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ABSTRACT
Childhood obesity is a health emergency in many parts of the world
including the U.S. and, consequently, identifying local, regional or
national intervention models capable, of altering the dynamics of
obesity at scales that make a difference remains a challenge. The
fact that consumption of healthful foods among most youth has
yet to meet recommended nutritional standards highlights a lack of
effective policies aimed at addressing the epidemic of obesity. Math-
ematical models are used to evaluate the roles of socialisation and
school environment on the diet dynamics of children. Data suggest
that standard nutrition education programmes may have, at best,
minimal impact in altering diet dynamics at the population-level.
Inclusion of peer influence (model as contagion) reinforced by the
use of culturally-sensitive school menus (environmental disruption)
may prove capable of modifying obesity enhancing diet dynamics;
altering the diets of a significant (critical) proportion of youngsters.
A framework is introduced to explore the value of behaviour-based
interventions and policies that account for the sociocultural envi-
ronments of at risk communities. These models capture carefully
choreographed scenarios to account for the fact that when dealing
with diet-dynamics systems, thinking additively is not enough as it
cannot account for the power of nonlinear effects.
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1. Introduction

The CDC estimates that 12.7 million U.S. children (or 17%) of 2-to-18-year-olds are con-
sidered obese as of 2011–2012 (Ogden & Carroll, 2010). These young individuals have
higher risk of cardiovascular disease, pre-diabetes, bone and joint problems, sleep apnea,
and social and psychological problems than the non-obese. It has been shown that a diet
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abundant in fruits and vegetables can improve health and lower the risk for obesity, cardio-
vascular disease, and cancer (Birt, Hendrich, & Wang, 2001; Boeing et al., 2012; Murphy
et al., 2012; van Duijnhoven et al., 2009) and yet, studies have shown that 90% of chil-
dren (2-to-18-year-olds) do not consume the United States Department of Agriculture’s
(USDA) recommended daily servings of fruits and vegetables (Center for Disease Control
and Prevention, 2014).

Schools are at the frontier of diet-dynamics interventions since approximately 47% of
the total daily energy consumed by children comes from participation in school lunch and
breakfast programmes where vegetables are under-consumed (Byker, Farris, Marcenelle,
Davis, & Serrano, 2014). Approximately 19 million schoolchildren participate in the
national school lunch programme (Briefel, Wilson, & Gleason, 2009). Hence, schools
provide the environment where implementing and evaluating nutrition education pro-
grammes can take place. National and state-mandated policies and guidelines such as
USDA ‘My Plate’ do influence the types of foods available to children in 99% of public
schools and 83%of public/private schools (Fox,Hamilton, & Lin, 2004). Schools, an under-
utilised research space, provide the ideal setting for promoting and evaluating policies and
programmes that foster healthy eating behaviours. Mathematical models are introduced to
shed some light on the potential impact of innovative interventions in altering diet dynam-
ics. Children tend to eat what their friends or relatives eat and so modelling our diet as the
result of a ‘contagion’ process among young individuals, in school settings, seems like a
promising direction. Furthermore, prior studies have identified the importance of social-
isation (e.g. peer influence) in school environments on eating behaviours (Ammerman,
Lindquist, Lohr, & Hersey, 2002; Blanchette & Brug, 2005; Katz, 2009; Lytle & Achter-
berg, 1995). Here, two types of simple dynamicmodels are introduced as a way of assessing
the role of school environments on the nonlinear dynamics of socialisation at the popu-
lation level. This paper is organised as follows: a brief overview of eating behaviours in
children is provided in Section 2; a mathematical framework where the role of socialisa-
tion is studied under controlled highly simplified scenarios is introduced in Section 3; the
analyses of a nutrition educational programmes where recidivism is common is the focus
of Section 4; the results of implementing two types of standard nutrition educational pro-
grammes (‘weak’ and ‘strong’) in the presence of recidivism are analyzed in Section 5; and
most importantly the findings of a behavioural-based nutrition programme in the absence
of recidivism are addressed in Section 6 and with recidivism in Section 7. Finally, Section 8
collects our conclusions and observations.

2. Modeling eating behaviors in school settings

Healthy eating habits must include a variety of foods, high consumption of fruits and veg-
etables, and low consumption of fats, that is, a balanced diet, which help in the prevention
of chronic diseases. The unpleasantness of healthier foods and some culturally-acclimated
food taste make the systematic consumption of healthy foods difficult, since after all eat-
ing behaviours are learned over time in social settings shaped by biological, sociocultural
and psychosocial factors (Ammerman et al., 2002; Blanchette & Brug, 2005; Capaldi, 1996;
Katz, 2009; Lytle & Achterberg, 1995). Health behaviour theory and models that incor-
porate individual characteristics (self-efficacy, genetics, taste and food preferences, beliefs,
skills), physical environments (available, accessibility), social (peer/parental influence, role
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Figure 1. Social-Ecological Theory suggest that factors influencing health behaviours can be organised
into four systematic levels: individual, social environment, physical environment, and the macro-level
environment. This figure is modified from (McLeroy et al., 1988).

modelling, norms), and landscapemacro-system forces (culture, policy) have been utilised
to assess their role in shaping dietary patterns (McLeroy, Bibeau, Steckler, & Glanz, 1988).
Our proposed models include parameters that represent individual characteristics (taste
and food preferences), physical environment factors (school environment) and social envi-
ronment elements (nonlinear interactions among peers). Here, we utilise social-ecological
theory (see Figure 1) in building population-level models with the goal of capturing in nat-
ural ways the impact that physical-, social-, and individual-level changes, have on shaping
the diet dynamics of young individuals within school environments.

2.1. Physical environment

Learning how to eat healthier foods is complex. Prior studies suggest, not surprisingly, that
food intake among children is influenced by the availability and accessibility of foods in
their environment (Cullen et al., 2003; Perez-Rodrigo & Aranceta, 2003; Story, Kaphingst,
Robinson-O’Brien, & Glanz, 2008; Van Der Horst et al., 2007). So why, has it then been
so difficult to alter the dynamics of eating behaviours? Because shifting to healthy dietary
patterns requires acknowledgement of the importance of nutrition, healthy diets, a culture
of eating healthy foods (systematic experiences), and continuous access to healthier foods,
that is, the route to sustainable diet modifications is full of challenges and obstacles (Sallis
& Glanz, 2006). In other words, lasting positive changes are tied in to our ability to alter
the social and environmental landscape where food consumption takes place.

2.2. Social environment

The day-to-day interactions among peers and family members shape our eating pref-
erences/behaviours and in the process they influence or drive our diet dynamics. At
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schools, the need for curricula that puts social and behavioural activities that effectively
promote and increase fruit and vegetable consumption must be the norm. The use of
classroom time to increase the knowledge of young people with activities that include
taste-testing, cooking lessons, parental involvement, and school gardening are but some
of the socialisation activities that have proved to be effective in altering, albeit most often
temporarily, food preferences (Ammerman et al., 2002; Lowe, Horne, Tapper, Bowdery,
& Egerton, 2004; Lytle & Achterberg, 1995). Peer role modelling has also been shown to
be a significant force in altering children’s eating behaviours, in other words, children’s
eating habits are strongly influenced by what their friends eat instead of their families,
unless strict parental rules are in place (Reicks et al., 2015). Corresponding social inter-
actions have generated increases in food association and food preference learning by
providing opportunities for exposure, tasting (not just smelling or seeing) and engage-
ment in positive social experiences during food consumption activities (Birch, 1987;
Birch, Zimmerman, & Hind, 1980). Further, whenever reinforcing behaviours are mod-
elled by parents at home, it has been observed that children’s diet dynamics have expe-
rienced increases in the intake of fruits, fruit juice, and vegetables (Savage, Fisher, &
Birch, 2007).

2.3. Individual factors

The ‘unpalatability’ of healthier foods, particularly vegetables, and the onset of neophobia,
or the fear of trying something new is known to influence children’s food choices, lowering
dietary variety and the consumption of healthy foods such as fruits, vegetables, and meats
(Cooke, 2007; Dovey, Staples, Gibson, & Halford, 2008; Howard, Mallan, Byrne, Magarey,
& Daniels, 2012). Studies have shown that familiarising children with varied foods can
improve the liking for and intake of novel foods, the result of repeatedly exposing them to
a new food at an early age (preschool and school-aged children). Many approaches have
been successful or promising when dealing with youngsters, for example, pairing a new
food repeatedly with an already liked food (associative learning) can facilitate the apprecia-
tion and consumption of targeted foods (Capaldi, 1996;Wadhera, Capaldi Phillips,Wilkie,
& Boggess, 2015).

3. Mathematical framework

Models are formulated under the premise that the social adoption of healthy and unhealthy
diets can be captured/modelled, at the population-level, as a social-contagion process.
This social-contagion approach has been applied, in settings where social dynamics
are intense, including in mathematical studies of the dynamics of bulimia (González,
Huerta-Sánchez, Ortiz-Nieves, Vázquez-Alvarez, &Kribs-Zaleta, 2003), eating behaviours
(Murillo, Safan, Castillo-Chavez, Capaldi-Phillips, & Wadhera, 2016), and obesity (Ejima,
Aihara, & Nishiura, 2013; Evangelista, Ortiz, Rios-Soto, & Urdapilleta, 2004; Frerichs,
Araz, & Huang, 2013; González et al., 2003; Jódar, Santonja, & González-Parra, 2008) at
the population-level. To our knowledge, our previous work is the first to study the diet
dynamics of children in school environments (Murillo et al., 2016), thus, we expand our
previous models to evaluate alternative scenarios of socialisation in schools and its impact
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on children’s diet dynamics. Models are used to generate highly simplified controlled sce-
narios in order to evaluate, within the confines of this artificial set up, the impact of (school)
programmes aimed at youngsters. Programmes whose aim is to improve on the quality of
food choices.

A typical school population may be assumed to be composed of two types of students:
‘moderately’ healthy individuals,M(t), those who eat 25–50% of the USDA recommended
amount of fruits, fruit juice, or vegetables (FJV) and ‘less’ healthy’, L(t), that is, those
who eat less than 25% of the USDA recommended amount of FJV. Since prior studies
have shown that standard nutritional programmes (health education and awareness, com-
munication skills, and skill-building) have improved diet dynamics with high levels of
recidivism being the norm (Pyle et al., 2006). Communication skills and skill-building
improve nutrition education in contexts where cultural relevance is important and need to
be addressed so that children can acquire understanding and skills to strengthen healthy
eating habits (Perez-Rodrigo & Aranceta, 2003). Further, communication skills are essen-
tial for enhancing children’s competence as informed consumers to be able to make their
own food choices, and understand food preparation, preservation, and storage, which are
all critical skills to consume healthy and perishable foods such as FJV, which is the focus
of this research (Perez-Rodrigo & Aranceta, 2003) We use this knowledge (high levels of
recidivism) as the starting point for the most basic model. Next, we proceed to add and
explore the roles of socialisation and the physical environment on diet dynamics within
the specified modelling scenarios. In building the extended model, we make use of what
we have learned on food association and food preference from the results of our pilot study
(Murillo et al., 2016). We tested whether or not conditioned food-preference learning,
when incorporated into a school-based intervention programme, can increase fruit and
vegetable consumption in school environments. So, first, we build a model that accounts
for the diet dynamics of children under standard nutrition educational programmes (Mod-
els 1 and 2 in Sections 4 and 5, respectively) and calibrate their qualitative behaviour taking
into account that they are passively implemented and highly correlated with high levels of
recidivism. These models then incorporate behavioural-based programmes (Models 3 and
4 in Sections 6 and 7, respectively). The expanded models account for the role of positive
peer influence and/or food association and food preference learning. Themodels are capa-
ble of generating long-lasting healthier eating behaviours (see Table 1) but do not eradicate
obesity.

Table 1. Models 1 and 2 incorporate education programmes only with both temporary recovery and
recidivism and both weak and strong curriculum, respectively.

Type

Factors Model 1 Model 2 Model 3 Model 4

Macro-level environment Education (standard) Education (weak or
strong)

Education and
behaviour

Education and
behaviour

Individual level Recidivism Recidivism Recidivism or
association learning

Recidivism or
preference learning

Social environment Negative Negative Negative or positive Negative
Physical environment Constant Constant Constant Constant

Notes: Models 3 and 4 include educationwith behavioural-based programmeswith food association or preference learning.
The availability of FJV in the physical environment remain constant on school menu’s.
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4. Standard education setting with temporary recovery and recidivism

A simplified model that involves two eating behavioural classes is introduced to illustrate
a modelling philosophy that sees the role of transitions between behavioural classes as a
consequence of interactions between individuals (contagion) in fixed environments (see
(Murillo et al., 2016)). The population of youngsters (of fixed size N) is divided in two
classes ‘moderately’ healthy (M) and ‘less’ healthy (L) all enrolled in schools. It is assumed
that a typical Pre-Kindergarten to 8th grade school student spends roughly 10 years in
the same school (1/μ = 10 years). It is also assumed that standard nutrition education
programmes are implemented in this setting and that they are effective at improving food
choices at the per capita rate (φ). It is further assumed that L-eaters may becomeM-eaters
as a result of the programmes defined by φ. M-eaters can shift back to L-eaters, due to
recidivism. The contagion power of L individuals would be considered ‘successful’ at wors-
ening food choices as long as the interactions betweenM and L lead to an increase in the
number of L’s. A flow chart diagram of the M and L, eating dynamics in this deliberately
standard and simple model, is shown in Figure 2. The description and values of model
parameters are collected in Table 2. Specifically, theM−L system is given by the following
system of nonlinear equations,

dM
dt

= � − (λ + μ)M + φL, (1)

dL
dt

= λM − (φ + μ)L, (2)

Figure 2. Standard education with temporary recovery and recidivism. Less healthy eaters, L and mod-
erately healthy eaters, M, make up the total population. λ = βL/N, where β represents the per capita
peer influence rate, φ the exposure rate to nutrition programmes, and μ the per capita entry/removal
rate.

Table 2. Definitions of parameters and values corresponding to Model 1.

Model 1

Symbol Value Unit Description

M/N 0.90 dimensionless Proportion of ‘moderately’ healthy individuals at equilibrium
L/N 0.10 dimensionless Proportion of ‘less’ healthy individuals at equilibrium
β 1.80 1/year Peer influence rate shifting aM- to an L-eater
φ varies 1/year Exposure to nutrition programmes
μ 0.10 1/year Per-capita student entry and removal rate
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where λ ≡ βL/N, modelsM-eaters frequency dependent interactions with L-eaters. Here,
β denotes the success rate of worsening eating habits ofM-eaters with λ denoting the total
transition rate of M- into L-eaters. The population is not closed and so the average entry
rate per school year is denoted by � = μN; chosen so that the total population attending
school remains constant and equal toN. The rescaled system of equations for the variables
X = M/N and Y = L/N, reduces to

dX
dt

= μ − βXY − μX + φY ,

dY
dt

= βXY − (φ + μ)Y , (3)

where X+Y =1. Parameters used in Model 1 were estimated based on preliminary data
from our pilot study (see Murillo et al., 2016). The initial values forM and L were chosen
based on baseline measures, which indicated that at least 90% of children ate fruits and
vegetables (M-eaters), and only 10% (L-eaters) did not. Study observations and interviews
with school cafeteria staff revealed that students select and consume vegetables at least 1 to
2 times per week out of the 5 days spent in school, due to the required FJV selections in the
school cafeteria and under the present traditional nutrition education. This implies that the
average rate at which students consume FJV per year is φ = 0.5. Therefore, taking φ = 0.5,
we varied β in simulation studies to determine at which values do L-eaters approach 70%
in the long-term, which we measured to be the maximum L-eater population at the end of
our pilot study. We found that that β > 1.76 led to the steady-state that matched our pilot
study data. The final model parameters used to produce Figure 3 are shown in Table 2.

The rescaled model supports the diet problem-free state

E0,1 = (X0,1,Y0,1) = (1, 0)

and the diet endemic state,

E1,1 = (X1,1,Y1,1) =
(

1
Rc,1(φ)

, 1 − 1
Rc,1(φ)

)
,

whereRc,1(φ) = β/(φ + μ) > 1, denotes the control reproduction number, a function of
φ, under which the equilibrium E1,1 is biologically meaningful.Rc,1(φ) gives the number
of secondary conversions fromM to L, over 1/(μ + φ) years. FromEquation (2), we obtain
dL/dt ≈ βL − μL − φL = (β − (μ + φ))LwhenM(0) ≈ N. Hence, L grows if and only if
Rc,1(φ) = β/(μ + φ) > 1; the condition that must be met for contagion success (becom-
ing L-eater). Rc,1(φ) is a function of the nutritional education programme in place,
that is, φ,

Rc,1(φ) ≡ β

μ + φ
,

and since 1/μ represents the average time spent in the school and 1/φ is the average time
spent in the L-class, so 1/(μ + φ) represents the total average time spent in the school as
an L-eater; that is, the period of time available to influence the L-eater’s food choices with
those ofM-eaters. We see that as φ grows,Rc,1(φ) decreases. In this simplified model, it is
assumed thatM-eaters do not influence the eating habits of L-eaters. It is further assumed
that an L becomes anM exclusively as a result of the intervention modelled by φ.
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Figure 3. The proportion who effectively convert toM-eaters from L-eaters after a standard education
programme, φ is varied. The proportion of M-eaters is lowest (solid line) when there is no education.
Systematically implementing these programmes have a minimal impact (dashed and dotted lines) on
the distribution ofM- and L- eaters in the population (e.g.φ must be large in order to reduce the L-eaters
population). Parameters used can be found in Table 2.

E0,1 is globally asymptotically stable if and only if Rc,1(φ) ≤ 1 while E1,1 is globally
asymptotically stable whenever it exists (i.e. when Rc,1(φ) > 1), see Appendix I. In this
setting, permanently reforming the L population, requires a reduction of theRc,1(φ) to a
value less than or equal to 1. Hence, the shorter the average time spent in the L-state, the
most likely that the deficient diet problem is eliminated at the population level.

The model is not used to highlight the effectiveness or lack thereof of ‘purely’ edu-
cational programmes on altering the prevalence of L-eaters but rather to show the role
of contagion on the persistence or elimination of the L-subpopulation. The absence of
nutrition educational programmes (φ = 0) yields the basic reproduction number

R0 ≡ Rc,1(0) = β

μ
.

That is, the control reproduction number becomes the basic reproduction number which
is given by, the product of the effective conversion rate per L (β) and the average time
a student remains in the education system (1/μ). Reaching a sociocultural environment
composed ofmostlyM-eaters requires that,φ be large andβ be small.We see thatwhenever
Rc,1(φ) ≤ 1, the population decreases, eventually becoming composed of only M-eaters
(see Figure 3).
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5. Weak and strong education with recidivism

The nutritional programme introduced via φ is supposed to be fixed and omnipresent.
In general, nutrition education programmes vary in effectiveness. Strong educational pro-
grammes are those that generate relatively fast increases in the population ofM-eaters. On
the other hand, it is assumed (or defined) that weaker educational programmes promote
slower changes in the size of M. Under strong and weaker intervention programmes, the
population is vulnerable to recidivism, the assumption behind our basic model. Next, we
add one more level of heterogeneity by incorporating a third class of individuals, H(t),
those that consume in their ‘healthy’ diet, 50% or more of the USDA recommended FJV.
In this expanded model, students are exposed to strong and weak nutrition education pro-
grammes. Students experiencing the ‘weaker’ curriculum (δ0) can shiftM- toH-eaters and
a ‘stronger’ curriculum (δ1) shift L- to H-eaters. Recidivism is incorporated at two levels:
H- can shift to M-eaters (α0) and H- can transition to L-eaters (α1). The model assumes
that all individuals ‘eat’ and cohabit the same environment. In other words, we do not con-
sider dynamics in multiple schools by varying parameters, instead the baseline parameters
for eachmodel remain constant to represent a single school. The constants 1/α0 (weak) and
1/α1 (strong) denote the average recidivism time of M- and L-eaters, respectively. This is
summarised in Table 3.

The model diagram is in Figure 4 and parameters described in Table 4. The M−L−H
model is governed by the following system of nonlinear equations,

dM
dt

= � − (μ + λ + δ0)M + α0H, (4)

Table 3. Policies and efficacy are varied in Model 2.

Parameter Transition Cases

Curriculum
‘Weak’ δ0 M to H Constant
‘Strong’ δ1 L to H Constant

Efficacy
‘Weak’ α0 H toM Constant
‘Strong’ α1 H to L (i) α1 = 0, (ii) α1 > 0, (iii) α1 = rβL/N

Figure 4. Weak and strong education, and weak and strong recidivism model. Less healthy eaters,
L, moderately healthy eaters, M, and healthy eaters, H, make up the total population N. Here, λ =
βL/N, where β denotes the per capita peer influence rate. The efficacy of a strong or weak education
programme is denoted δ1 and δ0, respectively. Recidivism is a possibility following the education pro-
grammes and is represented by α0 (weak) and α1 (strong). The parameter μ represents the per capita
entry/removal rate.
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Table 4. Definition of parameters and values corresponding to Model 2.

Model 2

Symbol Value Unit Description

M/N 0.40 dimensionless Proportion of ‘moderately’ healthy individuals at equilibrium
L/N 0.10 dimensionless Proportion of ‘less’ healthy individuals at equilibrium
H/N 0.50 dimensionless Proportion of ‘healthy’ individuals at equilibrium
β 0.10 1/year Peer influence rate shifting aM- to an L-eater
δ0 0.285 1/year Efficacy rate of ‘weaker’ education shiftingM- to an H-eater
δ1 0.43 1/year Efficacy rate of ‘stronger’ education shifting L- to an H-eater
α0 0.15 1/year Recidivism rate from a H- to anM-eater
α1 0.09 1/year Recidivism rate from a H- to an L-eater
r 0.001 dimensionless Denotes the relative susceptibility of H-eaters

with respect toM-eaters who shift to an L-eater
μ 0.10 1/year Per-capita student entry and removal rate

dL
dt

= λM − (μ + δ1)L + α1H, (5)

dH
dt

= δ0M + δ1L − (μ + α0 + α1)H, (6)

where � = μN and λ = βL/N. Here, 1/δ1 is the average length of effectiveness of the
strong education programme on L; 1/δ0 represents the average period of effectiveness of
the weak education programme for M-eaters. Parameters used in Model 2 were chosen
based on the particular scenario that motivated this model. For the initial conditions, we
assumed that the L-eater population remained the same (e.g. 10%), and that the remaining
students were either H- or M-eaters. The parameter value for β was estimated using the
control reproduction number fromour pilot data, whereβ ≈ 0.33 (seeMurillo et al., 2016).
Since Model 2, includes H-eaters in the population, then we assume β = 0.1, which is
lower then the estimated value. Since the minimum frequency of FJV consumption in the
school was 1 to 2 times per week (discussed in Model 1), we slightly increase the rate (δ1)
for children transitioning from L to H given that the FJV eating standards are higher for
H (e.g. ≥ 50% consumption of FVJ). During our pilot study, we observed that M-eaters
were less likely to eat significantly more FJV since it was already part of their diet, and we
also observed that a small number of children would eat additional FJV, and thus assumed
δ0 < δ1. To consider the scenario when the recidivism is lower for the at-risk population
due to stronger education programmes aimed at the at-risk group (L-eaters), we assumed
α1 < α0. The final model parameters used to produce Figure 4 are shown in Table 4.

We explore three recidivism scenarios: α1 = 0 (no recidivism from H to L); α1 > 0
(recidivism from H to L); and α1 = rβL/N (nonlinear per-capita recidivism from H to
L). The system is rescaled as follows: X = M/N, Y = L/N, Z = H/N with X+Y +Z=1.

5.1. Case 1: no recidivism fromH to L (α1 = 0) but possible fromH toM (α0 > 0)

We consider the case of an irreversible healthy diet following the intervention (δ1), or α1 =
0,which represents the casewhereH-eaters cannot transition back to anL-eater. Themodel
supports the existence of a diet problem-free equilibrium

E0,2,1 = (X0,2,1, 0,Z0,2,1)
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where X0,2,1 = (μ + α0)/(μ + α0 + δ0) and Z0,2,1 = δ0/(μ + α0 + δ0); and a unique diet
problem-endemic equilibrium E1,2,1 = (X1,2,1,Y1,2,1,Z1,2,1) where

X1,2,1 = 1 − Y1,2,1 − Z1,2,1,

Y1,2,1 =
(
1 − δ1

μ + α0 + δ1

) (
1 − 1

Rc,2,1(α0, 0)

)
,

Z1,2,1 = 1
μ + α0 + δ1

(
δ1 + (μ + α0)(δ0 − δ1)

(μ + α0 + δ0)
· 1
Rc,2,1(α0, 0)

)

where

Rc,2,1(α0, 0) = (μ + α0)

(μ + α0 + δ0)

β

(μ + δ1)
= 1

1 + δ0/(μ + α0)

β

(μ + δ1)
. (7)

Hence, Rc,2,1(α0, 0) is the product of β defined as the rate that M successfully transi-
tion into L, 1/(μ + δ1) which represents the total average time spent in the school in
the L-state before they transition to H, and the proportion 1/(1 + δ0/(μ + α0)), with δ0,
denoting the rate of ‘weak’ education programme. That is, the denominator represents
the fraction of time spent as an H-eater after undergoing a ‘weak’ education programme
(δ0) before returning (e.g. recidivism) to the M-eating state (α0) or exiting school (μ).
The total average time spent in school as an H-eater before transitioning to an M-eater
is denoted 1/(μ + α0). Mathematically, Rc,2,1(α0, 0) could be computed as the product
of the peer influence rate β , the average time spent in school in the L-state 1/(μ + δ1)

and the proportion of the moderately healthy individuals X0,2,1, when the population
is totally free of L-eaters. It could also be computed as the ratio between the influence
rate β and the critical peer influence rate corresponding to a zero endemic level of L-
eaters β0 = (μ + δ1)(μ + α0 + δ0)/(μ + α0), see for example (Safan&Dietz, 2009; Safan,
Heesterbeek, & Dietz, 2006).

The endemic equilibrium E1,2,1 is feasible if and only if Rc,2,1(α0, 0) > 1 (for biolog-
ically meaningful sense) while the diet problem-free equilibrium E0,2,1 is stable as long
asRc,2,1(α0, 0) ≤ 1, otherwise it is unstable. Moreover, the unique diet problem-endemic
equilibriumE1,2,1 is globally asymptotically stablewhenever it exists (i.e.Rc,2,1(α0, 0) > 1),
see appendix A.2. Thus, eliminating the diet problem requires the application of a control
strategy aimed at reducing the control reproduction Rc,2,1(α0, 0) to a value less than or
equal to one.

The distribution of M-, L-, and H-eaters is shown in Figure 5, when model parame-
ters are held constant, α1 = 0 and α0 is varied (four values). These results show that even
a smaller rate of recidivism (α0 = 0.15) can alter the distribution of eaters within a set
proportion of L-eaters. That is, the proportion of L-eaters in the population N.

One can easily evaluate the relative ratio of L-eaters to the combined L- and H-eaters,
that is,

L/N
L/N + H/N

= Y
Y + Z

= μ + α0

μ + α0 + δ1

(
1 − 1

Rc,2,1(α0, 0)

)

×
(
1 − μ + α0

μ + α0 + δ0
· 1
Rc,2,1(α0, 0)

)−1
,
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Figure 5. The distribution ofM-, L-, and H-eaters are shown when α1 = 0 and α0 (no recidivism from H
to L) is varied (four values). These results show that even a smaller rate of recidivism from H toM (α0 =
0.15) alters the distribution of eaters. Parameters used can be found in Table 4.

Figure 6. The relative ratio of L-eaters to the combined L- and H-eaters is shown as a function of
Rc,2,1 denotedR0 here. Although the control reproduction number increases, the relative ratio reaches
a threshold demonstrating that the increase in Rc,2,1(α0, 0) will not have significant impact on the
proportion of L-eaters in the population. Parameters used can be found in Table 4.

as a function of Rc,2,1(α0, 0) (Figure 6). This ratio is biologically relevant when
Rc,2,1(α0, 0) > 1, which is equivalent to β > (μ + δ1)(1 + δ0/(μ + α0)). When the aver-
age total of school exit rate and ‘strong’ education rate is smaller than the rate of conversion
of M- to L-eaters (μ + δ1 < β), then the above condition holds. A fraction of L-eaters
will persist in the population if the success of ‘strong’ and ‘weak’ education programmes
are negligible. Therefore, without recidivism we have the possibility of obtaining a diet
problem-free state and are able to define a control reproduction number that provides the
threshold value indicating either a diet problem-free or endemic state. That is, in the nutri-
tional context, an education programme that is so effective such that there is no recidivism
could potentially yield a populationwith a lownumber ofL-eaterswhen the threshold value
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Rc,2,1(α0, 0) < 1. Similarly, even when the education programme ismoderately effective at
improving eating habits, the fact that there is no recidivism in this case, we observe that the
proportion of L-eaters does not increase even asRc,2,1(α0, 0) increases. Next, we consider
the case with α1 recidivism.

5.2. Case 2: chance of breaking ‘good’ diet (α1 > 0)

If we assume the recidivism rate (or chance of breaking ‘Good’ diets and returning to the L-
eating state) to be a positive constant, orα1 > 0, then themodel has neither a diet problem-
free equilibrium (E0,2,2) nor a control reproduction number (Rc,2,2(α0,α1)). However, it
always has a diet problem-endemic equilibrium E1,2,2 = (X1,2,2,Y1,2,2,Z1,2,2) where

X1,2,2 = 1 − Z1,2,2 − Y1,2,2, Z1,2,2 = δ0 + (δ1 − δ0)Y1,2,2

μ + α0 + α1 + δ0
,

Y1,2,2 = −B + √
B2 + 4AC
2A

with

A = (μ + α0 + α1 + δ1)β ,

B = (μ + δ1)(μ + α0 + δ0) + α1(μ + δ0) − β(μ + α0 + α1),

C = α1δ0.

Figure 7 shows the equilibrium proportion of students consuming a ‘less’ healthy diet,
Y∗ = Y1,2,2, as a function of the successful social-interaction rate β . Model parameter
values used are collected in Table 4, making use of two α1 values (α1 = 0.09 and α1 =
0.00009). Figure 7 shows that even for β = 0, there is an endemic proportion of L-eaters
Y∗ = α1δ0/(α1(μ + δ0) + (μ + δ1)(μ + α0 + δ0)) > 0. This initial proportion of Y∗ is
monotonically increasing in α1. It approaches zero as α1 tends to zero. Moreover, Figure 7

Figure 7. The endemic prevalence of the low amounts of L-eaters, denoted Y∗, as a function of the
successful social interaction rate, denoted β . Parameter values for simulations are defined in Table 4.
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shows that the qualitative behaviour of Y∗ as a function of β is significantly affected by the
value of α1; higher values of α1 generate increases in the level of Y∗, while low levels of α1
imply slow increases in Y∗ at the start, i.e. there is a beginning phase of β for which the
proportion Y∗ remains close to zero and then it increases steadily.

5.3. Case 3: peer influence in breaking ‘good’ diet (α1 = rβL/N)

The case α1 = rβL/N is of interest as it may help understand the possible effect of negative
peer influence in shaping ‘healthy’ diet patterns. Here, r denotes the relative probability of
‘success’ of peer-influence contacts that L-eaters have on H-eaters, with respect to those
that L-eaters have on M-eaters. A successful peer-influence contact means that L-eaters
successfully convert H- orM-eaters into L-eaters. Numerical simulations for selected val-
ues of α1 are shown in Figure 8. The model has the same diet problem-free equilibrium
E0,2,3 (as in the case α1 = 0 or equivalent to E0,2,1). However, the control reproduction
number is

Rc,2,3(α0,α1) = μ + α0 + rδ0
μ + α0 + δ0

· β

μ + δ1
= 1 + rδ0/(μ + α0)

1 + δ0/(μ + α0)
· β

μ + δ1
. (8)

It is computed as the ratio between the influence rate β and the critical peer influence rate
corresponding to a zero endemic level of L-eatersβ0 = (μ + δ1)(μ + α0 + δ0)/(μ + α0 +
rδ0), (Safan et al., 2006). Similar toRc,2,1(α0, 0), here theRc,2,3(α0, 0) includes the product
of β , which denotes the rate thatM-eaters transition into L-eaters, and 1/(μ + δ1), defined
as the total average time spent in the school in the L-state before transitioning intoH. Also,
the rate of ‘weak’ education programme with rδ0 and without δ0 peer influence, over the
average time spent in school as an H-eater before becoming anM-eater.

Figure 8. Simulations are completed for selectedvaluesofα1 with the rest of theotherparameter values
taken from Table 4. A low rate of strong recidivism when H-eaters shift to L-eaters will always lead to a
constant proportion of L-eaters in the population.
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Further, the model supports the existence of a diet problem-endemic equilibria E1,2,3 =
(X1,2,3,Y1,2,3,Z1,2,3), where

X1,2,3 = 1 − Y1,2,3 − Z1,2,3, Z1,2,3 = 1
1 − r

[
1 − Y1,2,3 − μ + α0 + rδ0

μ + α0 + δ0
· 1
Rc,2,3(α0,α1)

]
(9)

with Y1,2,3 being the feasible solution (positive) of the quadratic equation

0 = F(Rc,2,3(α0,α1),Y1,2,3)

= rRc,2,3(α0,α1)
2Y2

1,2,3

+
(

(μ + α0 + rδ0)(μ + α0 + δ1 + r(μ + δ0))

(μ + δ1)(μ + α0 + δ0)
− rRc,2,3(α0,α1)

)

Rc,2,3(α0,α1)Y1,2,3

+ (μ + α0 + rδ0)2

(μ + δ1)(μ + α0 + δ0)
(1 − Rc,2,3(α0,α1)), (10)

with Y1,2,3 ∈ [0, 1]. Equation (10) could be seen as a bifurcation equation in the parameter
Rc,2,2 and the variableY1,2,3. The plane (Rc,2,2,Y1,2,3) has the bifurcation pointP0 = (1, 0),
at which the bifurcation direction is to be investigated. On applying the same procedure
analysis shown in (Safan & Dietz, 2009) and making use of the implicit function theorem,
it is shown that the model supports the existence of backward bifurcation whenever

δ1 > δ�
1 and r1 < r < r2 (11)

where

δ�
1 = δ0(3μ + 2α0 + 2δ0)

μ + α0

+
√

δ20(3μ + 2α0 + 2δ0)2 + μδ0[(4α0 + 3μ)δ0 + 4(α0 + μ)2]

μ + α0
,

r1 = (μ + 2α0)δ0 − (μ + α0)δ1 − √
DR

2δ0(μ + δ0)
,

r2 = (μ + 2α0)δ0 − (μ + α0)δ1 + √
DR

2δ0(μ + δ0)
,

DR = [(μ + 2α0)δ0 − (μ + α0)δ1]2 − 4δ0(μ + δ0)(μ + α0)(μ + α0 + δ1).

If neither of the inequalities in (11) hold, then the model has a forward bifurca-
tion (see Figure 9), that is, a unique diet problem-endemic stable equilibrium exists if
Rc,2,3(α0,α1) > 1; while no positive diet problem-endemic state exists ifRc,2,3(α0,α1) <

1. Further, the diet problem-free state is stable. The different cases for the existence of the
diet problem-endemic states are below:

(1) If at least one of the inequalities in (11) does not hold, then the model of inter-
est shows the existence of a forward bifurcation. Hence, a unique diet problem-
endemic state exists if and only if Rc,2,3(α0,α1) > 1. This equilibrium is given by
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Figure 9. The proportion of L-eaters at equilibrium as a function of the control reproduction number
Rc,2,3. Parameter values for simulations are defined in Table 4.

E1,2,3 = (X1,2,3,Y1,2,3,Z1,2,3), where

Y1,2,3 =
−b1 +

√
b21 − 4a1c1
2a1

,

with

a1 = rRc,2,3(α0,α1)
2,

b1 =
(

(μ + α0 + rδ0)(μ + α0 + δ1 + r(μ + δ0))

(μ + δ1)(μ + α0 + δ0)
− rRc,2,3(α0,α1))

)
Rc,2,3(α0,α1),

c1 = (μ + α0 + rδ0)2

(μ + δ1)(μ + α0 + δ0)
(1 − Rc,2,3(α0,α1)),

where Rc,2,3(α0,α1) = ((μ + α0 + rδ0)/(μ + α0 + δ0)) · (β/(μ + δ1)) and X1,2,3,
Z1,2,3 determined from the relations in the diet problem-endemic equilibria shown
in (9).

(2) On the other hand, if the conditions (11) are held, then the model exhibits a backward
bifurcation and therefore it has:
• a unique feasible equilibrium solution if and only if Rc,2,3(α0,α1) > 1; given by

E1,2,3,
• two feasible equilibrium solutions if and only if R�

c,2,3 < Rc,2,3(α0,α1) < 1, where

R�
c,2,3 = μ + α0 + δ0

r(μ + δ1)(μ + α0 + δ0)
([(r − 1)μ + δ1 − α0 − rδ0] + √

DRc),

DRc = [(r − 1)μ + δ1 − α0 − rδ0]2 − [(r + 1)μ + δ1 + rδ0 + α0]2

+ 4r(μ + δ1)(μ + α0 + δ0).
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One of these solutions is E1,2,3,1 = E1,2,3, while the other is E1,2,3,2 = (X1,2,3,2,
Y1,2,3,2,Z1,2,3,2), where Y1,2,3,2 = (−b1 −

√
b21 − 4a1c1)/2a1.

• no feasible equilibrium solution otherwise.

6. Food association learning with positive peer influence

Prior studies have suggested that food association learning techniques have been effective
at exposing and increasing the liking for vegetables at the individual-level. Here, we explore
the impact of food association learning, as a contagion process, under behavioural-based
intervention programme aimed at reducing L/N. We introduce a new class of food asso-
ciation learners, A(t), that is, eaters who learn to pair new food with an already like food
to facilitate the appreciation and consumption of targeted foods (Capaldi, 1996; Wadhera
et al., 2015). For example, learning to associate celery with peanut butter to consumemore
celery is a form of food association learning.

The population level model is built under the assumption that students do not change
their physical eating environment. That is, students who remain in school do so under
the same set of parameters (e.g. same rate of social interactions, exposure to food associa-
tion learning programmes, etc.) and these socioenvironmental factors do not change. The
model is thought to involve two types of contagion/conversion processes: 1) negativewhere
M-eaters convert to L eaters (λ1) and 2) positive whereM- or L-eaters convert to A-eaters
(λ2).M-eaters can shift toA-eaters directly via the ‘strong’ effects of food association learn-
ing (γ1) or through social interaction with A-eaters (λ2 = β2A/N). A second exposure to
a food association programme for L-eaters, γ2, the result of the ‘positive’ social influence
resulting from interactions between L- and A-eaters may lead to increases on A-eaters.
Although γ1 and γ2 can be interpreted as the reciprocal of recidivism, here, recidivism
is not considered explicitly in the model. Only the impact of ‘positive’ peer influence is

Figure 10. Food association learning with positive peer influence model. Less healthy eaters, L, mod-
erately healthy eaters, M, and food association learners, A, are included. Here, λ1 = β1L/N and λ2 =
β2A/N, where β1 is the per capita peer influence rate shifting anM- to an L-eater and β2 is the per capita
peer influence rate shifting anM- or L-eater to an A-eater. Here A-eaters represent a new class of individ-
uals, who learn to pair targeted foods (fruits and vegetables) with an already like food to facilitate the
consumption of fruits and vegetables. The efficacy rate of a first or second exposure is denoted γ1 and
γ2, respectively. Parameter μ represent per capita entry/removal rate. Lastly, r represents the relative
susceptibility of L-eaters who shift to an A-eater.
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Table 5. Parameter definitions and values corresponding to Model 3.

Model 3

Symbol Value Unit Description

M/N 0.40 dimensionless Proportion of ‘moderately’ healthy individuals at equilibrium
L/N 0.10 dimensionless Proportion of ‘less’ healthy individuals at equilibrium
A/N 0.50 dimensionless Proportion of food association learners at equilibrium
β1 1.80 1/year Peer influence rate shifting aM- to an L-eater
β2 0.60 1/year Peer influence rate shifting aM- or L- to an A-eater
γ1 0.35 1/year Efficacy rate of first ‘strong’ effect of the food

association programme shifting aM- to an A-eater
γ2 0.06 1/year Efficacy rate of second ‘exposure’ to the food

association programme shifting L- to an A-eater
r varies dimensionless Denotes the relative susceptibility of L-eaters

who shift to an A-eater
μ 0.10 1/year Per-capita student entry and removal rate

explored. A transition diagram of the model is shown in Figure 10 with parameter val-
ues and definitions are listed Table 5. This new model is given by the following system of
nonlinear equations,

dM
dt

= � − (μ + λ1 + γ1 + λ2)M, (12)

dL
dt

= λ1M − (μ + γ2 + rλ2)L, (13)

dA
dt

= (γ1 + λ2)M + (γ2 + rλ2)L − μA, (14)

where N=M+L+A, where λ1 = β1L/N and λ2 = β2A/N. We rescale this model by
putting X = M/N, Y = L/N, and Z = A/N. Parameters used in Model 3 were also
based on our pilot study data (see Murillo et al., 2016). The initial conditions were similar
to those in Model 2. The rate shiftingM- to an L-eater (β1) were the same as in Model 1,
and we assume the rate at whichM- shift to anA-eater (β2) is three times less then β1 since
‘food association’ learning techniques indicate that ‘successful’ learning requires repeated
exposures, and thus β2 < β1. In our pilot study, those who were identified as an L-eater
were less likely to try novel pairings of vegetables with other foods, and during the inter-
vention and testing periods, only one-third of children ate vegetables on a given day during
the week. Therefore, the rate at which individuals shifted from L- to an A-eater during the
year was estimated to be γ2 = 0.06 (or once per month). Children who were already eating
their vegetables,M-eaters, were more likely to consume those foods and their increase was
about one-third on a given day. Hence, the rate at whichM- shift to theA-state is γ1 = 0.35
(or at least 7 times per month or 1-2 times per week). The final model parameters used to
produce Figure 10 are shown in Table 5.

The rescaled model has a diet problem-free equilibrium

E0,3 = (X0,3, 0,Z0,3) (15)
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where

X0,3 = 1
2

⎡
⎣1 + γ1 + μ

β2
−

√(
1 − γ1 + μ

β2

)2
+ 4γ1

β2

⎤
⎦ , (16)

Z0,3 = 1
2

⎡
⎣1 − γ1 + μ

β2
+

√(
1 − γ1 + μ

β2

)2
+ 4γ1

β2

⎤
⎦ . (17)

6.1. Local stability of the diet-free equilibrium and control reproduction number

The analysis here shows the conditions under which the diet problem-free equilibrium E0,3
is stable. Explicitly, in order to establish the stability of the diet-free equilibrium (15), we
consider the reduced model

dY
dt

= β1Y(1 − Y − Z) − (μ + γ2)Y − rβ2YZ,

dZ
dt

= γ2Y + (γ1 + β2Z)(1 − Y − Z) + rβ2YZ − μZ,

which has (at the diet-free equilibrium) the Jacobian

J3,0 =
(

β1(1 − Z0,3) − (γ2 + μ) − rβ2Z0,3 0
−γ1 + γ2 − (1 − r)β2Z0,3 −γ1 − μ + β2(1 − 2Z0,3)

)

=
(

β1(1 − Z0,3) − (γ2 + μ) − rβ2Z0,3 0
−γ1 + γ2 − (1 − r)β2Z0,3 −

√
(β2 − (γ1 + μ))2 + 4γ1β2

)
.

Thus, det(J3,0) > 0 if and only if Rc,3(γ1, γ2) < 1, where

Rc,3(γ1, γ2) = β1(1 − Z0,3)
(γ2 + μ) + rβ2Z0,3

=
β1

[
β2 + γ1 + μ −

√
(β2 − (γ1 + μ))2 + 4γ1β2

]
β2

[
2(γ2 + μ) + r

[
β2 − (γ1 + μ) +

√
(β2 − (γ1 + μ))2 + 4γ1β2

]] .
The condition Rc,3(γ1, γ2) < 1 ensures that tr(J3,0) < 0. Hence, the diet-free equilib-

rium (15) is locally asymptotically stable if and only if Rc,3(γ1, γ2) < 1, where

Rc,3(γ1, γ2) =
β1

[
β2 + γ1 + μ −

√
(β2 − (γ1 + μ))2 + 4γ1β2

]
β2

[
2(γ2 + μ) + r

[
β2 − (γ1 + μ) +

√
(β2 − (γ1 + μ))2 + 4γ1β2

]]
(18)

is the control reproduction number.
HereRc,3 represents the product of β1, the rate ofM-eaters transitioning into L-eaters,

proportion ofM- and L-eaters at steady-state (1 − Z0,3), and the average time L-eaters stay
in the school system before they transition to A-eaters with (rβ2) and without (α2) peer
influence.
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If Y1,3 > 0 at equilibrium, then the analysis shows the existence of a diet problem-
endemic equilibrium

E1,3 = (X1,3,Y1,3,Z1,3) (19)

whose components are given by

X1,3 = rβ2(1 − Y1,3) + (γ2 + μ)

β1 + rβ2
, Z1,3 = β1(1 − Y1,3) − (γ2 + μ)

β1 + rβ2

with Y1,3 being the solution of the quadratic equation

G(Y1,3) = a3Y2
1,3 + b3Y1,3 + c3 = 0 (20)

with

a3 = −rβ2β
2
1 [β1 − (1 − r)β2], (21)

b3 = γ2β1(β1 + rβ2)
2 − 2rβ2

2β1(β1 − (γ2 + μ)) (22)

+ β1(β1 + rβ2)[μβ1 + rβ2(β2 − (γ2 + μ)) − β2(γ2 + μ + rγ1)], (23)

c3 = γ1(γ2 + μ)(β1 + rβ2)
2 + rβ2

2 (β1 − (γ2 + μ))2 (24)

+ (β1 + rβ2)(β1 − (γ2 + μ))[(γ2 + μ + rγ1)β2 − μβ1]. (25)

It is shown below that equation (20) has a unique feasible equilibrium solution.

6.2. Uniqueness of the diet-problem endemic state

To prove the uniqueness of the diet-problem-endemic equilibrium for the rescaled model
it suffices to prove that equation (20) has a unique positive solution. To this end, we rewrite
equation (20) in the equivalent form

G1(Y1,3) = G2(Y1,3)

where

G1(Y1,3) = a31Y2
1,3 + b31Y1,3 + c31, (26)

G2(Y1,3) = a32Y2
1,3 + b32Y1,3 + c32 (27)

with

a31 = rβ2β
2
1 [β1 + rβ2], (28)

a32 = rβ2
2β

2
1 , (29)

b31 = 2rβ2
2β

2
1 + β1(β1 + rβ2)[rβ2(γ2 + μ) + β2(γ2 + μ + rγ1)], (30)

b32 = γ2β1(β1 + rβ2)
2 + 2rβ2

2β1(γ2 + μ) + β1(β1 + rβ2)(μβ1 + rβ2
2 ), (31)

c31 = 2rβ1β
2
2 (γ2 + μ) + (β1 + rβ2)[μβ2

1 + β2(γ2 + μ)(γ2 + μ + rγ1)], (32)

c32 = γ1(γ2 + μ)(β1 + rβ2)
2 + rβ2

2 [β
2
1 + (γ2 + μ)2]

+ β1(β1 + rβ2)[(μ + β2)(γ2 + μ) + rγ1β2]. (33)
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It is clear that both functions G1 and G2 are quadratic with positive coefficients. Both
functions are parabolas. They are always increasing for Y1,3 > 0 but with different tan-
gents. Thus, they either intersect at one point guaranteeing a unique solution, or they never
intersect, that is, they have no solution. This completes the proof.

Consequently, the rescaled model has a unique diet-problem-endemic equilibrium that
exists if and only if Rc,3(γ1, γ2) > 1. Hence, if we are to apply a control strategy based on
subjectingM-eaters to a strong effect of food association, then the minimum rate at which
M-eaters must be shifted to A-eaters status needs to satisfy the inequality γ1 > γ c

1 , where

γ c
1 = [β1 − (γ2 + μ)]

[
μ

rβ2 + γ2 + μ
− β2

β1 + rβ2

]
. (34)

7. Food association and food preference learning

We evaluate the impact of food association learning on developing sustainable healthy eat-
ing habits in the long-term via food preference learning (found in Murillo et al., 2016).
Here M-eaters and L-eaters will enter the food association learning programme at rate
γ1 and γ2, respectively. After completing the programme, a portion (p) will become food
preference learners P(t) at the rate pα, in which we consider the food association learn-
ing programme successful. That is, P-eaters are those who have developed a preference for
specific repeated pairings of foods, which lead to the long-term consumption of targeted
foods since the novel flavour and foods have become part of the portfolio of preferred food
types (Capaldi, 1996; Wadhera et al., 2015).

Figure 11. Food association and food preference learning model. Less healthy eaters, L, moderately
healthy eaters, M, food association learners, A, and food preference learners, P, are included. P-eaters
are individuals who have developed a long-term preference for the consumption of targeted foods. The
per capita peer influence rate shifting anM- to an L-eater is denoted β , where λ = βL/N. The entry rate
into a food association learning programme is denoted γ1 for M-eaters and γ2 for L-eaters. Given the
effectiveness of the programme,α, some proportion pwill become preference learners. Recidivism from
the L- toM-state is possible at rate φ. Parameterμ represent per capita entry/removal rate.
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Table 6. Parameter definition and values corresponding to Model 4.

Model 4

Symbol Value Unit Description

M/N 0.40 Dimensionless Proportion of ‘moderately’ healthy individuals at equilibrium
L/N 0.10 Dimensionless Proportion of ‘less’ healthy individuals at equilibrium
A/N 0.20 Dimensionless Proportion of food association learners at equilibrium
P/N 0.30 Dimensionless Proportion of food preference learners at equilibrium
β 1.80 1/year Peer influence rate shifting aM- to an L-eater
γ1 0.35 1/year Entry rate into food association programme forM-eaters
γ2 0.06 1/year Entry rate into food association programme for L-eaters
p varies Dimensionless Proportion of those who become ‘preference learners’
α 0.40 1/year Effectiveness rate of food association learning
φ 0.60 1/year Recidivism rate from a L- to anM-eater
r 0.10 Dimensionless The relative susceptibility of A-eaters with respect to

M-eaters who shift to an L-eater
μ 0.10 1/year Per-capita student entry and removal rate

Recidivism of A-eaters, where they return to old ways of eating as M-eaters, occurs at
the rate (1 − p)α. A-eaters can shift to L-eaters after interacting with a proportion of L-
eaters (L/N) at rate rλ. The M-eaters who do not enter the food association programme
would either maintain current eating habits or shift to an L-eater at rate λ after interacting
with L-eaters. Finally, L-eaters can shift to M-eaters at rate φ. This is shown in Figure 11
with parameters defined in Table 6, also found in (Murillo et al., 2016). This next expanded
system is governed by the following equations,

dM
dt

= � − (μ + λ + γ1)M + φL + (1 − p)αA,

dA
dt

= γ1M + γ2L − (rλ + μ + α)A,

dL
dt

= λM − (φ + γ2 + μ)L + rλA,

dP
dt

= pαA − μP, (35)

where N=M+L+A+P is the total population size and � = μN is the per-capita school
entry rate. Parameters used in Model 4 were similar to those in Model 3 with a few excep-
tions. The initial conditions for A and P were made under the assumption that children
learn to associate (A) certain foods and have developed food preferences (P) outside of the
school environment. In our pilot study, ‘food preference’ learning was not observed since
we observed children for only 8 days (see Murillo et al., 2016). A longitudinal study with
additional observations in school lunch periods and surveys would be required in order to
observe ‘food preference’ learning. Hence, in this model, some parameters such as α and
φ were hypothesised.

Similarly, the model (35) is rescaled by assuming X = M/N,W = A/N,Y = L/N and
Z = P/N. Analyzing the model at equilibrium shows that there is a diet problem-free
equilibrium E0,4 = (X0,4,W0,4, 0,Z0,4) where

X0,4 = μ(α + μ)

(α + μ)(γ1 + μ) − (1 − p)αγ1
,
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W0,4 = μγ1

(α + μ)(γ1 + μ) − (1 − p)αγ1
,

Z0,4 = 1 − X0,4 − W0,4.

This equilibrium is locally asymptotically stable (see appendix A.2) if and only if the
control reproduction numberRc,4(γ1, γ2) < 1, where

Rc,4(γ1, γ2) = βμ(α + μ + rγ1)
(φ + μ)[(α + μ)(γ1 + μ) − (1 − p)αγ1]

. (36)

Moreover, the diet-problem-endemic equilibria exists and is given by E1,4 =
(X1,4,W1,4,Y1,4,Z1,4), where

X1,4 = (α + μ)(φ + γ2 + μ) + rβY1,4(φ + μ)

β(α + μ + rγ1 + rβY1,4)
,

W1,4 = γ1(φ + γ2 + μ) + γ2βY1,4

β(α + μ + rγ1 + rβY1,4)
,

Z1,4 = 1 − X1,4 − W1,4 − Y1,4,

and Y1,4 is the attainable solution of the quadratic equation

0 = F4(Y1,4) := a4Y2
1,4 + b4Y1,4 + c4 (37)

where

a4 = rμβ2,

b4 = [(α + μ)(γ2 + μ) + rμ(φ + γ1 + μ − β) − (1 − p)αγ2]β ,

c4 = (φ + γ2 + μ)[(α + μ)(γ1 + μ) − (1 − p)αγ1] − βμ(α + μ + rγ1).

Equation (37) could be considered a bifurcation equation in the plane (β ,Y1,4), with β as
a bifurcation parameter. It has a bifurcation point (β0, 0), where

β0 = (φ + γ2 + μ)[(α + μ)(γ1 + μ) − (1 − p)αγ1]/[μ(α + μ + rγ1)]

at which the direction of the bifurcation is to be evaluated. An application of the implicit
function theorem shows that a backward bifurcation exists if and only if the following set
of inequalities is held

φ > φc, r1 < r < r2, p > pc (38)
where

φc = μ(γ2 + γ1 + 2μ) + 2(γ1 + μ)
√

μ(γ2 + μ)

γ1
,

r1 = α + μ

2(φ + μ + γ1)

⎡
⎣ γ2

γ1
+ φ

μ
− 1 −

√(
γ2

γ1
+ φ

μ
− 1

)2
− 4

(
γ2 + μ

γ1

)(
1 + γ1 + φ

μ

)⎤
⎦ ,

r2 = α + μ

2(φ + μ + γ1)

⎡
⎣ γ2

γ1
+ φ

μ
− 1 +

√(
γ2

γ1
+ φ

μ
− 1

)2
− 4

(
γ2 + μ

γ1

)(
1 + γ1 + φ

μ

)⎤
⎦ ,

pc = μ
[
(rγ1 + α + μ)2 + (r − 1)[rγ1(φ + μ) − γ2(α + μ)]

]
α[rγ1(φ + μ) − γ2(α + μ)]

.
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Figure 12. The proportion of unhealthy-eating, or L-eaters, at equilibrium as a function of the con-
trol reproduction numberRc,4. Simulations are done for μ = 0.1, γ1 = 0.35, γ2 = 0.06,α = 0.4,φ =
0.06, r = 0.8258 and p= 0.9298.

Moreover, if Conditions (38) hold, then Equation (37) has two feasible solutions and there-
fore the model exhibits backward bifurcation in the sense that two diet-problem-endemic
equilibria do exist for values of Rc,4(γ1, γ2) < 1. These two equilibria correspond to the
two solutions of Equation (37), they are given by

Y1,4,1 =
−b4 −

√
b24 − 4a4c4
2a4

and Y1,4,2 =
−b4 +

√
b24 − 4a4c4
2a4

.

The bifurcation diagram for this model is shown in Figure 12. The solid curve rep-
resents the bigger solution (Y1,4,1) and the dotted curve represents the smaller solution
(Y1,4,2) in the plane (Rc,4,Y1,4), which exists for values of Rc,4(γ1, γ2) < 1. Moreover, as
Rc,4(γ1, γ2) decreases, both curves get closer to each other until reaching the turning point
(Safan et al., 2006) at which both of them coalesce. The value of the control reproduction
number at this turning point is given byR�1

c,4, where

R�1
c,4 = (α + μ + rγ1)[γ2(pα + μ) + μ(r(φ + μ − γ1) − (α + μ)) + 2

√
DRc,4 ]

r(φ + γ2 + μ)[(α + μ)(γ1 + μ) − (1 − p)αγ1]
(39)

and

DRc,4 = rγ1γ2μ2 + μ[pα + (1 − r)μ][rγ1(φ + μ) − γ2(α + μ)].

In fact, the valueRc,4(γ1, γ2) = R�1
c,4 is a threshold value, as it separates between nonexis-

tence and existence of diet-problem-endemic states.
If we assume now that at least one of the conditions in (38) is broken, then the

model supports the existence of forward (supercritical) bifurcation in the sense that a
unique diet-problem-endemic equilibrium exists and is stable for Rc,4(γ1, γ2) > 1, while
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no endemic state exists forRc,4(γ1, γ2) < 1. Hence,Rc,4(γ1, γ2) = 1 is the threshold level
separating nonexistence and existence of diet-problem-endemic states. We summarise the
above results in the following: The critical control reproduction number below which
diet-problem-endemic equilibria do not exist is given by

R�
c,4 =

{
R�1

c,4 if the bifurcation is backward,
1 if the bifurcation is forward.

(40)

7.0.1. Diet-problem containment possibility

One of the most important questions is how likely is the possibility to contain (get rid
of) the diet problem. Here, we discuss the existence of necessary and sufficient conditions
required to eliminate the diet persistence problem, with a strategy based on the applica-
tion of a food association programme whose effectiveness is p ∈ [0, 1]. In the literature of
mathematical epidemiology, the basic reproduction number R0 is a key concept and the
cornerstone in determining the minimum effort required to eliminate an infection when-
ever the model doesn’t support the existence of multiple endemic equilibria. In this case,
reducing R0 below one ensures an effective control of the infection. However, over the
last two decades, models that exhibit bistable endemic states, backward bifurcations and
hysteresis phenomena have been introduced to the field of mathematical epidemiology.
In such cases, reducing R0 to a value slightly below one is a necessary but not sufficient
condition to eliminate the infection. However, in a prior model that supports a backward
bifurcation, it has been shown (see Safan et al., 2006) that the ratio R0/R�

0 can be inter-
preted as a reproduction number or ratio. Hence, reducing this ratio below one ensures an
effective control of the ‘infection’. Thus, if we solve the inequalityRc,4(γ1, γ2)/R�

c,4 < 1 in
terms of the probability p, we get

p > p� =
{
p�
1 if the bifurcation is backward,
p�
2 if the bifurcation is forward

(41)

where

p�
1 = 1 − 1

αγ 2
2

[
Q1 +

√
Q2
1 − γ 2

2Q2

]
,

p�
2 = 1 − 1

αγ1

[
(α + μ)(γ1 + μ) − μβ(α + μ + rγ1)

φ + μ

]

and

Q1 = γ2[(α + μ)(γ2 + μ) + rμ(φ + γ1 + μ − β)] − 2rμγ1(φ + γ2 + μ),

Q2 = [(α + μ)(γ2 + μ) + rμ(φ + γ1 + μ − β)]2

− 4rμ[(φ + γ2 + μ)(α + μ)(γ1 + μ) − μβ(α + μ + rγ1)].

Formula (41) determine the critical probability (p�) of effectiveness of a diet-problem food
association programme above which the diet-problem endemic state(s) disappear.
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Figure 13. The critical probability of effectiveness p� subdivides the (β , p) plane into regions (denoted
by 0,1 and 2) according to the number of diet-problem-endemic equilibria. Details are shown in the text.

Figure 13 shows the critical level of the food association effectiveness p� as a function
of the contact rate β . The vertical line β = β− separates between nonexistence and exis-
tence of backward bifurcation. Therefore, for β ≤ β−, the curve p = p�

2 separates between
existence and nonexistence of diet-problem endemic equilibria. Thus, a probability of
effectiveness slightly above p�

2 ensures an effective control of the diet-endemic problem.
However, if β− < β < β+, then backward bifurcation exists and p = p�

1 is the thresh-
old above which diet-problem-endemic equilibria do not exist. Thus, a food association

Figure 14. Time series analysis for the subpopulation proportions for different values of the food asso-
ciation efficacy probability p and the control reproduction numberRc,4. All other parameter values are
shown in Table 6. This shows that even for a small p (or 0.25< p< 0.5), the sociocultural environment
can change and is sufficient for reducing the distribution of L-eaters in the population. In other words,
as the proportion of P-eaters increases (p), the distribution ofM-, L-, and A-eaters in the population also
change, which reflects changes in eating behaviours (e.g. the sociocultural environment) of the school
population. For example, notice that L-eaters eventually diminish over time when p= 0.5.
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programme with probability of effectiveness slightly higher than p�
1 exhibits a die-out of

the diet-endemic problem, where

β− = α2 + μ − γ1 − α + μ

r
+ γ2

r

(
1 + α

μ
pc

)
,

β+ = φ + μ − γ1 − α + μ

r

(
1 − γ2

μ

)

+ 2

√
γ1γ2

r
+ α + (1 − r)μ

rμ

(
γ1(φ + μ) − γ2(α + μ)

r

)
.

Here, the level β = β+ represents the value at which p�
1 hits the upper bound p=1. Thus,

for β > β+, there is no feasible value of p that ensures a wash out of the diet-endemic
problem and we may seek another control strategy to first reduce the contact rate β to
below β+ and then apply a food association programme with high enough probability of
effectiveness. This ensures an effective control of the diet-problem.

Figure 14 shows a time series analysis for fixedβ and different levels of p. The solid curve
corresponds to the lowest value of p=0 and the dashed-dotted solution corresponds to the
largest value of p=1. The less healthy proportion of individuals approaches zero in case of
p=1.

8. Discussion

In thismanuscript, we have attempted to evaluate the roles of socialisation and school envi-
ronments on the diet dynamics in children’s school settings. We introduced four models
in order to evaluate different combinations of changes in social interactions and school
environments in response to the implementation of different school nutrition education
programmes and policies. In Model 1, we found that some level of standard education was
better than none at all albeit not that effective (when compared with those in later models).
In Model 2, we found that even a low rate of recidivism lead to a constant proportion of
L-eaters, which increases under the presence of negative peer influence. Model 3 has been
used to show that positive peer influence and food association learning can significantly
modify the culture of eaters and thus, promote healthier eating behaviours among children.
Lastly, in Model 4, we found that sustained healthy eating behaviours could be achieved by
conditioned food preference learning.

The results are to some degree as expected.However, from thesemodels we have learned
a lot more. For example, that non-constant peer pressure as in Model 2 (strong education)
can add uncertainty, supporting two levels of L eaters but also supporting long-lasting
communities that include a proportion of M and H eaters. Furthermore, we learned the
importance of initial conditions as where we end up on the distribution of L, M and H
eaters depends on where we start. Hence, implementing effective programmes for individ-
uals that immigrate into a school system may be very important. In Model 4, achieving
food association status (studied with Model 3) was not enough. Further, the implementa-
tion of programmes that move individuals into a new level, preference learning, is likely to
have a long-lasting positive effect. Again, the role of initial conditions has been addressed
since models with multiple interventions tend to support more than one distribution of
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L, M, A and P, which is shown in the analysis of the stability of steady states, the control
reproduction numbers, as well as the bifurcation analysis and simulation studies where
parameters were varied. In short, intervention efforts that account for nonlinear dynamics
generate distributions of L,M, A and P that reduce the proportion of individuals in the L
class while reducing the impact of recidivism.

In short, we have learned that interventions of multiple types that have proved to be
effective in field studies when implemented in simplemodels that account for peer pressure
(model as contagion), presumably instigated by education and other forms of intervention
can generate sustained change and unexpected results, like multiple steady state distribu-
tions, a situation that makes it possible to reduce the problem, the size of the L class, but
creating communities where further improvement is nearly impossible (backward bifurca-
tion). We can therefore conclude that unless students that have changed their behaviours
are not ‘moved’ into a different setting (an environment with different cultural norms) then
the problem once established will persist ‘regardless’ of our efforts.

These frameworks provide a means for evaluating the roles of social and environmen-
tal factors from a dynamical systems approach and shed some light on the complexity of
understanding eating behaviours among children in schools. However, one of the limita-
tions of this work is the lack of heterogeneity considered in ourmodel assumptions. Future
work would incorporate individual differences in children’s and their families diet, cul-
ture, and lifestyle. Similarly, children’s individual response to particular programmes and
the efficacy of intervention strategies should be considered in future studies. Lastly, inte-
grating data from field studies to better assess these hypothesis-driven scenarios could be
incorporated in future studies to give more accurate predictions.
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Appendices

Appendix 1. Stability analysis of the equilibria E0,1 and E1,1
A.1 Global stability of E0,1 :

Consider the Liapunov function

V0,1 = X − 1 − ln(X) + Y . (A1)

Using (3) we compute

dV0,1

dt
= −μX

(
1 − 1

X

)2
+

(
β − μ − φ

X

)
Y ≤ −μX

(
1 − 1

X

)2
+ (β − μ − φ)Y

≤ −μX
(
1 − 1

X

)2
− (φ + μ)(1 − Rc,1(φ))Y < 0 ∀Rc,1(φ) ≤ 1.

Thus, E0,1 is globally asymptotically stable ifRc,1(φ) ≤ 1.

A.2 Global stability of E1,1 :

To prove the global stability of the equilibrium E1,1, one may use the following Liapunov function

V1,1 = X − X1,1 − X1,1 ln
X
X1,1

+ Y − Y1,1 − Y1,1 ln
Y
Y1,1

. (A2)

Similar to above, with the help of (3) and the form of X1,1 and Y1,1, we get using (3) we compute

dV1,1

dt
= −μX

(
1 − X1,1

X

)2
+

(
1 − X1,1

X

)(
μY1,1 + φY − (μ + φ)Y1,1

X
X1,1

)

= −μX
(
1 + Y1,2

X1,1

) (
1 − X1,1

X

)2
− φ

(
Y1,1

(
X
X1,1

− 1
)

+ Y
(
X1,1

X
− 1

))

= −μ
X
X1,1

(
1 − X1,1

X

)2
− φ

(
X
X1,1

+ X1,1

X
− 2

)

= −(φ + μ)
X
X1,1

(
1 − X1,1

X

)2
< 0

where we used Y = 1−X and Y1,1 = 1 − X1,1. Thus, E1,1 is globally asymptotically stable whenever
it exists.

Appendix 2. Global stability analysis of the equilibria E0,2,1 and E1,2,1
Since Z= 1−X−Y , in the rescaled model corresponding toModel (4 - 6) with α1 = 0, then wemay
ignore the Z-equation and consider the reduced model

dX
dt

= μ + α0 − (μ + α0 + δ0)X − βXY − α0Y , (A3)

dY
dt

= βXY − (μ + δ1)Y . (A4)

This reducedmodel has the diet problem-free equilibrium Ẽ0,2,1 = (X0,2,1, 0) corresponding toE0,2,1
and the endemic equilibrium Ẽ1,2,1 = (X1,2,1,Y1,2,1) corresponding to E1,2,1. Thus, to establish the
global stability analysis ofE0,2,1 andE1,2,1, it suffices to study the global stability of Ẽ0,2,1 and Ẽ1,2,1.For
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the reduced model (A3 and A4), the Jacobian matrix evaluated at any non-trivial equilibrium reads

J =
(−(μ + α0 + δ0 + βȲ) −(α0 + βX̄)

βȲ βX̄ − (μ + δ1)

)

Hence, for Ẽ0,2,1, the Jacobian matrix J has the two eigenvalues −(μ + α0 + δ0) < 0 and βX0,2,1 −
(μ + δ1). The second eigenvalue is negative if and only if the condition Rc,2,1(α0, 0) < 1 holds.
Hence, Ẽ0,2,1 is locally asymptotically stable if and only ifRc,2,1(α0, 0) < 1. On the other hand, the
trace of the Jacobian matrix J computed at Ẽ1,2,1 is −(μ + α0 + δ0 + βY1,2,1) < 0, while its deter-
minant is βY1,2,1(α0 + βX1,2,1) > 0. Thus, Ẽ1,2,1 is locally asymptotically stable whenever it exists
(i.e. whenRc,2,1(α0, 0) > 1).

It is easy to check that the stable manifold of Ẽ0,2,1 lies on the X-axis. If X= 0, then dX/dt = μ +
α0(1 − Y) > 0. Therefore, the first quadrant and the set 
 := {(X,Y) : X ≥ 0,Y ≥ 0 and X + Y ≤
1} are positively invariant regions for the reduced model (A3 and A4) for any solution of that system
starting in the interior of the region 
. Hence, the ω-limit set of its trajectory must be contained in

. If we let

F(X,Y) = μ + α0 − (μ + α0 + δ0)X − βXY − α0Y ,

G(X,Y) = βXY − (μ + δ1)Y

and assume the Dulac function to be D = 1/Y , where Y > 0, then it is easy to check that

∂(DF)

∂X
+ ∂(DG)

∂Y
= −

(
βY + μ + α0 + δ0

Y

)
< 0.

Hence, Dulac’s criterion implies that model (A3 and A4) has no limit cycle in the first quadrant.
Thus, the local stability of Ẽ0,2,1 and Ẽ1,2,1 implies their global stability. Thus, the proof is complete.

Appendix 3. Local stability analysis of the equilibrium E0,4
It is easy to check that the Jacobianmatrix of the rescaledmodel of (35) evaluated at the diet problem-
free equilibrium E0,4 has two eigenvalues −μ, β(X0,4 + rW0,4) − (φ + γ2 + μ) and those of the
submatrix

Jsub =
(−(γ1 + μ) (1 − p)α

γ1 −(α + μ)

)
.

It is clear that trace(Jsub) = −(γ1 + α1 + 2μ) < 0, while det(Jsub) = (γ1 + μ)(α + μ) − (1 −
p)αγ1 > 0. Thus all eigenvalues have negative real part if and only if β(X0,4 + rW0,4) < (φ + γ2 +
μ), which is equivalent toRc,4(γ1, γ2) < 1.
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