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ABSTRACT

We develop a mathematical model to examine the role of helper
and cytotoxic T cells in an anti-tumour immune response. The
model comprises three ordinary differential equations describing the
dynamics of the tumour cells, the helper and the cytotoxic T cells,
and implicitly accounts for immunosuppressive effects. The aim is
to investigate how the anti-tumour immune response varies with the
level of infiltratinghelper and cytotoxic T cells. Through a combination
of analytical studies and numerical simulations, ourmodel exemplifies
the three Es of immunoediting: elimination, equilibrium and escape.
Specifically, it reveals that the three Es of immunoediting depend
highly on the infiltration rates of the helper and cytotoxic T cells. The
model’s results indicate that both the helper and cytotoxic T cells play
a key role in tumour elimination. They also show that combination
therapies that boost the immune system and block tumour-induced
immunosuppressionmay have a synergistic effect in reducing tumour
growth.
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1. Introduction

Cancer is a disease that affects millions of people worldwide and whose impact continues
to increase (Siegel, Miller, & Jemal, 2015). Understanding how and why cancers develop,
and how they may be effectively treated, is one of the major societal challenges of the
twenty-first century. Cancer is distinguished from other diseases by its ability to hijack
normal cell functions, to initiate uncontrolled cell proliferation and, of particular interest
here, to evade immune detection and elimination (Hanahan &Weinberg, 2000, 2011).

T cells are one of the most important components of the immune system in the fight
against cancer. They originate from pluripotent haematopoietic stem cells in the bone
marrow which migrate to the thymus where they mature into naive T cells. The naive T
cells move to the lymph nodes where they become activated on contact with their cognate
antigens. Activated T cells proliferate rapidly to produce a substantial army of antigen-
specific T cells. These short lived T cells are then transported through the blood vessels
to the tumour where they bind to and kill infected cells and also produce cytokines that
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recruit other immune cells to the tumour. This process continues until either the tumour
has been removed or the tumour adapts to, and evades, targetting by the T cells (Chen &
Mellman, 2013; Janeway, Travers, Walport, & Shlomchik, 2001).

There are two populations of T cells, helper and cytotoxic, which are distinguished by
their expression of CD4 and CD8 proteins, respectively. Naive helper T cells are activated
by antigen presentedwith amajor histocompatibility complex (MHC) class IImolecule. (A
glossary of the terminology used in this article is provided in Appendix 1.) Naive cytotoxic
T cells are activated by antigen presentedwith anMHC class Imolecule. Once activated the
helper and cytotoxic T cells perform complementary functions to eliminate the tumour.
Helper T cells further differentiate into subpopulations classified by the specific cytokines
that they produce. In this way, they regulate multiple aspects of an immune response. For
example, they promote the proliferation of cytotoxic T cells, they recruit and promote cells
of the innate immune response, and they control levels of inflammation at the tumour site
(Hung et al., 1998; Magombedze et al., 2013). (In this work, we do not distinguish these
subpopulations.) Cytotoxic T cells scan the body for transformed cells (cancer cells) to
which they bind before inducing cell killing.

Most experimental and clinical studies have focused on the role played by cytotoxic
T cells in tumour elimination (Fridman, Pages, Sautes-Fridman, & Galon, 2012) and
neglected the role of helper T cells (Hiraoka et al., 2006; Rad, Ajdary, Omranipour,
Alimohammadian, & Hassan, 2015). Recently, several authors have argued that helper
T cells form a vital component of an anti-tumour immune response (Badoual et al., 2006;
Magombedze et al., 2013). In this work, we focus on the complementary roles played by
helper and cytotoxic T cells as cytokine producers and tumour cell killers, respectively. For
simplicity, we do not consider naive and memory helper and cytotoxic T cell populations
as in Robertson-Tessi, El-Kareh, and Goriely (2012). Our focus is to identify which T cell
population should be targeted to boost the anti-tumour actions of helper and cytotoxic T
cell populations in the tumour micro-environment.

As first hypothesised by Ehrlich (1909), and subsequently confirmed experimentally,
the immune system can detect and eliminate cancer before it reaches clinically detectable
sizes. During ‘immunosurveillance’, the immune system detects and destroys cancerous
cells. In some cases, the tumour evades the immune system and develops into a large mass,
which may eventually prove fatal. The theory of ‘immunoediting’ proposed by Dunn, Old,
& Schreiber (2004) represents the possible outcomes of tumour-immune interactions, via
the three E’s of immunoediting – elimination, equilibrium and escape.

While immunosurveillance should, in theory, rid the body of pre-cancerous and/or
cancerous cells, in practice this does not always occur. If, for example, immunogeneic
cells are removed by the immune system then a poorly immunogeneic and antigenic
population of tumour cells remains (DuPage,Mazumdar, Schmidt, Cheung, & Jacks, 2012;
Pardoll, 2003; Vicari, Caux, & Trinchieri, 2002). As these tumour cells proliferate, they
mutate, creating cells that present low levels of tumour antigen and, consequently, evade
recognition by T cells (Vesely & Schreiber, 2013). Cancer cells also manipulate the local
microenvironment by producing immunosuppressive cytokines such as TGF-β and IL-10
that promote differentiation of helper T cells to a regulatory phenotype (Kawamura, Bahar,
Natsume, Sakiyama, & Tagawa, 2002). Cancer cells may also produce cytolytic molecules
such as Granzyme B that induce apoptosis of immune cells (Igney & Krammer, 2002).
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A number of novel immunotherapies have been designed to either enhance/boost the
immune response or reverse/block the immunosuppressive effects of the tumour. In this
work, we focus on adoptive T cell transfer therapy. This therapy acts to boost the army
of T cells specific for a chosen tumour antigen (Rosenberg, Restifo, Yang, Morgan, &
Dudley, 2008; Ruella & Kalos, 2014). Here circulating T cells are extracted from the
host and those that are specific to the targeted tumour antigen are selected. This pool
of antigen specific T cells are then stimulated to proliferate without the constraints of
an immunosuppressive environment. Once a substantial population of these T cells have
amassed, they are re-infused into the host.With the identification of an appropriate tumour
antigen to target, this therapy holds the potential to elicit a potent anti-tumour immune
response. Most therapies have been designed to target the cytotoxic T cells which are able
to recognise and directly kill tumour cells. Work needs to be done to explore the potential
of targeting the helper T cell population instead of or in addition to the cytotoxic T cell
population (Zanetti, 2015). In this work, we explore which T cell population should be
the target of immunotherapies designed to boost the T cell populations in the tumour
micro-environment.

To understand how the immune system works to eradicate cancer, it is necessary to
identify its key components. Several mathematical models have been proposed, typically
involving systems of time-dependent ordinary differential equations (ODEs). For example,
Eftimie, Bramson, and Earn (2011) provides a comprehensive review, covering models
of tumour growth (single equations) through to models consisting of many cell types
(e.g. innate and adaptive immune cells) and molecules (e.g. cytokines). Many existing
ODE models view tumour-immune interactions as a predator–prey system, where the
tumour cells are the prey and the immune cells are the predators (Frascoli, Kim, Hughes,
& Landman, 2014; Kuznetsov, Makalkin, Taylor, & Perelson, 1994; López, Seoane, &
Sanjuán, 2014; Piotrowska, Bodnar, Poleszczuk, & Foryś, 2013;Wilkie &Hahnfeldt, 2013).
With two dependent variables it is possible to characterise both the local and global stability
of steady states through phase-plane analysis, and the bifurcation structure of the system
as model parameters vary. In this way, it is possible to identify those parameters that have
the strongest influence on tumour escape.

To explore the role of helper T cells, in addition to cytotoxic T cells and tumour cells,
further variables must be considered. This population has been included both implicitly
and explicitly. Kirschner and Panetta (1998) proposed a system of three ODEs for the
cytokine IL-2 produced by the helper T cells, cytotoxic T cells and tumour cells. The
inclusion of the cytokine IL-2 can be thought of as implicitly accounting for the helper T cell
population. They found that the tumour antigenicity is a critical parameter determining
whether tumour escape, equilibrium or elimination occurs. They also identified stable
periodic solutions, mirroring clinical observations of tumour suppression and regrowth.
On the other hand, Robertson-Tessi, El-Kareh, and Goriely (2012) proposed a detailed
mathematical framework (twelve ODEs) describing interactions between multiple cell
types and cytokines involved in an immune response to cancer, capturing the three E’s of
Immunoediting (Dunn,Old,&Schreiber, 2004).HelperT cellswere explicitly included and
further subdivided into three distinct subpopulations based on their maturity status (e.g.
naive, effector,memory). Their aimwas to determinewhich aspect of the immune response
is dominant at different stages of tumour development, and which immunosuppressive
effects facilitate tumour escape. However due to its complexity, investigation of the model
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was limited to numerical simulations rather than analytical identification of the steady
states and their linear stability.

Delay differential equation models have also been used to account for the time delay
between initial encounter of a naive T cell with its matching antigen and the effector
response (Dong, Huang, Miyazaki, & Takeuchi, 2015; Rihan, Rahman, Lakshmanan, &
Alkhajeh, 2014). In this paper, we follow Kuznetsov et al. (1994), and adopt an ODE
framework to study the dynamics associatedwith interactions between tumour cells, helper
T cells and cytotoxic T cells.

In this paper, a simplified ODE model accounting for the interactions of tumour
cells with helper and cytotoxic T cells is developed. This model extends the pioneering
study of Kuznetsov et al. (1994) by including helper T cells and accounting implicitly for
immunosuppressive effects. The proposed model also draws on key components of the
more complex model developed by Robertson-Tessi et al. (2012) that included both helper
and cytotoxic T cells in an anti-tumour immune response, and examined the impact of
different effects of immunosuppression at various stages of tumour development. Due
to the complexity of their model, the analysis was limited to a numerical investigation.
The simpler model proposed here has the advantage of being analytically tractable while
retaining both a helper T cell population and implicit forms of immunosuppression. This
permits the identification and characterisation of the stability of steady states as a function
of model parameters. This also allows for the derivation of an amplitude equation to
describe time-dependent oscillatory solutions observed from numerical integration of the
model equations. As clinical trials have shown that the level of tumour infiltrating T
cells correlates with patient outcomes (Lee et al., 1989; Kawai et al., 2008; Hiraoka et al.,
2006), we focus on understanding how changes in the rates of infiltration of cytotoxic
and helper T cells affect the model dynamics. This model reveals that the three Es of
immunoediting depend highly on the infiltration rates of the helper and cytotoxic T cells.
The results identifying where in parameter space tumour elimination, equilibrium and
escape occur are used to identify conditions under which cytotoxic and/or helper T cells
should be targeted by adoptive T cell therapy. We find that the parameters associated with
immunosuppression play a decisive role in tumour-elimination.

The remainder of this paper is organised as follows. We formulate our mathematical
model in Section 2, while in Section 3, we present simulation results that show how our
model captures the three E’s of immunoediting (elimination, equilibrium and escape)
and that it may exhibit oscillatory solutions which we view as equilibrium solutions since
the tumour mass remains bounded at all times. In Section 4, we identify the steady state
solutions, and indicate those regions of parameter space in which multiple steady state
solutions exist. In Section 5, we characterise the linear stability of the steady state solutions
and identify a Hopf bifurcation fromwhich a branch of oscillatory solutions emerges from
a steady-state solution branch as the rate of infiltration of the cytotoxic T cells is varied. In
Section 6, we confirm the existence and stability of the associated limit cycle and determine
its amplitude by performing a weakly nonlinear analysis in a neighbourhood of the Hopf
bifurcation. In Section 7, we perform a parameter sensitivity analysis, focusing on how
the tumour’s growth dynamics change as parameters controlling the immunosuppressive
effects of the tumour are varied. The paper concludes in Section 8 where we summarise the
key results, discuss their therapeutic implications and outline directions that merit further
investigation.
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Figure 1. Schematic of the tumour-immune cell interactions included in Equations (11)–(13). The circles
indicate the helper and cytotoxic T cells, TH(t) and TC(t). The square symbol represents the tumour
population N(t). Interactions that directly increase a population are indicated by continuous lines while
suppressive interactions are illustrated by dashed lines. The dotted line indicates an interaction that
is immune promoting in the presence of a small tumour burden becoming immunosuppressive in the
presence of a large tumour burden.

2. Themathematical model

2.1. Model development

We propose a system of three, time-dependent, ordinary differential equations (ODEs) to
model the interactions between cytotoxic and helper T cells and tumour cells in a well-
mixed (i.e. spatially uniform) tumour microenvironment, see Figure 1. With t denoting
time, the dependent variables N(t), TH(t) and TC(t), represent numbers of tumour cells,
and helper and cytotoxic T cells respectively.

We assume that the evolution of the tumour cells is dominated by proliferation and
cell death due to interactions with cytotoxic T cells. For simplicity, we assume that, in
the absence of an immune response, the tumour undergoes logistic growth, with carrying
capacity κ (units: number of cells) and growth rate γ (units: day−1).We interpret solutions
for which the system approaches its carrying capacity (N ≈ κ) as tumour escape. We
assume further that, once an immune response has been stimulated, the tumour cells
interact with cytotoxic T cells at a rate which is proportional to the product of their cell
numbers, with constant of proportionality k (units: number of cells−1 day−1), and that such
interactions lead to tumour cell death, with probability p, or inactivation of the cytotoxic T
cell, with probability (1 − p). Combining these processes, we propose the following ODE
for the time evolution of the tumour cells:

dN
dt

= γ (1 − N/κ)N︸ ︷︷ ︸
logisitic growth

− pkTCN︸ ︷︷ ︸
immune induced death

. (1)

We assume that the evolution of the helper and cytotoxic T cells is dominated by
infiltration from the lymph nodes, proliferation in response to the tumour cells and natural
cell death.We assume that the two T cell populations infiltrate the tumour from the lymph
nodes at constant rates σH and σC (units: number of cells day−1), and die at rates δH and
δC (units: day−1). Naive T cells are regularly produced by hematopoietic stem cells and
therefore a constant population of these naive T cells are present in the circulating blood
stream. We can assume that the flow of blood is constant and therefore, in addition to
direct stimulation of T cells in the presence of tumour antigen, there is a constant influx
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of primed T cells from the circulating blood. Furthermore, this assumption enables us to
implicitly account for the presence of a constant pool of memory T cells present in the
absence of antigen stimulation (Farber, Yudanin, & Restifo, 2014). This approach has been
widely adopted in similar models to account for a background level of circulating T cells
(de Pillis et al., 2005; Eftimie et al., 2011; Kuznetsov et al., 1994).

We suppose that the tumour suppresses the proliferation of the helper T cells and,
thereby, indirectly inhibits the cytotoxic T cells. Specifically, we assume that the helper
T cells proliferate at a rate which has biphasic dependence on the number of tumour
cells, N(t), with constant of proportionality α (units: day−1). The parameter Ñ (units:
number of cells) is the number of tumour cells at which helper T cell proliferation is
half-maximal. The proliferation rate (per TH cell) attains a maximum value of α/2 when
N = Ñ and decays to zero as N → ∞. A similar biphasic term was adopted by Serre et al.
(2016). Through their productionof cytokines (e.g. IL-2, IFN-γ ), helperT cells promote the
proliferation of cytotoxic T cells (Akhmetzyanova et al., 2013; Rad et al., 2015). Rather than
introducing additional dependent variables to represent these cytokines, for simplicity, we
account for their effects by assuming that cytotoxic T cells proliferate at a rate proportional
to the number of helper T cells, with constant of proportionality β (units: number of
cells−1day−1). Combining these assumptions, we propose the following ODEs to describe
the time evolution of the helper and cytotoxic T cells respectively:

dTH

dt
= σH︸︷︷︸

infiltration

+ αÑNTH

Ñ2 + N2︸ ︷︷ ︸
proliferation

− δHTH︸ ︷︷ ︸
natural death

, (2)

dTC

dt
= σC︸︷︷︸

infiltration

+ βTCTH︸ ︷︷ ︸
proliferation

− (1 − p)kTCN︸ ︷︷ ︸
in-activation

− δCTC︸ ︷︷ ︸
natural death

. (3)

We close equations (1)–(3) by prescribing the following initial conditions:

N(0) = N0, TH(0) = TH0, TC(0) = TC0 , (4)

wherein the non-negative constants N0, TH0 and TC0 denote the initial concentrations of
the tumour cells, helper T cells and cytotoxic T cells respectively.

2.2. Parameter values

In the absence of suitable experimental data, we base our estimates of the parameters
values in Equations (1)–(3) on those available in the modelling literature (see Table
1). Specifically, we choose dimensional parameter values for which the model exhibits
qualitative behaviour consistent with the three E’s of Immunoediting (Dunn et al., 2004)
(see Sections 5 and 7).

2.3. Nondimensionalised equations

We nondimensionalise Equations (1)–(4) by rescaling time with δC
−1 (units: days), the

half-life of the cytotoxic T cells, the tumour and cytotoxic T cell populations with κ (units:
number of cells), the carrying capacity of the tumour cells, and the helper T cells with δC/β
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Table 1. Estimates from themodelling literature of the values of the dimensional parameters that appear
in Equations (1)–(3).

Parameter Description Value (units) References

γ tumour growth rate 0.01 − 0.5 (day−1) Kuznetsov et al. (1994)
Roesch et al. (2014)
López et al. (2014)
Wilkie and Hahnfeldt (2013)
Talkington and Durrett (2015)

κ carrying capacity of tumour cells 109 − 2 × 109 (number of cells) de Pillis et al. (2005)
Kuznetsov et al. (1994)
Arciero et al. (2004)

p probability a cytotoxic T cell 0–1 (dimensionless)
will kill a tumour cell

k rate at which cytotoxic T cells 3.4 × 10−10–1.0 × 10−3 (Kuznetsov et al., 1994)
kill tumour cells (number of cells−1 day−1) Liao et al. (2014)

Kronik et al. (2010)
Wilkie and Hahnfeldt (2013)

σH infiltration rate of 0 – 0.063 (cell day−1) no available literature
helper T cells

α increase in helper T cell proliferation 1.9 (day−1) Robertson-Tessi et al. (2012)
rate due to tumour cells

Ñ tumour size at which immune 2 × 107 – 9.8 × 108 (number of cells) Kuznetsov et al. (1994)
suppression becomes important de Pillis et al. (2005)

Wilkie and Hahnfeldt (2013)
Arciero et al. (2004)
Liao et al. (2014)
López et al. (2014)

δH death rate of helper T cells 0.1 (day−1) Yates and Callard (2001)
σC infiltration rate of cytotoxic T cells 1.3 × 104 (cell day−1) Kuznetsov et al. (1994)
β increase in cytotoxic T cell proliferation 16 (number of cells−1day−1) Robertson-Tessi et al. (2012)

rate due to helper T cells
δC death rate of cytotoxic T cells 2.0 × 10−3 − 1 (day−1) de Pillis et al. (2005)

Roesch et al. (2014)
Kuznetsov et al. (1994)
López et al. (2014)
Arciero et al. (2004)
Kronik et al. (2010)
Liao et al. (2014)

(units: number of cells). Thus, using hats to denote dimensionless variables, we substitute
into Equations (1)–(4)

N̂ = N
κ
, T̂C = TC

κ
, T̂H = THβ

δC
, t̂ = tδC , (5)

and obtain
dN̂
dt̂

= γ̂ (1 − N̂)N̂ − pk̂T̂CN̂ , (6)

dT̂H

dt̂
= σ̂H + α̂N̂T̂H

ˆ̃N2 + N̂2
− δ̂HT̂H , (7)

dT̂C

dt̂
= σ̂C + T̂CT̂H − (1 − p)k̂T̂CN̂ − T̂C , (8)
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Table 2. Summary of the default dimensionless parameter values used in Equations (6)–(8) and defined
by Equation (10). The dimensional parameter values used to compute these dimensionless values are as
follows: γ = 4.1 day−1, k = 8.5× 10−10 cells−1 day−1, α = 1.9 day−1, κ = 2.0× 109 cells, δC = 0.41
day−1, δH = 0.41 day−1 and Ñ = 8.1 × 107 cells.

Dimensionless parameter Description Value

γ tumour growth rate 10
p probability a cytotoxic T cell 0.5

will kill a tumour cell
k rate at which cytotoxic T cells 4.15

kill tumour cells
σH infiltration rate of 0.5

helper T cells
α increase in helper T cell proliferation 0.19

rate due to tumour cells
Ñ tumour size at which 0.04

suppressive effects come into play
δH death rate of helper T cells 1
σC infiltration rate of cytotoxic T cells 2.0

with initial conditions

N̂(0) = N̂0, T̂H(0) = T̂H0, T̂C(0) = T̂C0 , (9)

where

γ̂ = γ

δC
, k̂ = kκ

δC
, ˆ̃N = Ñ/κ ,

σ̂C = σC

κδC
, σ̂H = σHβ

δC
2 , α̂ = αÑ

δCκ
, δ̂H = δH

δC
,

N̂0 = N0

κ
, T̂H0 = TH0β

δC
and T̂C0 = TC0

κ
.

(10)

For ease of presentation, we henceforth omit hats in Equations (6)–(9). In Table 2,
we list the default dimensionless parameters appearing in these equations. We note that
there may be considerable variation in these values due to uncertainty in their dimensional
values.

3. Qualitative behaviour

We solve Equations (6)–(9) numerically using the Dormand-Prince explicit adaptive time-
stepping method in Python (dopri5). This numerical method is based on a combination
of fourth and fifth order Runge-Kutta schemes (Dormand & Prince, 1980) and can
accommodate stiff equations, such as ours, where parameter values range over several
orders of magnitude (see Table 2).

In Figure 2, we present simulation results for three choices of σC , the rate at which
cytotoxic T cells infiltrate the tumour, which reveal that our model reproduces the three
E’s of immunoediting (Dunn et al., 2004). For moderate values of σC (see Figure 2 (a,b,c)),
we observe bistability between a stable limit cycle which oscillates with small amplitude
about an unstable steady state corresponding to a small tumour burden, and a stable steady
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state with a large tumour burden corresponding to tumour escape. Thus, depending on the
choice of initial conditions, at long times the system will approach either the stable limit
cycle or the stable steady state with a large tumour burden. For the periodic solution, the
tumour, cytotoxic andhelperT cell populations oscillate out of phase: growthof the tumour
stimulates the proliferation of the helper T cells which, in turn, promote proliferation of
the cytotoxic T cells, driving down the tumour population. When the tumour escapes,
the cytotoxic and helper T cell populations evolve to constant values that are smaller than
their baseline values of TH = σH/δH and TC = σC attained when there are no tumour
cells present. We remark that the tumour cell population has been nondimensionalised
with its carrying capacity, κ , and therefore a large tumour population corresponds to a
dimensionless tumour population that is close to one.

For a small increase of 12.5% in the value of σC (from 2 to 2.25) (see Figure 2 (d,e,f)), we
retain bistability between a tumour equilibrium and tumour escape. In this case however,
we observe that the tumour equilibrium solution is no longer oscillitory but settles to a
stable steady state with a small tumour burden. For a large increase of 60% in the value
of σC (from 2 to 3.2) (see Figure 2 (g,h,i)), we observe monostability of a tumour-free
steady state solution which corresponds to tumour elimination: in this case, the immune
response is strong enough to eliminate the tumour. We conclude that our model may
exhibit multi-stability and that the nature and multiplicity of stable solutions change as
σC , the infiltration rate of the cytotoxic T cells, varies.

4. Steady state analysis

The results presented in Section 3 reveal that Equations (6)–(9) possesses several different
types of stable steady state solutions and a stable limit cycle solution. As a first step
to understanding the solution structure of our model, in this section we identify and
characterise its steady state solutions.

Setting the time-derivatives to zero in Equations (6)–(8) yields three algebraic equations
that define the steady state solutions (N ,TH ,TC) = (N∗,T∗

H ,T
∗
C):

0 = N∗ (
γ (1 − N∗) − pkT∗

C
)
, (11)

0 = σH + T∗
H

(
αN∗

Ñ2 + N∗2 − δH

)
, (12)

0 = σC + T∗
C

(
T∗
H − (1 − p)kN∗ − 1

)
. (13)

We note, from Equation (11), that for physically realistic solutions N∗ ∈ [0, 1). The
solutions depend on five parameter groupings,

k̃ = (1 − p)k, γ̃ = γ

pk
, σ̃C = σC

γ̃
, σ̄H = σH

δH
and ᾱ = α

δH
. (14)

First of all, Equations (11)–(13) admit a tumour-free solution,

N∗ = 0, T∗
H = σ̄H , T∗

C = γ̃ σ̃C

1 − σ̄H
, (15)
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Figure 2. Series of plots showing the dynamics of the tumour cells, N(t), the helper T cells, TH(t), and
the cytotoxic T cells, TC(t), as defined by Equations (6)–(8) for three values of the basal infiltration rate
of the cytotoxic T cells, σC = 2.0, 2.25 and 3.2 (top, middle and bottom rows respectively) with all
remaining parameters fixed at their default values (see Table 2). In each plot three initial conditions are
considered and distinguished by linestyle: (N0, TC0, TH0) = (0.001, 5.0, 0.6) shown by the dotted black
curve, (N0, TC0, TH0) = (0.01, 4.5, 0.6) shown by the solid grey curve; (N0, TC0, TH0) = (0.5, 3.5, 0.3)
shown by the dashed light grey curve.

This solution is physically realistic provided 0 ≤ σ̄H < 1. All other steady state solutions
have 0 < N∗ < 1 and T∗

C = γ̃ (1 − N∗). Furthermore, by eliminating T∗
C from Equations

(12)–(13), it is straightforward to show that these steady state solutions lie at the intersection
of the following two curves:

T∗
H = Ha(N∗) ≡ σ̄H(Ñ2 + N∗2)

Ñ2 + N∗2 − ᾱN∗ , (16)

T∗
H = Hb(N∗) ≡ 1 + k̃N∗ − σ̃C

1 − N∗ . (17)
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In Figure 3, we use Equations (16)–(17) to show how the qualitative behaviour of the
curves of T∗

H = Ha(N∗) and T∗
H = Hb(N∗) changes as the system parameters vary. For

T∗
H = Ha(N∗) three cases may arise:

1. ᾱ < 2Ñ : Ha(N∗) > 0 for N∗ ∈ (0, 1) and attains a finite maximum in the feasible
range;

2. 2Ñ ≤ ᾱ < 1+Ñ2:Ha(N∗) has two asymptotesN∗± in the rangeN∗ ∈ (0, 1); between
the asymptotes, Ha(N∗) < 0 and otherwise it is positive;

3. ᾱ ≥ 1 + Ñ2: Ha(N∗) > 0 to the left of the asymptote at N∗− ∈ (0, 1) and Ha(N∗) is
negative otherwise.

Inspection of Equation (17) reveals that three cases may arise as the parameters are varied:

• Hb(N∗) < 0 for all N∗ ∈ (0, 1);
• Hb(N∗) decreases monotonically for N∗ ∈ (0, 1), with Hb(0) > 0 > Hb(1);
• Hb(N∗) attains a positive maximum at some point N∗ ∈ (0, 1).

Since the dependence of Hb(N∗) on the model parameters is more involved than for
Ha(N∗), further details are left to Appendix 2. Notably Hb(N∗) always becomes negative
for N∗ sufficiently close to 1. The full range of behaviours can only be realised by varying
both k̃ and σ̃C . It is not enough to fix k̃ to a single value and vary σ̃C .

Recall that the physically realistic steady state solutions for which N∗ > 0 lie at those
intersections of Equations (16)–(17) for which T∗

H = Ha(N∗) = Hb(N∗) > 0. Guided by
the results presented in Figure 3, in Figure 4 we show how the number and nature of these
steady state solutions change as we vary ᾱ and σ̃C for a fixed value of k̃ = 2 close to the
default value (see Table 2).

For completeness, also indicated on these figures is the tumour-free steady state solution
defined by Equation (15). In practice, up to four such steady statesmay arise (see Appendix
2 for details), although these cases are limited to small region of parameter space.

It is straightforward to show that if 2Ñ < ᾱ < 1+Ñ2 (see Figure 4(b)) thenEquation (16)
has two asymptotes at N∗ = N∗± say. In addition, if 0 < σ̃C < 1 − σ̄H then Hb(0) > Ha(0)
and there is a physically realistic steady state solution with 0 < N∗ < N∗−. In this case,
for small values of σ̃C (i.e. low rates of infiltration of the cytotoxic T cells), there are three
physically realistic steady state solutions with N∗ > 0, while for large values of σ̃C the
immune response is so strong that the tumour is eliminated and only the tumour-free
steady state solution persists. As σ̃C increases between these extremes, first the steady state
with small N∗ is lost (at a transcritical bifurcation; see Section 5) and then the other two
steady state solutions with 0 < N∗ collide at a fold bifurcation. (The case ᾱ < 2Ñ illustrated
in Figure 4(a), where Ha(N∗) attains a finite maximum, is more complicated and detailed
in Appendix 2.)

For the default parameters used in this study 2Ñ ≤ ᾱ ≤ 1 + Ñ2 (see Figure 4 (b)). In
this case, for sufficiently small σ̃C , three intersections occur: one at small N∗ and two at
moderate N∗. As σ̃C increases, the two solutions at moderate N∗ are lost followed by, for
larger σ̃C , the solution at small N∗.

For ᾱ ≥ 1 + Ñ2 (see Figure 4(c)), the asymptote N∗+ ≥ 1, and therefore there can be
no further intersections beyond N∗ = N∗−. When ᾱ < 1 + Ñ2, N∗+ ∈ (0, 1), and up to two
further intersections are possible. The conditions for these intersections cannot however
be determined analytically except when Ñ2 is sufficiently small.
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Figure 3. Form of the functions Ha(N∗) and Hb(N∗) from Equations (16) and (17) for selected choices of
ᾱ fixing Ñ = 0.25 and σ̄H = 1 in Ha, and for selected choices of k̃ and σ̃C in Hb. In the plot of Ha, the
curves for different ᾱ are distinguished by linestyle as indicated. In the plot ofHb, the different choices of
σ̃C are distinguished by colour as indicated. The lighter shade corresponds to k̃ = 0.5, while the darker
shade corresponds to k̃ = 2.

5. Linear stability analysis

In Section 3, we showed that, for different choices of the parameter values, our model may
exhibit tumour elimination, equilibrium and/or escape. Tumour elimination and escape
correspond to stable steady states,whereas equilibriumcorresponds to either a stable steady
state of intermediate size or a stable limit cycle. In this section, we decompose parameter
space into distinct regions according to the number of steady states that exist and their
linear stability, as well as identify regions of parameter space in which stable limit cycles
exist.

We start by linearising about the steady state solutions (N∗,T∗
H ,T

∗
C), seeking solutions

of the form

N = N∗ + εŇeλt + O(ε2), (18a)
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Figure 4. Series of diagrams showing how the physically realistic steady state solutions of Equations (11)
and (13) change as ᾱ and σ̃C vary, or, equivalently, the intersections of Equations (16) and (17) for which
T∗
H = Ha(N∗) = Hb(N∗) > 0 and N∗ ∈ (0, 1). The qualitative behaviours of T∗

H = Ha(N∗) as ᾱ varies
are indicated by the black curves on the left hand plots of panels (a), (b) and (c). For each case, we plot
T∗
H = Hb(N∗) for discrete values of σ̃C (=0.1, 0.5, 1.0 and 1.5) with k̃ = 2 and σ̄H = 1 to illustrate the
range of behaviours that can arise. The bifurcation diagrams on the right side of panels (a), (b) and (c)
indicate how the number and nature of the steady state solutions change as σ̃C is varied continuously.
Dashed lines indicate regions of linear instability (see Section 5).

TH = T∗
H + εŤHeλt + O(ε2), (18b)

TC = T∗
C + εŤCeλt + O(ε2), (18c)
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where Ň , ŤH , ŤC andλ are constants, and 0 < ε 
 1 is a small parameter. Substituting (18)
into Equations (6)–(8) and equating to zero terms ofO(ε), we deduce that the eigenvalues
λ = λn (n = 1, 2, 3) satisfy |J − λI| = 0 where the Jacobian J (N∗,T∗

H ,T
∗
C) is given by

J (N∗,T∗
H ,T

∗
C) =

⎛
⎜⎜⎝

γ (1 − 2N∗) − pkT∗
C 0 −pkN∗

αT∗
H(Ñ2 − N∗2)

(Ñ2 + N∗2)2
αN∗

(Ñ2 + N∗2)2
− δH 0

−(1 − p)kT∗
C T∗

C T∗
H − (1 − p)kN∗ − 1

⎞
⎟⎟⎠ .

(19)

Instability of a steady state solution is predicted when maxn=1,2,3 �(λn) > 0. Conversely,
the steady state is said to be linearly stable if �(λn) < 0 for n = 1, 2, 3. Note that in general
the eigenvalues depend not only on the parameter groupings in Equation (14), but also on
the unscaled parameters γ , p, k, α and δH . For ease of presentation, it is convenient to use
both scaled and unscaled parameters in subsequent analyses.

It is straightforward to show that the eigenvalues associated with the tumour-free steady
state (N∗,T∗

H ,T
∗
C) = (0, σ̄H , γ̃ σ̃C/(1 − σ̄H)) are

λ1 = γ

(
1 − σ̃C

1 − σ̄H

)
, λ2 = −δH and λ3 = −(1 − σ̄H) . (20)

We deduce that where it exists (i.e. where 0 < σ̄H < 1) the tumour-free steady state is
linearly stable if

max
(
0, 1 − σ̃C

)
< σ̄H < 1 . (21)

We remark that the region of parameter space in which the small tumour steady state
exists corresponds to the region in which the tumour-free steady state is linearly unstable.
Characterisation of the other steady state solutions must be performed numerically.

Figure 5 summarises how themultiplicity and linear stability of the steady state solutions
of Equations (6)–(8) change as we vary σ̃C , the (scaled) basel rate at which cytotoxic T cells
infiltrate the tumour (qualitatively similar behaviour is observed when σ̄H is varied; results
not presented). For the default parameter values (see Table 2), we identify five distinct
regions separated by four bifurcation points σ̃ F

C , σ̃T
C , σ̃

Hopf
C and σ̃Hom

C . The qualitative
behaviour in each region can be summarised as follows,

• σ̃C > σ̃ F
C : the system is monostable; all initial conditions evolve to the tumour-free

steady state (tumour elimination).
• σ̃C = σ̃ F

C : fold bifurcation at which two non-trivial steady states are created.
• σ̃T

C < σ̃C < σ̃ F
C : the system is bistable; an unstable steady state with intermediate

tumour burden separates the stable, tumour-free steady state from a stable solution
with a large tumour burden (tumour escape); as σ̃C decreases, the tumour burden on
the upper branch of solutions increases towards its (dimensionless) carrying capacity.

• σ̃C = σ̃T
C : transcritical bifurcation at which a new branch of stable steady state

solutions emerges from the tumour-free branch.
• σ̃

Hopf
C < σ̃C < σ̃T

C : bistability is preserved; the tumour-free steady state exchanges
stability with the new branch of solutions characterised by a very small tumour
burden.
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• σ̃C = σ̃
Hopf
C : Hopf bifurcation at which the branch of solutions characterised by a

small tumour burden loses stability to oscillatory solutions.
• σ̃Hom

C < σ̃C < σ̃
Hopf
C : bistability between a stable limit cycle and the steady state with

a large tumour burden; all other steady state solutions are unstable.
• σ̃C = σ̃Hom

C : the limit cycle disappears when it collides with the intermediate tumour
steady state (see Figure 7 and below for details).

• 0 ≤ σ̃C < σ̃Hom
C : only the large tumour state is stable (i.e. tumour escape).

In Figure 6, we present numerical results which confirm the predicted stability of the
steady state solutions depicted in Figure 5 for small values of σ̃C . All trajectories are
attracted to the large tumour steady state (with N∗ ≈ 1). Some trajectories start within its
basin of attraction while others first approach the tumour-free steady state solution along
its stable manifold, before being repelled along its unstable manifold and attracted to the
large tumour steady state. This behaviour is replicated for trajectories that start near the
small and intermediate steady state solutions, both of which are unstable.

The bifurcation diagrams in Figure 5 indicate those values of σ̃C for which oscillatory
solutions occur. The limit cycle emerges when σ̃C decreases through the critical value
σ̃
Hopf
C and disappears as σ̃C → σ̃Hom

C . Numerical results which confirm these dynamics
are presented in Figure 7. For σ̃C � σ̃Hom

C , we observe periodic solutions for which tumour
growth stimulates infiltration by helper T cells which, in turn, recruit large numbers of
cytotoxic T cells. As the tumour increases in size, immunosuppression of the helper T
cells becomes important and their rate of proliferation falls while levels of cytotoxic T cells
continue to rise, causing the tumour burden to fall. As levels of helper T cells fall, the
proliferation rate of the cytotoxic T cells falls, causing their levels also to decrease. The
immunosuppressed tumour then resumes its growth until it reaches a size at which an
effective immune response is again stimulated, levels of helper T cells rise, and the cycle
repeats. As the base rate at which cytotoxic T cells infiltrate the tumour approaches (from
above) σ̃Hom

C , the period of the limit cycles increase, with the tumour spending longer time
periods during which the immune response is low.

6. Asymptotic behaviour for Ñ2 � 1

When Ñ2 
 1, immunosuppression occurs at small tumour sizes, and acts by reducing
the proliferation rate of the helper T cells. We show in Section 6.1 how, in this case, it is
possible to construct approximate expressions for the small tumour steady state solutions
fromwhich oscillatory solutions emerge and also to determine an expression for the critical
value of σC at which the Hopf bifurcation occurs. We also perform a weakly nonlinear
analysis to determine the amplitude of the oscillations in the neighbourhood of the Hopf
bifurcation.

6.1. The small tumour steady state

Consider Ñ2 
 ᾱ, as holds for the default parameters. Then the asymptote occurs at
N∗− = Ñ2/ᾱ = δ 
 1, to leading order in δ. We showed in the Section 4 that a tumour
equilibrium steady state solution occurs with N∗ < N∗− for certain parameter groupings.
We can explicitly calculate the form of the equilibrium to leading order in δ by assuming

S50 H. DRITSCHEL ET AL.



Figure 5. Series of plots showing how the existence and linear stability of the steady states N∗, T∗
C and

T∗
H of Equations (6)–(8) depend on σ̃C , the (scaled) basal rate of infiltration of cytotoxic T cells to the
tumour, when all other parameters are fixed at their default values (see Table 2). Solution branches are
distinguished by colour: the blue branch corresponds to the large tumour (escape) state; the red branch
corresponds to the intermediate tumour state; the green branch corresponds to the small tumour
state and the magenta branch corresponds to the tumour-free state. The local stability of the steady
states is distinguished by linestyle: solid and dashed curves correspond to stable and unstable solutions
respectively. The cyan curves correspond to the maximum and minimum values of the various cell
populations for the periodic solutions. The bifurcations that occur are indicated on each plot: F=fold
bifurcation; T=transcritical bifurcation; Hopf=Hopf bifurcation and Hom=homoclinic bifurcation.
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Figure 6. Confirmation of the predicted (linear) stability of the steady state solutions of Equations (11)–
(13) as depicted in Figure 5 when σ̃C = 0.012 (and all other parameter values are held at their default
values; see Table 2). A series of typical trajectories starting in different regions of the phase plane are
presented. While all trajectories eventually evolve to the large tumour steady state, in some cases they
first approach close to the tumour-free steady state. Red and blue circles denote unstable and stable
steady states respectively. The continuous and dashed lines represent different initial conditions.

the expansions

(N∗,T∗
H ,T

∗
C) = (0,T∗

H0,T
∗
C0) + δ(N∗

1 ,T
∗
H1,T

∗
C1) + δ2 . . . . (22)

Inserting these expansions into Equations (16) and (17) gives

N∗
1 = 1 − σ̄H

1 − σ̃C
, T∗

H0 = 1 − σ̃C , T∗
C0 = γ̃ , (23)

and

T∗
H1 = (k̃ − σ̃C)N∗

1 , T∗
C1 = −γ̃N∗

1 . (24)

As anticipated from the analyses presented in sections 4 and 5, existence of the small
tumour steady state occurs where 0 < σ̃C < 1 − σ̃H which coincides with instability of the
tumour-free steady state solution.

6.2. Linear stability analysis

Following the general linear stability analysis in Section 5, we next perturb the above
solution by an infinitesimal time-dependent function proportional to eλt (see Equation
(18)).
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Figure 7. Confirmation that Equations (6)–(8) admit limit cycles when σ̃C = 0.2281 � σ̃Hom
C , and that

they cease to exist when 0 < 0.2263 = σ̃C < σ̃Hom
C (all other parameters are fixed at their default

values; see Table 2). The trajectories start near the intermediate tumour steady state (see red branch
in Figure 5). Panels (a) and (b) show how the cytotoxic T cells TC(t) evolve when σ̃C � σ̃Hom

C and
σ̃C < σ̃Hom

C respectively. The corresponding trajectories in the (TC , TH) plane are presented in panels (c)
and (d). Filled points represent unstable (tumour-free (TF), small tumour (ST) and intermediate tumour
(IT)) steady states; the unfilled point represents the stable, large tumour steady state (LT).

We deduce that the eigenvalues λ solve |J − λI| = 0 where the Jacobian is given by
(see (19)):

J =

⎛
⎜⎜⎜⎜⎝

−δγN∗
1 0 −δpkN∗

1
δH(1 − σ̃C)

δ
− σH

(1 − σ̃C)
0

−γ (1 − p)
p

γ̃ −σ̃C

⎞
⎟⎟⎟⎟⎠ .
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Thus, the eigenvalues λ solve the following cubic

λ3 +
(

σ̃C + σH

1 − σ̃C

)
λ2 + σ̃CσH

1 − σ̃C
λ + γ

(
(1 − σ̃C)δH − σH

) = 0 . (25)

Periodic solutions emerge when two roots of Equation (25) are purely imaginary, of the
form λ1,2 = ±iω. Hence, we locate the Hopf bifurcation point by seeking solutions to
Equation (25) of the form

(λ2 + ω2)(λ − λ3) = 0 , (26)

where

λ3 = −
(

σ̃C + σH

1 − σ̃C

)
, ω2 = σH σ̃C

1 − σ̃C
and λ3ω

2 = −γ

(
(1−σ̃C)δH−σH

)
. (27)

Eliminating λ3 and ω2 in (27) yields the following algebraic equation for σ̃C in terms of
σH and other model parameters at the Hopf bifurcation point:

σ̃Cσ 2
H + (1 − σ̃C)(σ̃ 2

C + γ (1 − σ̃C))σH − γ δH(1 − σ̃C)3 = 0 . (28)

Viewing Equation (28) as a quadratic for σH rather than a cubic for σ̃C , we can showwhere
the small tumour steady state exists (i.e. where 0 < σ̃C < 1− σ̃H) there is a unique, positive
root for σH :

σH = σ
Hopf
H = −χ + √

χ2 + 4γ δH σ̃C(1 − σ̃C)3

2σ̃C
, (29)

where χ = (1 − σ̃C)(σ̃ 2
C + γ (1 − σ̃C)). The eigenvalue λ3 ≤ 0 over this range of σ̃C ,

indicating stability of the oscillatory solutions where they exist.
The results of this analysis are verified in Figure 8(a), showing σ̄H versus σ̃C for both

the asymptotic approximation given in Equation (29) and the numerical solution of the
eigenvalue equation at the Hopf bifurcation point. There is close agreement for all values
of σ̄H . Figure 8(b) illustrates how the frequency at the point of emergence of the limit
cycle varies with σ̃C . These results underpin the weakly nonlinear analysis presented in the
following subsection.

6.3. Weakly nonlinear analysis

In this section, we perform a weakly nonlinear analysis in a neighbourhood of σ
Hopf
C ,

specifically σC = σ
Hopf
C − ε2 with ε 
 1, in order to determine the amplitude of the limit

cycle and confirm its local stability. Since the analysis is involved, results are summarised
in the main text (see Appendix 3 for details).

For ease of presentation, we let x = N , y = TC and z = TH .We introduce the long-time
τ = ε2t and proceed by expanding x = (x, y, z)T as follows:

x = x0 + εx1(t, τ) + ε2x2(t, τ) + ε3x3(t, τ) + . . . , (30)

where the long time scale τ = ε2t determines the limit cycle amplitude. Here x0 is the
steady state solution with N = O(Ñ2) at σC = σ

Hopf
C . To obtain the amplitude equation
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Figure 8. (a) Dependence of σ̃C on σ̄H from Equation (29) (black curve) compared with the numerical
solutionof the eigenvalue equation at theHopf bifurcationpoint (blue curve). (b) Frequencyω associated
with the eigenvalues λ = ±iω at the emergence of the limit cycle as σ̃C varies. Noteω → 0 as σ̄H → 0
and 1.

for the limit cycle we substitute (30) into Equations (6)–(8) and equate to zero terms of
like orders of magnitude (full details are provided in Appendix 3). AtO(ε), we recover the
linear dynamics

∂x1
∂t

= J0x1 , (31)

where J0 = J (x0). From the linear stability analysis, J0vm = λmvm where λ1 = iω,
λ2 = λ∗

1 = −iω and λ3 ∈ � < 0. Note v2 = v∗
1 while v3 is real. Let vm = (vmx , vmy , vmz)

T

where σ̃C = 1, 2, 3. The most general solution of Equation (31) is

x1 = φ(τ)v1eiωt + φ∗(τ )v∗
1e

−iωt + χ(τ)v3eλ3t . (32)

Here, φ(τ) is the amplitude of the first-order (linear) mode. The amplitude of the decaying
mode,χ(τ), plays no role in the subsequent analysis because it is non-secular. The equation
for φ(τ) is determined at O(ε3) by eliminating secular terms as discussed below.

At O(ε2) we find that x2 is given by

x2 = x20+Ra
2φ

2(τ )e2iωt +c.c.+Rb
2 |φ(τ)|2+Rc

2φ(τ)χe(λ3+iω)t +c.c.+Rd
2χ

2e2λ3t . (33)

where x20 = J0
−1(0, 1, 0)T and Ra

2 through Rd
2 are constant vectors (see Appendix 3).

Notably, x20 arises from taking σC = σ
Hopf
C − ε2.

At O(ε3), the secularity condition supplies the following equation for the amplitude of
the limit cycle

dφ

dτ
= (μ + ν|φ(τ)|2)φ(τ) (34)

where μ = μr + iμi and ν = νr + iνi depend on the governing parameters.
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Substituting φ(τ) = r(τ ) exp (iϑ(τ)) into Equation (34) and equating real and imagi-
nary parts yields

dr
dτ

= (μr + νrr2)r and
dϑ

dτ
= μi + νir2 . (35)

The equation for r is independent of ϑ and has solution

r =
(

μr

(μr/r2(0) + νr) exp ( − 2μrτ) − νr

)1/2
. (36)

If μr > 0 > νr , as is typical for the parameter values considered (see Table 2), then
r → √−μr/νr ≡ A (a constant) as τ → ∞ if r(0) > 0 (otherwise r(τ ) ≡ 0 ∀ t). In such
cases the limit cycle is a stable attractor.

We confirmed our weakly nonlinear analysis by computing themean square amplitudes
of (x − x0)/ε, (y − y0)/ε and (z − z0)/ε to time t = tmax = 20T(ε−2 + 1) where
T = 2π/(ω + ε2ωnl) is the orbital period. Here ωnl is the nonlinear correction to the
frequency, given by ωnl = μi − νiμr/νr . Samplying the solution 3600 times over the
last 20T time units yields estimates of the amplitude A which agree to within 0.4% when
ε = 0.1 and to within 0.016% when ε = 0.01.

7. The effect of immunosuppression

Having described the behaviours exhibited by our model for default parameter values, we
now consider the effects of varying parameters associated with the immunosuppressive
term in Equation (2). The steady state analysis in Section 4 showed that the values of the
two immunosuppressive parameters, ᾱ and Ñ , significantly affect the system equilibria.

We start by considering how changes in ᾱ, the (scaled) proliferation rate of the helper
T cells upon encounter with tumour antigen, affect the bifurcation structure in (σ̃C , σ̄H)

space. We focus on varying the (scaled) rates of T cell infiltration, σ̄H and σ̃C , as experi-
ments have indicated large patient-to-patient variability in these parameters (Oelkrug and
Ramage, 2014; Lee et al., 1989; Kawai et al., 2008; Hiraoka et al., 2006). Furthermore, high
levels of infiltrating T cells correlate with good prognoses (Lee et al., 1989; Kawai et al.,
2008; Hiraoka et al., 2006).

In Figure 9, we present results which show how the bifurcations that occur in (σ̃C , σ̄H)

parameter space change as ᾱ varies. We observe seven distinct regions:

1. Black shaded region: monostability of the tumour-free steady state (i.e. tumour
elimination). Here no other steady states exist.

2. Region shaded with vertical lines: bistability between the tumour-free steady state
and large tumour steady state solutions (i.e. depending on the initial conditions
either the tumour is eliminated or it escapes).

3. Dark grey shaded region: bistability between the small and large tumour steady
state solutions (i.e. depending on the initial conditions either tumour escape or
equilibrium will occur).

4. Light grey shaded region: existence and stability of limit cycle solutions.
5. White shaded region: multiple unstable steady state solutions and stability of the

large tumour steady state (i.e. tumour escape).
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6. Region shaded by horizontal lines: instability of the tumour-free steady state and
stability of the large tumour steady state (i.e. tumour escape).

7. Region shaded by crossings: instability of the tumour-free steady state and stability
of the small tumour steady state (i.e. tumour equilibrium).

Features thats are common for all values of ᾱ can be summarised as follows:

• A stable tumour-free steady state exists for large values of σ̃C and σ̄H (top right
corner);

• An unstable tumour-free steady state and a stable large tumour steady state exists for
small values of σ̃C and σ̄H (lower left corner);

• The series of bifurcations that separate regions in which the tumour-free steady state
is stable (large values of σ̃C) from regions in which the large tumour state is stable
(small values of σ̃C) depend upon the value of ᾱ.

We now discuss the changes in the bifurcation structure that occur when ᾱ is varied
about its default value (ᾱ = 0.19). For smaller values of ᾱ (e.g. ᾱ = 0.06, the small and
intermediate steady state solutions coalesce at a fold bifurcation at a small value of σ̃C (see
Figure 9(a,d)). Increasing ᾱ increases the size of the region in which the tumour-free state
is the only stable attractor (black region) and reduces the size of the region in which the
tumour-free and large tumour states are stable (region shaded with vertical lines), with
bistability disappearing altogether if ᾱ is sufficiently large (see Figure 9 (c,f)). The size of
the region characterised by bistability between the large and small tumour steady states
disappears for large values of ᾱ (dark grey region). Comparison of Figure 9 (b,c) and (e,f)
reveals that as ᾱ increases the region in (σ̃C , σ̄H) parameter space in which only the large
tumour steady state is stable decreases in size (white regions). Increasing ᾱ increases the
size of the region in which limit cycles exist (light grey region).We remark further that as ᾱ

increases the fold point at which the large and intermediate tumour steady states coalesce
occurs at smaller values of σ̃C . In particular, for ᾱ > 1 + Ñ2, the intermediate and large
tumour states disappear and only the small tumour and tumour-free steady state solutions
exist (results not shown). In this case the tumour cells stimulate such a strong increase in
the proliferation rate of the helper T cells that they increase to sufficient numbers that they
can control or eliminate the tumour (see right hand panel of Figure 4(c)).

The results in Figure 9 provide a guide for potential treatment protocols for varying
rates of helper T cell proliferation. In all cases, increasing σ̃C and σ̄H in equal amounts is
most effective in driving the system away from tumour escape. However, the increase in
either population must be limited to avoid an overzealous immune response. Targeting
both populations in combination appears to be the most effective treatment. If only one
population can be targeted alone, then targeting the cytotoxic T cell population appears
to be most effective. The only exception occurs for an effective immune system (relatively
high helper T cell proliferation, as in Figure 9(c)); in this case targeting either population
is comparably effective.

In this section, we have examined how the bifurcation structure in (σ̃C , σ̄H) space
changes as we vary ᾱ, a parameter that reflects the extent to which the helper T cells
increase their rate of cell proliferation on contact with tumour cells. We identified six
distinct regions, distinguished by the existence and stability of steady states and the limit
cycle. Variations in Ñ yield similar results and are, therefore, omitted. Variation of other
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Figure 9. Bifurcation diagrams showing how the number of steady states (identified by continuous black
lines), their stability and the existence of the stable limit cycle change as σ̃C and σ̄H vary. Here the effects
on the sizes and existence of these regions are examined for three values of ᾱ (=0.06, 0.19 and 0.60), all
other parameters being fixed at their default values (see Table 2). Key: black region (tumour-free steady
state is the only stable attractor, i.e. tumour elimination); region shaded with vertical lines (bistability
between the tumour-free and large tumour steady state solutions, i.e. depending on the choice of the
initial conditions, the tumour will either escape or be eliminated); dark grey shaded region (bistability
of large tumour steady state and small tumour steady state solution, i.e. depending on the choice of the
initial conditions, either tumour escape or control will occur); light grey region (existence and stability
of limit cycle solutions, i.e. tumour control); white region (multiple unstable steady state solutions and
stability of large tumour steady state, i.e. tumour escape); region shaded with crossings (instability of
tumour-free steady state solution and stability of the small tumour steady state i.e. tumour control);
region shaded with horizontal lines (instability of tumour-free steady state solution and stability of the
large tumour steady state, i.e. tumour escape).

model parameters (e.g. γ , k and p) affects the location of the fold point relative to the
transcritical bifurcation, and the Hopf bifurcation. Our results show that changing the
parameters (ᾱ, Ñ) has a significant effect on the system’s bifurcation structure in (σ̃C , σ̄H)

parameter space. Taken together, our results indicate the extent to which combination
therapies which not only boost the immune system (by increasing σ̄H and σ̃C) but also
block immunosuppressive effects may outperform monotherapies, with a single mode of
action.

8. Discussion

We have proposed a new mathematical model of tumour-immune interactions in which
helper and cytotoxic T cells interact with tumour cells. Our model captures the three Es
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of immunoediting — elimination, equilibrium and escape (Dunn et al., 2004). We have
examined how the number and nature of the attractors (stable steady states and limit
cycles) change as the infiltration rates of cytotoxic and helper T cells, σC and σH , are
varied. Our focus on σC and σH is motivated by experimental observations which show
high inter-patient variability in T cell infiltration rates and corresponding variability in
observed outcomes (Oelkrug and Ramage, 2014; Fridman et al., 2012; Halama et al., 2011;
Ali et al., 2016). Specifically, high levels of tumour infiltrating T cells have been correlated
with long-term progression free survival in a variety of different cancer types (Rad et al.,
2015; Preston et al., 2013; Hiraoka et al., 2006).

Our model exhibits three distinct behaviours as the infiltration rates of cytotoxic and
helper T cells σC and σH vary. When σC and σH are both small the tumour always escapes.
For intermediate values ofσC andσH , two types of bistability can occur: either (a) bistability
between tumour escape and elimination, or (b) bistability between tumour escape and
tumour coexistence with the immune system, the co-existence state representing either a
finite equilibrium state or a time-dependent periodic solution. When σC and σH are both
large, the tumour is always eliminated. Based upon these results, we propose that patients
may be categorised into three main groups: immunocompromised patients have low rates
of T cell infiltration and their tumours will escape; healthy patients have large rates of T
cell infiltration and any nascent tumours will be eliminated; the tumours of patients with
intermediate levels of T cell infiltration will either escape or be controlled, the outcome
depending on their initial size.

Stable limit cycles, characterised by periodic growth and suppression of the immune
and tumour populations, have been observed in other mathematical models of tumour-
immune dynamics (Kirschner and Panetta, 1998) and experimentally (Coventry et al.,
2009). We confirmed that our model admits a stable limit cycle via a weakly nonlinear
analysis which also yielded an equation for the amplitude of the limit cycle, valid near the
Hopf bifurcation point.

To date, segregation of the T cell pool into helper and cytotoxic T cell populations, that
can be targeted separately by immunotherapies, has received little attention. Which T cell
population may elicit a stronger immune response is still widely debated (Hanson et al.,
2000; Dudley et al., 2002). In this paper, we have developed a mathematical model which
distinguishes their distinct roles as immune promoter and tumour killer respectively.
We found that both T cell populations are important for tumour elimination. Given a
sufficiently high rate of infiltration of either population, tumour elimination occurs. If,
however, the rate of infiltration of helper T cells is low, then a large rate of infiltration of
cytotoxic T cells is needed to eliminate the tumour. On the other hand, if the cytotoxic T
cell infiltration rate is low, only a moderate increase in the helper T cell pool is required
to eliminate the tumour. These findings suggest that targeting the helper T cell population
may be more effective, and result in fewer immune-related adverse effects (Gangadhar and
Vonderheide, 2014) than targeting the cytotoxic T cells directly.

Our model has also revealed that the immunosuppressive parameters α and Ñ play
a major role in determining response outcomes. Specifically, increasing the proliferation
rate of helper T cells, α, increases the size of the region occupied by the stable tumour-free
state. Increasing Ñ , the size of the tumour at which immunosuppressive effects come into
play, decreases the size of the region in which tumour escape occurs. These results suggest
that manipulating α and Ñ may be effective therapies in cancer treatment. This could be
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achieved by blocking the PD-1/PD-L1 axis on T cells infiltrating the tumour (Hirano et al.,
2005), a therapy which has already shown significant promise (Powles et al., 2014).

In future work, it would be interesting to explore the effect of different treatment
protocols for the different patient groups identified in this study. Immunotherapies that
could be explored include: (a) treatment with an immune promoter cytokine such as IL-2,
which stimulates the proliferation of cytotoxic T cells (Rosenberg, 2014); (b) adoptive T
cell therapy which targets the infiltration of cytotoxic and helper T cells (Maus et al., 2014;
Restifo et al., 2012); (c) antibodies that block the PD-1/PD-L1 axis expressed by tumour and
immune cells (Pardoll, 2012) affecting the size of the tumour at which immunosuppressive
effects come into play; and (d) bi-specific antibodies that promote interactions between
tumour and T cells (Schreiner et al., 2016). Comparing different treatment strategies, both
individually and in combination, may reveal effective treatment protocols that could be
used to treat particular patient groups.

A limitation of the current model is the assumption of spatial homogeneity. Future
developments include extending the model to account for cell movement. This would
allow us to study the spatial dynamics of interacting cytotoxic T cells, helper T cells and
tumour cells. This can be achieved by extending ourmodel as a systemof partial differential
equations where cell movement is assumed to be diffusive (Matzavinos et al., 2004; Mallet
and De Pillis, 2006). Despite this limitation, our simplified model is able to capture the
three E’s of immunoediting and reveals distinct patient groups depending on levels of T
cell infiltration into the tumour. Furthermore, examination of the parameters controlling
the immunosuppressive affects included in the model reveals how these parameters and
the rates of infiltration of the T cells might be manipulated to strengthen a weakened or
ineffective immune system so that it can successfully eliminate any tumour.

To simplify yet retain key aspects of the complex model proposed by Robertson-Tessi
et al. (Robertson-Tessi et al., 2012), we developed a system of three ODEs in the form
of a predator-prey model like that of Kuznetsov et al. (Kuznetsov et al., 1994) but with
the addition of a helper T cell population. Our model enabled us to study, through a
combination of analytical and numerical methods, the effectiveness of targeting helper
and cytotoxic T cells in an anti-tumour immune response. Ourmodel does not distinguish
the specific immunosuppression that impact the tumour at various stages of development
as in Robertson-Tessi et al. (Robertson-Tessi et al., 2012), but was nonetheless able to
illustrate how the anti-tumour immune response varies with the level of infiltrating helper
and cytotoxic T cells. Our results suggest that a combined therapy targeting the infiltration
of both T cell populations may result in the best outcome for patients having a broad range
of hindered immune systems. Nonetheless there is a preference for targeting the cytotoxic
T cell population for highly hindered immune systems.
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Appendix 1. Glossary

Table A1. Glossary of terms used to describe tumour-immune interactions and immunotherapy.

Term Description

Antibody A molecule, produced by B cells, that binds a foreign body,
labelling it for recognition by the immune system

Antigen A molecule that provokes a specific immune
response (T and B cells) against a foreign body

Antigen presenting cell (APC) A cell of the innate immune response which
presents antigen to naive T and B cells
to provoke a specific immune response

Effector T cells Short-lived, functional T cells
(e.g. cytotoxic or cytokine-producing, helper T cells)

Elimination The stage of immunoediting where the immune
system recognises and eliminates the cancer cells
before they grow to clinically detectable sizes

Equilibrium The stage of immunoediting where the rate of
tumour cell death caused by the immune response
balances the tumour cell proliferation rate

Escape The stage of immunoediting where tumour cell proliferation
outstrips the suppressive effects of the immune system,
enabling the tumour to grow to a substantial size

Memory T cells Long-lived T cells that have already encountered
their cognate antigen which are primed to respond
rapidly if they re-encounter the pathogen

Major Histocompatibility Complex (MHC) Proteins found on the surface of cells that present
antigen for recognition and activation of the cognate immune cells

Granzyme B A protein produced by cytotoxic T cells and
natural killer cells which perforates the target cell

Humoral response Target cells are eliminated indirectly
via production of antibodies by B cells

Interferon-γ (IFN-γ ) A cytokine which is critical for
both innate and adaptive immunity;
it activates macrophages of the innate immune response
induces expression of MHC class I complexes on cell surfaces

Interleukins (ILs) Proteins produced by cells of the immune system that regulate
(e.g. promote or suppress) the response to the foreign body

Transforming Growth Factor β (TGF-β) A cytokine which regulates cell growth,
proliferation, differentiation and death

Programmed Cell Death Protein 1 (PD-1) A transmembrane protein primarily expressed by T cells
which plays a role in suppressing the immune response

Programmed Cell Death Ligand 1 (PD-L1) A transmembrane protein primarily expressed by tumour cells
which plays a role in suppressing the immune response
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Appendix 2. Conditions for tumour equilibria
In Section 4, we introduced the functions TH = Ha(N ) and TH = Hb(N) (see Equations (16)–(17))
and showed that their positive intersections give rise to tumour equilibria. Figure 4 illustrates the
ways in which these curves may intersect. In this appendix, we detail how the qualitative behaviour
of the functions TH = Ha(N) and TH = Hb(N) vary with model parameters and identify a region
of parameter space in which four (positive) equilibria may occur.

For the curve TH = Ha(N), three cases may arise, depending on the values of ᾱ and Ñ :

(1) ᾱ < 2Ñ : TH = Ha(N) > 0 for N ∈ (0, 1) and attains a finite (positive) maximum:

Ha,max = Ha(Ñ) = 2σ̄HÑ
2Ñ − ᾱ

, (B1)

at N = Ñ .
(2) 2Ñ ≤ ᾱ ≤ 1 + Ñ2: TH = Ha(N) has two asymptotes at

N± = ᾱ ±
√

ᾱ2 − 4Ñ2

2
. (B2)

Furthermore, 0 < N− ≤ N+ ≤ 1, with N− = N+ = Ñ when ᾱ = 2Ñ , and N− = Ñ2 and
N+ = 1 when ᾱ = 1 + Ñ2.

(3) ᾱ > 1+Ñ2: only the asymptote atN = N− lies in the intervalN ∈ [0, 1] (the other asymptote
has N+ > 1, and is therefore outside the range of feasible solutions).

When characterising the behaviour of TH = Hb(N) as defined by Equation (17), we set k̃ =
(1 − p)k and σ̃C = σCpk/γ , and write

TH = Hb(N) = 1 + k̃N − σ̃C

1 − N
. (B3)

This function attains a maximum when

N = 1 −
√

σ̃C

k̃
. (B4)

There are two cases to consider depending on the magnitude of σ̃C/k̃:

(1) σ̃C/k̃ > 1: Hb,max = 1 − σ̃C occurs at N∗ = 0. Hb(N) is monotonically decreasing for
N ∈ [0, 1]. Hence if σ̃C > 1, Hb(N) < 0 ∀N ∈ [0, 1] and there can be no physically realistic
tumour equilibria. If 0 < σ̃C < 1, Hb(N) < 0 for N ∈ (0,Nc), where Nc ∈ (0, 1) is defined as
follows:

Nc = (k̃ − 1) +
√

(k̃ + 1)2 − 4k̃σ̃C
2k̃

, (B5)

andHb,max = Hb(0) = 1− σ̃ . Hence, when 0 < σ̃C < 1, intersections with TH = Ha(N) (and,
hence, tumour equilibria) may occur for 0 < N < Nc .

(2) σ̃C/k̃ ≤ 1: TH = Hb(N) attains a maximum Hb,max = 1 + k̃ − 2
√
k̃σ̃C at N = 1 −

√
σ̃C/k̃ ∈

(0, 1). For physically realistic equilibria we require Hb,max > 0 or, equivalently,

σ̃C <
(1 + k̃)2

4k̃
. (B6)

These results are summarised in Figure ?? where we indicate the region of (k̃, σ̃C) parameter
space in which physically realistic tumour equilibria may occur.
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In Figure 4 we illustrated the possible intersections (and associated tumour equilibria) that occur
as the qualitative behaviour of Ha(N∗) and Hb(N∗) vary. In practice, by a judicious choice of
parameters, four intersections can occur. Further, for appropriate parameter choices, two of these
intersections occur for N∗ 
 1, as we now investigate below.

For ease of presentation, we let s = N∗/Ñ and a = ᾱ/Ñ . Values of s for which intersections
between Ha and Hb occur are given by solutions to the following quartic equation:

p4s4 + p3s3 + p2s2 + p1s + p0 = 0, (B7)

where

p4 = k̃Ñ2 , p3 = (1 − k̃)Ñ − ak̃Ñ2 − σ̄HÑ , p2 = (σ̃C − 1) + k̃Ñ2 + aÑ(k̃ − 1) + σ̄H , (B8a)

p1 = (1 − σ̃C)a + (1 − k̃)Ñ − σ̄HÑ , p0 = σ̃C + σ̄H − 1. (B8b)

We fix parameter values as follows: σ̄H = 0.25 , Ñ = 0.25 and ᾱ = 0.25 (so that a = 1). We then
consider σ̃C = 1− σ̄H + ε2σ̃C2 and k̃ = 1+ (a/Ñ −1)σ̄H + εk̃1, where 0 < ε 
 1.With this choice
of parameters, we find p4 = p3 = p2 = O(1) , p1 = O(

√
ε) , p0 = O(ε). Suppose we seek roots of

the form s = εs1 
 1. By considering leading-order terms in ε in equation (B7), it is straightforward
to show that s1 satisfies the quadratic equation p2s21 − Ñ k̃1s1 + σ̃C2 = 0, and the two solutions for
s1 are given by the following

s1 =
Ñ k̃1 ±

√
Ñ2k̃21 − 4σ̃C2p2
2p2

, (B9)

where p2 = σ̄Ha2 + σ̃CÑ2 > 0. For two real positive roots, we require

0 < σ̃C2 <
Ñ2k̃21
4p2

. (B10)

To show this works, consider the parameter choices ε = 0.03, σ̃C2 = 0.33 and k̃1 = 1.26. With
these choices, we have σ̃C ≈ 0.75 and k̃ ≈ 1.79. The intersections ofHa(N∗) andHb(N∗) are shown
on the left panel of Figure ??, while the right panel zooms in on the two equilibria with 0 < N∗ 
 1.

Appendix 3. Limit cycle emergence
Here we detail the weakly nonlinear analysis presented in Section 6.3. With x = (x, y, z) =
(N ,TC ,TH) and x = x(t, τ) where τ = ε2t, we seek regular power series expansions for the
dependent variables. Then, correct to order ε3, Equations (6)–(8) supply:

ẋ = ε
∂x1
∂t

+ ε2
∂x2
∂t

+ ε3
(

∂x3
∂t

+ ∂x1
∂τ

)
+ O(ε4)

≈ γ (x0 + εx1 + ε2x2 + ε3x3)
− γ [x20 + 2εx0x1 + ε2(2x0x2 + x21) + ε3(2x0x3 + 2x1x2)]
− p[x0y0 + ε(x0y1 + x1y0) + ε2(x0y2 + y0x2 + x1y1) + ε3(x0y3 + y0x3 + x1y2 + y1x2)] ,

(C1)

ẏ = ε
∂y1
∂t

+ ε2
∂y2
∂t

+ ε3
(

∂y2
∂t

+ ∂x1
∂τ

)
+ O(ε4)

≈ σC0 − ε2

+ [y0z0 + ε(y0z1 + z0y1) + ε2(y0z2 + z0y2 + y1z1) + ε3(y0z3 + z0y3 + y1z2 + z1y2)]
+ (p − 1)[x0y0 + ε(x0y1 + y0x1) + ε2(x0y2 + y0x2 + x1y1) + ε3(x0y3 + y0x3 + x1y2 + y1x2)]
− (y0 + εy1 + ε2y2 + ε3y3) ,

(C2)
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ż = ε
∂z1
∂t

+ ε2
∂z2
∂t

+ ε3
(

∂z2
∂t

+ ∂x1
∂τ

)
+ O(ε4)

≈ σH + α[z0f0 + ε(z0f0′x1 + f0z1)
+ ε2(z0f0′x2 + z0f0′′x21/2 + f0′z1x1 + f0z2)
+ ε3(z0f0′x3 + z0f0′′x1x2 + z0f0′′′x31/6 + z1f0′x2 + z1f0′′/2 + x21 + f0′x1z2 + f0z3)]
− δH(z0 + εz1 + ε2z2 + ε3z3) ,

(C3)

where f (x) = x/(Ñ2 + x2), f0 = f (x0), f0′ = df (x0)/dx and so on.
At O(ε) we obtain the linear dynamics described in Section 6.3 (see, for example, Equation (32)

for x1). At O(ε2) Equations (C1)–(C3)supply

∂x2
∂t

= J0x2 − (0, 1, 0)T + W2 (C4)

where

W2 =
⎛
⎝ −γ x21 − pkx1y1

y1z1 + (p − 1)kx1y1
α(f0′′z0x21/2 + f0′x1z1)

⎞
⎠ (C5)

Substituting for x1 from Equation (32) into Equation (C5) gives

W2 = Qa
2φ

2(τ )e2iωt + c.c. + Qb
2|φ(τ)|2 + Qc

2φ(τ)χe(λ3+iω)t + c.c. + Qd
2χ(τ)2e2λ3t (C6)

where c.c. denotes the complex conjugate. The secular terms arising atO(ε3) involve only e2iωt and
1 terms. Thus, onlyQa

2 andQb
2 , shown in Equations (C7) and (C8) contribute; they are given by

Qa
2 =

⎛
⎝ −v1x(γ v1x + kpv1y)
v1y(v1z + k(p − 1)v1x)
v1xα(f0′′z0v1x + f ′

0v1z)

⎞
⎠ (C7)

and

Qb
2 =

⎛
⎝ −v∗

1x(γ v1x + kspv1y) − v1x(γ v∗
1x + pkv∗

1y)

v∗
1y(v1z + k(p − 1)v1x) + v1y(v∗

1z + k(p − 1)v∗
1x)

v∗
1xα(f0′′z0v1x + f0′v1z) + v1xα(f0′′z0v∗

1x + f0′v∗
1z)

⎞
⎠ (C8)

where v1x , v1y and v1z are the components of the linear eigenvector in (32). The solution for x2 is
given by

x2 = x20 + Ra
2φ

2(τ )e2iωt + c.c. + Rb
2 |φ(τ)|2 + Rc

2φ(τ)χe(λ3+iω)t + c.c. + Rd
2χ2e2λ3t . (C9)

where

x20 = J0
−1(0, 1, 0)T , Ra

2 = (2iωI − J0)
−1Qa

2, Rb
2 = −J −1

0 Qb
2 . (C10)

Rc
2 and Rd

2 are not required in the subsequent analysis as they belong to non-secular terms.
Substituting x2 into (C1)–(C3), we obtain

∂x3
∂t

+ ∂x1
∂τ

= J0x3 + W3 (C11)

where

W3 =
⎛
⎝ −2γ x1x2 − pk(x1y2 + y1x2)

y1z2 + z1y2 + (p − 1)k(x1y2 + y1x2)
α(z0f0′′x1x2 + z0f0′′′x31/6 + f0′z1x2 + f0′′z1x21/2 + f0′x1z2)

⎞
⎠ . (C12)

LETTERS IN BIOMATHEMATICS S67



As before the homogeneous solution is already incorporated in x1. For the particular solution we
must solve

∂x3
∂t

− J0x3 + dφ

dτ
v1eiωt + c.c. = (Bl + Bc|φ|2)φeiωt + c.c. + f(t, τ) + c.c. (C13)

where f(t, τ) contains time dependencies other than eiωt and is therefore non-secular. The compo-
nents of the vectors Bl and Bc are given by

Blx = −2γ v1xx20 − kp(v1xy20 + v1yx20) ,
Bly = (v1yz20 + v1zy20) + k(p − 1)(v1xy20 + v1yx20) ,
Blz = α[z0f0′′v1xx20 + f0′(v1zx20 + v1xz20)] ,

(C14)

and
Bcx = −2γ (v∗

1xR
a
2x + v1xRb

2x) − kp(v∗
1xR

a
2y + v1xRb

2y + v∗
1yR

a
2x + v1yRb

2x) ,

Bcy = (v∗
1yR

a
2z + v1yRb

2z + v∗
1zR

a
2y + v1zRb

2y) ,

+ k(p − 1)(v∗
1xR

a
2y + v1xRb

2y + v∗
1yR

a
2x + v1yRb

2x) ,

Bcz = α[z0f0′′(v∗
1xR

a
2x + v1xRb

2x) + f0′(v∗
1zR

a
2x + v1zRb

2x + v∗
1xR

a
2z + v1xRb

2z)

+ f0′′′z0|v1x|2v1x/2 + f0′′(v∗
1zv

2
1x + 2v1z |v1x|2)/2] .

(C15)

The particular solution to Equation (C13) is

x3(t, τ) = X3(t, τ) + u(τ )eiωt + c.c. (C16)

where X3 consists of non-secular terms coming from f(t, τ) + c.c., while u accounts for all non-
secular terms in Bl and Bc . This means umust be a linear combination of v2 and v3:

u = C2(τ )v2 + C3(τ )v3

Moreover (
∂

∂t
− J0

)
ueiωt = (iωI − J0)ueiωt = (C2r2 + C3r3)eiωt (C17)

where rj = (iωI − J0)vj. Using this in Equation (C13) above, upon equating all potentially secular
eiωt terms we obtain

dφ

dτ
v1 + C2r2 + C3r3 = (Bl + Bc|φ|2)φ. (C18)

This can be regarded as a system of equations to determine the vector (dφ/dτ ,C2,C3). Define

M =
⎡
⎣v1x r2x r3x
v1y r2y r3y
v1z r2z r3z

⎤
⎦

and let sl and sc be the solutions of Msl = Bl and Msc = Bc respectively. Then(
dφ/dτ ,C2,C3

)T
= (sl + |φ|2sc)φ . (C19)

Therefore, the amplitude equation satisfied by the limit cycle is

dφ

dτ
= (μ + ν|φ(τ)|2)φ(τ) , (C20)

where μ = slx and ν = scx .
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