer rates between the nodes are taken from the ratios at each psuedotime.

https://github.com/heyrim/Modeling-acute-myeloid-leukemia-in-a-continuum-of-differentiation-states
https://github.com/heyrim/Modeling-acute-myeloid-leukemia-in-a-continuum-of-differentiation-states
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We compute the ratio as time independent within the subsets as follows:

γn
.= ρ̄n/

∑
n∈Il

ρ̄n, n ∈ Il,

that is, γ1 = 24/245, γ2 = 66/245, γ3 = 155/245 for I1, γ4 = 236/370, γ5 = 36/370, γ6 = 27/370,
γ7 = 11/370, γ8 = 60/370 forI2, and γ9 = 192/696, γ10 = 223/696, γ11 = 227/696, γ12 = 54/696
for I3. We remark that the transfer rates can be time dependent as γn(t) if the data are collected at
sequential timepoints, which is one way that the model could be parameterized.

We take these values as the in and out transfer rate imposed in the advection coefficient. For
each node, we assume a constant parameter cn �= 0 that determines the magnitude of the advection
coefficient, that is, the speed of the cell differentiation. We take the transfer in rate at the node vn,
n ∈ Il, as VI(i,n)(bI(i,n)) = γicn, for i ∈ Il−1, and transfer out rate as VI(n,j)(aI(n,j)) = γjcn, for j ∈
Il+1. Using the fixed transfer rates at the nodes, the advection coefficient is linearly interpolated as
VI(i,j)(x) = VI(i,j)(aI(i,j)) + (VI(i,j)(bI(i,j)) − VI(i,j)(aI(i,j)))x, that is,

VI(i,j)(x) = γjci + (γicj − γjci)x, i ∈ I1, j ∈ I2. (A3)

In addition, we apply the weight (1 − x2) to model the accumulation of cells at the progenitor nodes
j ∈ I3,

VI(i,j)(x) = (γjci + (γicj − γjci)x)(1 − x2), i ∈ I2, j ∈ I3,
and take VI(i,j)(x) = 0, for other pairs of nodes. For instance, VI(i,j)(x) = 0, for i, j ∈ Il within the
same hierarchy of cells, and the transition between these nodes are only governed by diffusion. The
constant parameter at each node cn is taken to reproduce the cell distribution as in Figure 5 as follows:

c1 = c2 = c3 = 1.0, c4 = 1.2898, c5 = 0.9535, c6 = 0.9488,

c7 = 0.8060, c8 = 0.8263, c9 = c10 = c11 = c12 = 1.0, for t < t1,

c1 = c2 = c3 = 1.0, c4 = 1.7898, c5 = 1.4535, c6 = 1.4488, c7 = 1.3060,

c8 = 1.3263, c9 = 1.7992, c10 = 1.4380, c11 = 1.5070, c12 = 2.6347, for t ≥ t1.

The values are computed by a simple root-finding algorithm such as the secant method.
The diffusion coefficients on the edges are taken asDk(x) = DI(i,j)(x) = 10−2 between the nodes

that are within i, j ∈ I1 and i, j ∈ I2, assuming that the perturbation of the cells that are in unit
psuedotime in the rescaled edges is in the order of

√
2L2 × 10−2 ≈ 2.5456 × 10−2, where L is the

average length of the edges within i, j ∈ I1 and i, j ∈ I2. Considering that the average length of the
other combinations of (i, j) is increased by threefold, we take DI(i,j)(x) = 10−3.

The proliferation rate is also obtained by the secant method to match the given data in Table A1
at t1 and t2. The computed values are rn = 1.3648, t < t1 and rn = 0.4, t ≥ t1 for the HSPC and
progenitor cells n ∈ I2 ∪ I3. In addition, the fact that LT-HSC cells proliferate relatively less than
the progenitor cells (Passegu et al., 2005) is imposed as rn = rn∈I2∪I3 × 10−2 for n ∈ I1. The
intermediate level of proliferation is linearly interpolated as

Rk(x) = RI(i,j)(x) = ri + (rj − ri)x, (A4)

assuming that the overall proliferation of intermediate cell states changes gradually. If the time
variable is taken as the actual time, the rate in each node can be computed considering the pro-
portion of proliferating stem cells (5–10%) and cell cycle (36–145 days) (Hao, Chen, & Cheng, 2016;

Table A1. Number of cells in each node (ID) at three distinct psuedotimes t0, t1 and t2.

ID 1 2 3 4 5 6 7 8 9 10 11 12

t0 24 66 155 0 0 0 0 0 0 0 0 0
t1 0 0 0 236 36 27 11 60 0 0 0 0
t2 0 0 0 0 0 0 0 0 192 223 227 54

Notes: We notate it as ρ̄ID(t). The cell numbers are plotted in Figure 5C comparing to our simulation.
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Pietras, Warr, & Passegué, 2011). Moreover, the abnormal proliferation of cancerous cells with cell
cycle λ and apoptosis of the differentiated cells with rate d at expression level x∗ can be modelled
with a localized Gaussian function with variance ε as Rk(x) = (ln(2)/λ) exp[−(x − x∗)2/ε] and
Rk(x) = −d exp[−(x − x∗)2/ε], respectively. The choice of localized Gaussian function assumes
that the centre x∗ is the location in the diffusion space that most closely resembles the ‘prototypical’,
or ‘ideal’ cell type identity.

The described parameters are summarized in Table A2.
The initial condition is taken by considering the cell data at pseudotime t0 with ratios γ 0

1 =
25/296, γ 0

2 = 78/296, γ 0
3 = 193/296, γ 0

k = 0 for k = 4, . . . , 12. We remark that this is shown in
Figure 5C. Accordingly, the initial distribution is taken as

uk(x, t0) = uI(i,j)(x, t0) = γ 0
i e−x2/0.08 + γ 0

j e−(x−1)2/0.08, x ∈ ek.

With this choice, the total number of cells in each node ρn(t0) computed as in Equation (A2) is
similar to the given ratios γ 0

n . The boundary condition defined as in Equation (3) around the node

Table A2. Summary of the required data and correspond-
ing parameters.

Biological meaning and parameters

Vk(x) Cell differentiation rate ck , branching ratio γk
Rk(x) Growth rate rk
Dk(x) Phenotypic fluctuation σk , wk

Note: In our simulation, Vk and Rk are estimated from ρ̄k in Table A1.

Figure A11. Change in the total number of cells ρ(t) in percentage with respect to the model param-
eters, diffusion Dk , advection Vk and reaction Rk . We test the cases where the coefficients change their
values by−10%,−1%, 1% and 10%. The results are sensitive to the reaction and advection coefficients
particularly in the AML condition. On the other hand, the results are less dependent on the diffusion
coefficient.
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vn, that is, at x = bI(i,n) and x = aI(n,j), becomes
∑

(i,n)∈J

[
γicnuI[i,n] − DI[i,n]

∂

∂x
uI[i,n]

]
=

∑
(n,j)∈J

[
γjcnuI[n,j] − DI[n,j]

∂

∂x
uI[n,j]

]
, (A5)

with continuity boundary conditions uI(n,j)(aI(n,j)) = uI(i,n)(bI(i,n)) for fixed n. Condition
(A5) reduces to

∑
(i,n)∈J DI[i,n]

∂
∂xuI[i,n](x) = ∑

(n,j)∈J DI[n,j]
∂
∂xuI[n,j](x) in our model since∑

(i,n)∈J γicn = ∑
(n,j)∈J γjcn = cn.

Sensitivity of model parameters. We test the sensitivity of the results with respect to the param-
eters in the diffusion, advection and reaction coefficient. The values of Dk, Vk and Rk are varied
by −10%, −1%, 1% and 10%, and Figure A11 presents the difference in the total number of cells
ρ(t) in percentage. While it is expected that the total number of cells are sensitive to the reac-
tion coefficient, since it governs the proliferation rate, it also strongly depends on the advection
coefficient as well, particularly in the AML condition. On the other hand, the results are less depen-
dent on the diffusion coefficient. The number of intermediate cells while varying the coefficients are
plotted in FigureA12. In particular, we present the dynamics of LT-HSC(3)-ST-HSC(5), ST-HSC(5)-
MPP1(6), MPP(4)-LMPP(9) and CMP(10)-MEP(11) cells in the normal and AML conditions. We
observe similar results as in the total number of cells; however, the overall trend of the dynamics is
independent of the variation in the coefficients.
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Figure A12. Number of intermediate cells with respect to the model parameters, diffusion Dk , advection Vk and reaction Rk . The results are computed by varying
the coefficients by−10%,−1%, 1% and 10%. Although the result varies from the reference case (0%), the overall trend of the cell dynamics is observed to be similar.
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