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Abstract

We investigate the dynamics of three-gene regulatory networks with one feedback
circuit using the Boolean and continuous models put forth by Gehrmann and
Drossel [4]. We establish the existence of Hopf bifurcations in the continuous
models and use these bifurcations to compare the models more closely. With
this analysis we are able to establish the regions in the parameter space where
the dynamical behavior of the models agree and where they disagree.
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1 Introduction

Genes are responsible for the production of proteins in cells. The process of gene expression
begins with the DNA being transcribed from DNA to messenger RNA (mRNA) within a cell’s
nucleus. After transcription, the mRNA leaves the cell nucleus and is translated into proteins
by ribosomes in the cytoplasm. The protein produced through these processes can then
influence the expression of other genes by activating or inhibiting the next gene in a sequence,
or even itself. Activation will allow the genes to be expressed, while inhibition stops the gene
from being expressed. Networks of genes can be represented by wiring diagrams that describe
how the genes influence one another. These wiring diagrams represent gene regulatory
networks, which describe how the expression of the genes influence by one another. An
example of a gene regulatory network and the corresponding diagram of the macromolecules
involved can be seen in Figure 1.

Occasionally in these regulatory networks, feedback circuits, which are containing loops
between one or more genes, may be present. These feedback circuits can be assigned a sign
depending on the number of activators and inhibitors involved in the circuit. Activators
are assigned +1 and inhibitors −1. By multiplying the sign(s) of the activator(s) and
inhibitor(s), the sign of the circuit can be determined as positive or negative. In 1981,
R. Thomas [14] proposed how dynamical behavior was determined by the sign of the feedback
circuits. In particular, he postulated the following:

1. A necessary condition for multistability (i.e., the existence of several stable fixed points
in the dynamics) is the existence of a positive circuit in the regulatory network.

2. A necessary condition for the existence of an attractive cycle in the dynamics is the
existence of a negative circuit.
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Figure 1: On the left, a diagram of the macromolecules involved in gene expression is
illustrated. Solid lines represent the transcription of mRNA, while dashed lines depict the
translation of the corresponding protein. On the right is a picture of an interaction graph
of a three-gene regulatory network that describes how genes influence one another.

Thomas’ conjectures for gene regulatory networks were proven for networks with only
one circuit [13]. Additional results for gene regulatory networks with a single circuit were
developed using symbolic steady states [12, 11].

Due to the interaction of genes, understanding the behavior of small gene networks
is essential before trying to work with larger networks that represent complex biological
systems. In this paper, we investigate the dynamics of three-gene regulatory networks
with one feedback circuit which is not a self-circuit. We will look at both continuous and
synchronous Boolean models of the network and establish conditions on where in parameter
space these different models give rise to consistent dynamical behavior. We also investigate
whether the sign of the circuit influences the dynamics of these networks.

Several authors have investigated similar problems previously. Gehrmann and Drossel [4]
looked at two-gene models with two connections and with three connections, one of which
is a self-circuit. In their paper, they use generalized models and the method of resultants
introduced by Gross and Feudel [5, 6] to establish general conditions for the onset of Hopf
bifurcations. Their description uses only the signs of the circuits as well as the Hill exponent
and the time-scale ratio of the mRNA and protein dynamics, and is the first to use all of
these parameters. They conclude that the occurrence of a cycle in the Boolean dynamics is
neither necessary nor sufficient for an oscillation in the continuous dynamics. Their work
ties together and expands upon the work of others [2, 7, 10, 17] in the realm of two-gene
networks. Our work differs in that we consider larger networks (three-gene networks) with
more connections (four), and neither self-circuits nor Hamiltonian circuits. Interestingly we
obtain similar results to Gehrmann and Drossel [4].

Previous work on networks larger than two genes has been conducted by Norrell [9] and
Mochizuki [8]. Norrell investigated four-gene networks with two circuits, one of which is
Hamiltonian and one additional self-circuit. Their model only keeps track of translation,
not transcription. They do not perform a bifurcation analysis, but they do recognize the
importance of the Hill exponents in the dynamics of their continuous models. Mochizuki [8]
has looked at random networks with larger numbers of nodes. He reaches several important
conclusions. First, there is a direct relation between the number of steady states and the
number of self-circuits in the network. Secondly, the dynamics of the Boolean models
contain periodic orbits that are not seen in the continuous models, making the Boolean
models suspect for predicting dynamical behavior of larger networks.

In this paper, we are particularly interested in three-gene networks with one feedback
circuit and exactly one gene governed by a logical gate. The dynamics of the Boolean model
is presented in Section 2. Numerical results for the the continuous model are described
in Section 3. In Section 4, we perform stability analysis of the continuous model, which
involves the determination of Hopf bifurcations in the parameter space.
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2 Synchronous Updating Boolean Model

A wiring diagram, where nodes are genes and edges define the interactions among the
genes, characterizes a gene regulatory network. In the Boolean model, genes are recognized
as either ON (1) or OFF (0). This model reduces the quantitative complexity of the gene
interactions to the qualitative, logical structure of the network.

Figure 2: Example interaction graph for a three-gene regulatory network.

Definition 2.1. Let α1, α2, ..., αn be the genes in a network. A state x is an ordered n-tuple
(x1, x2, ..., xn) in which xi is either 0 or 1 depending on whether gene αi is OFF or ON,
respectively. We denote the state space by S = f0, 1gn.

Algebraically, we consider S as an n-dimensional vector space over the field of order 2.

Definition 2.2. A gene regulatory network (G, f) consists of a set of genes α1, α2, . . . , αn

which can be represented using an interaction graph and a state transition function f =
(f1, f2, . . . , fn) : S ! S.

By assigning each gene a state, note that there are 2n possible states, where n represents
the number of genes in the interaction graph. A sample interaction graph is depicted in
Figure 2. The 2n states can be represented by a state transition graph.

Definition 2.3. A state transition graph of a gene regulatory network (G, f) is a directed
graph with vertices for each of the 2n states in the state space S. There is an edge from a
state xi 2 S to xj 2 S if and only if f(xi) = xj.

The occurrence of fixed points and state cycles describes the qualitative behavior of these
networks. By constructing state transition graphs for each of the small gene regulatory net-
works, preliminary results are produced based on the characteristics found in the interaction
graphs for each network.

In the event of two genes acting upon a single gene, we consider three logical gates:
AND, XOR, and OR. If the logical gate is AND, then both genes will influence the gene
they act upon together. When the logical gate is XOR, then one gene or the other, not
both, will influence the gene being acted upon. The logical gate OR follows from any of
the previous scenarios occurring, that is one, the other, or both can possibly influence the
gene. Assuming genes αi and αj activate gene α1, the mathematical representations of these
logical gates are

AND: f1(x1, x2, ..., xn) = xixj ,

XOR: f1(x1, x2, ..., xn) = xi + xj ,

OR: f1(x1, x2, ..., xn) = xi + xj + xixj .

If αi is an inhibitor, then xi is replaced by 1 + xi. To see this, if xi = 1, then 1 + xi =
1 + 1 = 0, which has the effect of inhibition on the gene it influences. Similarly, if xi = 0,
then 1 + xi = 1 + 0 = 1, which allows the influenced gene to remain active. Based on the
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genes influence on one another in the interaction graph, a corresponding function can be
written for each gene, including the gene with the logical gate.

In this paper, we compare the qualitative behavior of Boolean models and continuous
models for particular small gene regulatory networks. The following two theorems summa-
rize the relationship between the sign of the feedback circuit and the Boolean dynamics for
the three-gene networks under consideration.

Theorem 2.1. Let (G, f) be a three-gene regulatory network, which has the following prop-
erties:

1. G consists of one two-gene feedback circuit, which is negative.

2. The one gene that is not in the feedback circuit is affected by the two other genes, and
the influence of these two genes is governed by one of the logical gates AND, OR, or
XOR.

Then the state transition graph for (G, f) is connected and contains a unique attracting
four-state cycle.

Proof. Let (G, f) be a three-gene regulatory network, as described in the theorem statement.
Since the two genes in the feedback circuit are only influenced by one another, we can
consider the subnetwork created by the two-gene negative circuit independently of the third
gene.

When we have a negative two-gene feedback circuit between genes α1 and α2, we observe
a four-state cycle. Assuming gene α1 is an activator and α2 is an inhibitor, this subnetwork
can be represented in (G, f) as

f1(x1, x2) = 1 + x2,

f2(x1, x2) = x1.

Assuming that the initial state of this subnetwork is 11, we find the four-state cycle

11! 01! 00! 10! 11.

Hence, the first two digits will be cycling between the four possible states for the state
transition graph of the negative two-gene circuit.

Now consider the influence of the two-gene subnetwork on the gene α3. The state of the
gene governed by the logical gate can then be determined by f for each of the fixed states
of the two-gene circuit. We first present the argument for the AND logical gate on gene α3

where both α1 and α2 are inhibitors. The state transition function takes the form

f1(x1, x2, x3) = 1 + x2,

f2(x1, x2, x3) = x1,

f3(x1, x2, x3) = (1 + x1)(1 + x2).

We now compute the values of the coordinate function f3:

f3(1, 1, x3) = (1 + 1)(1 + 1) = 0,

f3(0, 1, x3) = (1 + 0)(1 + 1) = 0,

f3(0, 0, x3) = (1 + 0)(1 + 0) = 1,

f3(1, 0, x3) = (1 + 1)(1 + 0) = 0.

This calculation show that the four-state cycle in the state transition graph for the
two-gene subnetwork consisting of the feedback circuit between genes α1 and α2 given by

11! 01! 00! 10! 11
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induces the four-state cycle

110! 010! 000! 101! 110

in the state transition graph of (G, f) for the network described. Moreover, the function f
takes the other four states to states in this cycle.

Similar proofs work for the OR and XOR logical gates governing the behavior of the
gene α3. The only differences are the specific definitions of the coordinate function f3. In
the OR case with both of α1 and α2 acting as inhibitors on α3, we have

f3(x1, x2, x3) = (1 + x1) + (1 + x2) + (1 + x1)(1 + x2).

Thus

f3(1, 1, x3) = (1 + 1) + (1 + 1) + (1 + 1)(1 + 1) = 0,

f3(0, 1, x3) = (1 + 0) + (1 + 1) + (0 + 1)(1 + 1) = 1,

f3(0, 0, x3) = (1 + 0) + (1 + 0) + (1 + 0)(1 + 0) = 1,

f3(1, 0, x3) = (1 + 1) + (1 + 0) + (1 + 1)(1 + 0) = 1,

which gives the four-state cycle

111! 010! 001! 101! 111.

As before, the function f takes the four states that are not in the cycle to states in the cycle.
In the XOR case with both of α1 and α2 acting as inhibitors on α3, we have

f3(x1, x2, x3) = (1 + x1) + (1 + x2).

Thus

f3(1, 1, x3) = (1 + 1) + (1 + 1) = 0,

f3(0, 1, x3) = (1 + 0) + (1 + 1) = 1,

f3(0, 0, x3) = (1 + 0) + (1 + 0) = 0,

f3(1, 0, x3) = (1 + 1) + (1 + 0) = 1,

which gives the four-state cycle

111! 010! 001! 100! 111.

The function f takes the other four states to states in this cycle.
If α1 and α2 are the different combinations of activating and inhibiting influences on α3,

then the function f3 would still be a function of just x1 and x2, and hence we would find four-
state cycles as above for each of the three logical gates. Therefore, the state transition graph
for the three-gene regulatory network (G, f) is connected and contains a unique attracting
four-state cycle. �

Like a network with a negative circuit and the specified structure, results for a positive
feedback circuit can be proved. We formally prove the results for positive circuits.

Theorem 2.2. Let (G, f) be a three-gene regulatory network, which has the following prop-
erties:

1. G consists of one two-gene feedback circuit, which is positive.

2. There is exactly one gene that is not in the feedback circuit which is affected by two
genes, and the influence of these genes is governed by one of the logical gates AND,
OR, or XOR.
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Then the state transition graph for (G, f) contains two fixed points and a unique two-state
cycle.

Proof. Let (G, f) be a three-gene regulatory network, as described in the theorem. Since
the two genes in the feedback circuit are only influenced by one another, we can consider
the subnetwork created by the two-gene positive circuit independently of the third gene.

When we have a positive two-gene feedback circuit between genes α1 and α2, we observe
two fixed points and a two-state cycle. Assuming genes α1 and α2 activate one another,
this subnetwork can be represented in (G, f) as

f1(x1, x2) = x2,

f2(x1, x2) = x1.

Hence the state transition graph for the two-gene subnetwork has the fixed points 00 and 11
and the two-state cycle

01! 10! 01.

We now consider the influence of the two-gene subnetwork on gene α3. The state of the
gene governed by the logical gate can then be determined by f for each of the fixed states
of the two-gene circuit. We first present the argument for the AND logical gate on gene α3

where α1 is an inhibitor and α2 is an activator. The state transition function takes the form
(G, f) as follows:

f1(x1, x2, x3) = x2,

f2(x1, x2, x3) = x1,

f3(x1, x2, x3) = (1 + x1)x2.

We now compute the values of the coordinate function f3 from the fixed points 10 and
01 of the state transition graph for the two-gene subnetwork:

f3(1, 1, x3) = (1 + 1)1 = 0,

f3(0, 0, x3) = (1 + 0)0 = 0.

Hence the fixed points 10 and 01 of the state transition graph of the two-gene subnetwork
induce the fixed points

000 and 111,

respectively, in the state transition graph for (G, f).
Computing the values of the function f3 from the states in the two-state cycle of the

state transition graph for the two-gene subnetwork, we obtain

f3(1, 0, x3) = (1 + 1)0 = 0,

f3(0, 1, x3) = (1 + 0)1 = 1.

Thus, two-state cycle of cycle of the state transition graph for the two-gene subnetwork
induces the two-state cycle

101! 010! 101

in the state transition graph for (G, f). Moreover, the function f takes the other four states
to either the fixed points or the state cycle in the state transition graph of f .

Similar proofs work for the OR and XOR logical gates governing the behavior of the
gene α3. The only differences are the specific definitions of the coordinate function f3. For
the OR case with α1 acting as an inhibitor on α3 and α2 acting as an activator on α3, we
have

f3(x1, x2, x3) = (1 + x1) + x2 + (1 + x1)x2.
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Thus,

f3(0, 0, x3) = (1 + 0) + 0 + (1 + 0)0 = 1,

f3(1, 1, x3) = (1 + 1) + 1 + (1 + 1)1 = 1,

f3(1, 0, x3) = (1 + 1) + 0 + (1 + 1)0 = 0,

f3(0, 1, x3) = (1 + 0) + 1 + (1 + 0)1 = 1,

which gives the fixed points

001 and 111

and the two-state cycle

101! 010! 101

in the state transition graph for (G, f). Once again, the function f takes the remaining four
states to one of the fixed points or states in the cycle.

For the XOR case with α1 acting as an inhibitor on α3 and α2 acting as an activator
on α3, we have

f3(x1, x2, x3) = (1 + x1) + x2.

Thus

f3(0, 0, x3) = (1 + 0) + 0 = 1,

f3(1, 1, x3) = (1 + 1) + 1 = 1,

f3(1, 0, x3) = (1 + 1) + 0 = 0,

f3(0, 1, x3) = (1 + 0) + 1 = 0,

which gives the fixed points

001 and 111

and the two-state cycle

100! 010! 100

in the state transition graph for (G, f). Once again, the function f takes the remaining four
states to one of the fixed points or states in the cycle.

If α1 and α2 inhibit each other, the state transition graph for the two-gene subnetwork
consisting of the two-gene feedback circuit containing α1 and α2 has fixed points 10 and 01
and the two-state cycle

11! 00! 11.

For the cases considered above with α1 inhibiting α3 and α2 activating α3, we similarly
obtain state transition graphs for (G, f) with two fixed points and a unique two-state cycle.

Furthermore, observe that the function f3 would remain a function of just x1 and x2
even if the manners in which α1 and α2 influence α3 were different. Therefore, in all possible
cases, the state transition graph for the three-gene regulatory network (G, f) has two fixed
points and a unique two-state cycle. �

3 Continuous Model

The concentrations of the macromolecules involved with gene expression can be represented
using differential equations. A system of equations for the mRNA, Ri, and the protein Pi

produced by each gene αi can be written for each interaction graph. Assuming we use
the same structure of the interaction graph of the gene network, where α1 and α2 are in
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a feedback circuit and α3 is influenced by both α1 and α2, governed by a logical gate, the
system of equations are of the following form:

when one gene is influencing a gene Ṙ1 = rm1F1(P2)� rγ1R1,

Ṙ2 = rm2F2(P1)� rγ2R2,

when two genes are influencing a gene Ṙ3 = rm3F3(P1, P2)� rγ3R3,

protein expression for all genes Ṗ1 = ω1R1 � δ1P1,

Ṗ2 = ω2R2 � δ2P2,

Ṗ3 = ω3R3 � δ3P3.

where the translation and degradation rates are denoted by ωi and γi, respectively. Ad-
ditionally, the maximal transcription rate of proteins, mi, and degradation rate of δi are
represented in the model. A time scale ratio of mRNA to protein production is defined
by Ri

Pi
= r, also. As with the Boolean framework, logical gates can be accounted for in

the continuous model; these are introduced using Hill functions. The functions Fn are Hill
functions, switch-like functions that correspond to a gene being either ON or OFF. The
following functions can be defined for gene i that is influenced by gene(s) j:

F+
i (Pj , kj , nj) =

P
nj

j

P
nj

j + k
nj

j

(1)

F−i (Pj , kj , nj) = 1� F+
i (Pj , kj , nj) =

k
nj

j

P
nj

j + k
nj

j

. (2)

In the Hill functions, k is the expression threshold of the gene, and n is the Hill coefficient,
which biologically corresponds to the number of binding sites present in the gene. We use
F+ when the gene is an activator and F− when the gene is an inhibitor. Using the Hill
functions, we can construct our system of equations according to the interaction graph of
the desired network. Logical gates can be represented by the addition and multiplication of
these Hill functions. As with the Boolean model, when a gene is influenced by two genes,
the logical gates must be considered.

In order to represent the logical gates governing a gene, the composition of Hill functions
is used. Consider a network in which gene α3 is influenced by genes α1 and α1. Addition-
ally, let α1 be an activator and α2 be an inhibitor, then the following functions for the
corresponding logical gates can be constructed:

AND: Ṙ3 = rm3

[(
Pn

1

Pn
1 +kn

1

)(
kn
2

Pn
2 +kn

2

)]
� rγ3R3,

XOR: Ṙ3 = rm3

[(
Pn

1

Pn
1 +kn

1

)
+
(

kn
2

Pn
2 +kn

2

)]
� rγ3R3,

OR: Ṙ3 = rm3

[(
Pn

1

Pn
1 +kn

1

)(
kn
2

Pn
2 +kn

2

)
�
(

Pn
1

Pn
1 +kn

1

)
+
(

kn
2

Pn
2 +kn

2

)]
� rγ3R3.

Because the degradation, transcription, and translation rates will be approximately the
same at all times, these parameter values remain constant. However, the time scale ratio r
of the concentration of mRNA to protein would vary for a network, in the proposed model
it is varied between r = 1 and r = 50. Similarly, the Hill coefficients would be allowed to
vary between the values n = 2, 5, 10 to test the continuous dynamics. Examples of what the
dynamics of the continuous model looks like for a gene regulatory network for the different
parameter values can be seen in Figures 3, 4, and 5. Table 1 summarizes the dynamics of
the continuous model in terms of the structure of the interaction graphs.

The continuous dynamics for these small gene regulatory networks in Table 1 show that
when there is a positive circuit present in the interaction graph, stabilizing behavior always
occur. Although some oscillations may be observed in networks with a positive feedback
circuit, as time progresses there is always stabilizing behavior. When a negative feedback
circuit is present in the interaction graph, there is always eventually oscillatory behavior. As
the parameters are increased, the networks always show oscillatory behavior. These results
from Table 1 can be compared with results from the Boolean model to determine if there is
an underlying relationship among these models.
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Figure 3: Time series for the continuous model of a three-gene regulatory network with a
positive feedback circuit, where r = 1 and, from the left to right, n = 2, 5, 10.

Figure 4: Time series for the continuous model of a three-gene regulatory network with a
positive feedback circuit, where r = 50 and, from the left to right, n = 2, 5, 10.

4 Analysis

To better understand when the continuous model exhibits either oscillatory or stable be-
havior, we determine where Hopf bifurcations occur in the parameter space. Following
Gehrmann and Drossel [4], we use the technique of generalized models due to Gross and
Feudal [6] to normalize our model and then the method of resultants also due to Gross and
Feudal [5] to determine where the bifurcations occur. The technique of generalized models
allows us to address different logical functions for F3(Pa, Pb) and parameter values at once
and allows us to study different dynamical regions without the need to specify the form of
the reaction or the specific equilibrium concentrations.

We consider the general gene regulatory network shown in Figure 6 in which we do not a
priori specify whether influences are activating or inhibitory. The structure of the analysis
will be the same regardeless of the types of gene interactions occuring. To begin the process
of determining where the model exhibits oscillatory behavior, we perform linear stability
analysis of the fixed points and determine where a Hopf bifurcation occurs. The fixed points
are obtained by setting the six derivatives in the model equal to zero and then by solving
for the fixed points of the form

(R∗1, R
∗
2, R

∗
3, P

∗
1 , P

∗
2 , P

∗
3 ).

Figure 5: Time series for the continuous model of a three-gene regulatory network with a
negative feedback circuit, where r = 1 and, from the left to right, n = 2, 5, 10.
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Table 1: Continuous dynamics for small gene regulatory networks based on network char-
acteristics

Sign of Feedback Circuit Dynamics
Positive Circuit Stabilizing occurs; occasional oscillations be-

fore stabilizing
Negative Circuit Eventually see oscillatory behavior

Figure 6: General interaction graph for a three-gene regulatory network.

We obtain the equations

R∗1 =
δ1
ω1
P ∗1 , R∗2 =

δ2
ω2
P ∗2 , R∗3 =

δ3
ω3
P ∗3 ,

P ∗1 =
γ1δ1
ω1m1

F1(P2), P ∗2 =
γ2δ2
ω2m2

F2(P1), P ∗3 =
γ3δ3
ω3m3

F3(P1, P2).

The Jacobian of the system at the fixed point can be written as

J =



−rγ1 0 0 0 rm1
∂F1

∂P2
0

0 −rγ2 0 rm2
∂F2

∂P1
0 0

0 0 −rγc rm3
∂F3

∂P1
rm3

∂F3

∂P2
0

ω1 0 0 −δ1 0 0
0 ω2 0 0 −δ2 0
0 0 ω3 0 0 −δ3


=

(
mRNA degradation transcription

translation protein degradation

)
.

To begin the process of using generalized models, we assume that there is at least one
positive equilibrium

(R∗1, R
∗
2, R

∗
3, P

∗
1 , P

∗
2 , P

∗
3 ).

We now define the normalized variables

r1 =
R1

R∗1
, r2 =

R2

R∗2
, r3 =

R3

R∗3
, p1 =

P1

P ∗1
, p2 =

P2

P ∗2
, p3 =

P3

P ∗3
,

which give rise to the normalized functions

f̃j(pi) =
Fj(P

∗
i pi)

F ∗j
, where i = 1, 2, 3

and

F ∗1 = F1(P2), F ∗2 = F2(P1), F ∗3 = F3(P1, P2).
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The normalized system is

r′1 =
m1F

∗
1 r

R∗1
f̃1(p1)� γ1r1r, p′1 =

R∗1
P ∗1

ω1r1 � δ1p1,

r′2 =
m2F

∗
2 r

R∗2
f̃2(p2)� γ2r2r, p′2 =

R∗2
P ∗2

ω2r2 � δ2p2,

r′3 =
m3F

∗
3 r

R∗3
f̃3(p1, p2)� γ3r3r, p′3 =

R∗3
P ∗3

ω3r3 � δ3p3.

The normalized fixed point becomes

(r∗1 , r
∗
2 , r
∗
3 , p
∗
1, p
∗
2, p
∗
3) = (1, 1, 1, 1, 1, 1).

To further simplify the model, we introduce the new parameters

αr =
m1F

∗
1 r

R∗1
= γ1r, αp =

R∗1ω1

P ∗1
= δ1,

βr =
m2F

∗
2 r

R∗2
= γ2r, βp =

R∗2ω2

P ∗2
= δ2,

µr =
m3F

∗
3 r

R∗3
= γ3r, µp =

R∗3ω3

P ∗3
= δ3.

The model can now be expressed as

r′1 = αr(f̃1(p2)� r1), p′1 = αp(r1 � p1),

r′2 = βr(f̃2(p1)� r2), p′2 = βp(r2 � p2), (3)

r′3 = µr(f̃3(p1, p2)� r3), p′3 = µp(r3 � p3).

In this generalized model, αi, βi, and γi are measures of the (inverse) time scales of the
mRNA and protein concentrations. We assume that the time scale ratio is

r =
αr

αp
=
βr
βp

=
µr

µp
.

The Jacobian of the normalized model becomes

J =


αr 0 0 0 0 0
0 βr 0 0 0 0
0 0 µr 0 0 0
0 0 0 αp 0 0
0 0 0 0 βp 0
0 0 0 0 0 µp





�1 0 0 ∂f̃1
∂p1

∂f̃1
∂p2

∂f̃1
∂p3

0 �1 0 ∂f̃2
∂p1

∂f̃2
∂p2

∂f̃2
∂p3

0 0 �1 ∂f̃1
∂p1

∂f̃1
∂p2

∂f̃1
∂p3

1 0 0 �1 0 0
0 1 0 0 �1 0
0 0 1 0 0 �1


.

By substituting r for the timescale ratio and noting that the A, B, C, and D represent the
only possible nonzero partial derivatives, the Jacobian becomes

J =


r 0 0 0 0 0
0 r 0 0 0 0
0 0 r 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




�1 0 0 0 A 0
0 �1 0 B 0 0
0 0 �1 C D 0
1 0 0 �1 0 0
0 1 0 0 �1 0
0 0 1 0 0 �1

 .

We are now in the position to determine the eigenvalues of J . We look for two particular
cases. A Hopf bifurcation occurs when a pair of symmetric purely imaginary eigenvalues
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occur. This bifurcation is an indication of stable oscillatory behavior on one side of the
bifurcation and stable equilibria on the the other side. A real Hopf situation occurs when
there is a pair of symmetric real eigenvalues. This does not indicate an actual change in
the dynamics of the system. We complete the analysis using the method of resultants [5] to
determine the bifurcation surfaces.

We first find the characteristic polynomial of J , which is

c6λ
6 + c5λ5 + � � �+ c1λ+ c0,

where

c0 = r3 � r3AB, c1 = �rAB + 3r2 + 3r3 � r3AB,
c2 = 3r + 9r2 + 3r3 � r2AB, c3 = r3 + 9r2 + 9r + 1,

c4 = 3r2 + 9r + 3, c5 = 3r + 3,

c6 = 1.

We then find the resultant determinant

R =

∣∣∣∣∣∣∣∣∣∣
c1 c0 0 0 0
c3 c2 c1 c0 0
c5 c4 c3 c2 c1
0 c6 c5 c4 c3
0 0 0 c6 c5

∣∣∣∣∣∣∣∣∣∣
.

In factored form, the resultant is

R = 4r3(1 + r)3(AB � 4� 8r � 4r2)(r2AB � 4� 8r � 4r2)(rAB + 1 + 2r + r2).

The bifurcation manifold obtained from this resultant in the three parameter (r,B,A) space
is implicitly given by

4r3(1 + r)3(AB � 4� 8r � 4r2)(r2AB � 4� 8r � 4r2)(rAB + 1 + 2r + r2) = 0.

Now the factor (rAB+1+2r+r2) corresponds to the Hopf bifurcation because J possess
a pair of symmetric, purely imaginary eigenvalues. The corresponding surface is plotted in
Figure 7. Oscillatory behavior occurs in the components of the parameter space bounded by
the two branches of this surface not containing (0, 0, 0). The component containing (0, 0, 0)
corresponds to a stable fixed point. From the figure, we see that Hopf bifurcations and
hence oscillatory behavior occur when A and B have opposite signs. This make sense and
agrees with the results of Gehrmann and Drossel [4] because this indicates the existence
of an activitor-inhibitor relationship between genes α1 and α2. Additionally, the figure
indicates that region for which oscillatory behavior occurs shrinks as the time scale ratio r
increases. The factors (r2AB � 4 � 8r � 4r2) and (AB � 4 � 8r � 4r2) correspond to real
Hopf situations because J contains a pair of real symmetric eigenvalues. These branches
meet when r = 1 and are plotted in Figure 8. The Hopf bifurcation surface and the real
Hopf situation surfaces do not intersect.

We now summarizes the results of this section with the following theorem.

Theorem 4.1. Consider a gene regulatory network whose wiring diagram is Figure 6 and

whose dynamics are described by the normalized system (3). Let A =
∂f̃1
∂p2

and B =
∂f̃2
∂p1

.

1. In the (r,A,B)-parameter space, the system exhibits a Hopf bifurcation along the sur-
face given by

rAB + 1 + 2r + r2 = 0.

The region between the two branches of this surface containing (0, 0, 0) corresponds to
the existence of a stable fixed point for the system. The other two regions correspond
to oscillatory behavior.
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Figure 7: The Hopf bifurcation surface

2. In the (r,A,B)-parameter space, the system exhibits a real Hopf situation along the
intersecting surfaces given by

r2AB − 4− 8r − 4r2 = 0 and AB − 4− 8r − 4r2 = 0.

5 Discussion

The original goal of our investigation was to determine if there was a connection between the
Boolean and continuous models of small gene regulatory networks. When first comparing
the qualitative behavior of these small networks, there appeared to be no clear relationship
between the Boolean and continuous models. However, we were able to conclude that a state
cycle in the Boolean model does not imply that there will be oscillations in the continuous
model. This agreed with previous work comparing Boolean and continuous models of two-
gene regulatory networks [4].

Since a clear connection between the two models was not evident, stability analysis of
the continuous model was performed. We determined when a Hopf bifurcation occurs for
our gene regulatory networks, which represents the continuous model switching dynamical
behavior. More precisely, Hopf bifurcations showed where the Boolean and continuous
models switched from disagreement to agreement. Below is a table of all the results for all
parts of the study conducted in order to see the entirety of the work together. Table 2 allows
an easy comparison of the dynamics of the networks with respect to the sign of feedback
circuits present in the networks.

By determining the occurrence of Hopf bifurcations, we were able to find when the
dynamical behavior of the two models agreed. In the future, we plan to continue comparing
the qualitative dynamics of the Boolean and continuous models. In addition, we plan to
continue looking at more complex small gene regulatory networks and eventually larger
networks.
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Figure 8: The real Hopf situation surface

Table 2: Dynamics of each analysis for small gene regulatory networks based on network
characteristics

Feedback
Circuits

Boolean
Dynamics

Continuous
Dynamics

Hopf
Dynamics

Positive
Circuit

Two-state
cycles and
fixed points

Stabilizing be-
haviors with some
oscillations before
stabilizing

Occur when
r � 6

Negative
Circuits

Two- and
four-state
cycles

Eventually have
oscillatory behav-
ior

Occur when
r < 6
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