
LETTERS IN BIOMATHEMATICS
2018, VOL. 5, NO. 1, 255–274
https://doi.org/10.1080/23737867.2018.1551075

RESEARCH ARTICLE

Equilibrium analysis for an epidemic model with a reservoir
for infection

Istvan Lauko, Gabriella Pinter and Rachel Elizabeth TeWinkel

University of Wisconsin-Milwaukee, Milwaukee, WI, USA

ABSTRACT
We consider a system of non-linear differential equations describ-
ing the spread of an epidemic in two interacting populations. The
model assumes that the epidemic spreadswithin the first population,
which in turn acts as a reservoir of infection for the second popula-
tion.Weexplore the conditions underwhich the epidemic is endemic
in both populations and discuss the global asymptotic stability of the
endemic equilibrium using a Lyapunov function and results estab-
lished for asymptotically autonomous systems. We discuss monkey-
pox as an example of an emerging disease that can be modelled in
this way and present some numerical results representing themodel
and its extensions.
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1. Introduction

In this paper we consider an epidemic model motivated by monkeypox, an emerg-
ing disease that has become more prevalent recently in several areas of Africa (Bhunu
& Mushayabasa, 2011; Bhunu, Mushayabasa, & Hyman, 2012; Damon, 2011; Hammar-
lund et al., 2005; Hutin et al., 2001; Kantele, Chickering, Vapalahti, & Rimoin, 2016; Levine,
Townsend, Carroll, Damon, & Reynolds, 2007; McCollum&Damon, 2014; The Center for
Food Security and Public Health, 2013). It is believed that the noticeable increase in mon-
keypox (Nolen et al., 2016) is linked to the decrease in herd immunity to smallpox (Hutin
et al., 2001; Levine et al., 2007; Lloyd-Smith et al., 2009; McCollum & Damon, 2014)
due to the phasing out of smallpox vaccinations (Nolen et al., 2016; Rimoin & Gra-
ham, 2011; Rimoin et al., 2007, 2010). Hosts of the monkeypox virus include prairie dogs,
tree squirrels, chimpanzees, and baboons, but the complete list of pathogen hosts is not
known (Centers for Disease Control and Prevention, 2015; Reynolds et al., 2013; The
Center for Food Security and Public Health, 2013; World Health Organization, 2016).
Monkeypox infects both humans and animals, and is generally considered impossible
to eradicate (Damon, 2011; Kantele et al., 2016; McCollum & Damon, 2014; Reynolds
et al., 2013; Rimoin & Graham, 2011). Humans become infected with the monkeypox
virus when they come into direct contact with infected animals or other humans (Cen-
ters for Disease Control and Prevention, 2015; Hammarlund et al., 2005; Jezek, Arita,
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Mutombo, & Szczeniowski, 1986; Jezek, Grab, Szczeniowski, Paluku, & Mutombo, 1988;
The Center for Food Security and Public Health, 2013; Weaver & Isaacs, 2009; World
Health Organization, 2016). Since human-animal cross-infection usually occurs when
humans hunt and eat animals, we can assume that animals do not become infected
via contact with the human population, but that animals can infect humans (Reynolds
et al., 2013). This creates an asymmetric disease transmission between the animal and
human populations, and we can effectively treat the animal population as a reservoir for
the disease within which disease dynamics are independent from the disease’s course in
the human population. Monkeypox was explicitly modelled by Bhunu and Mushayabasa
and Bhunu, Mushayabasa and Hyman with traditional SIR models in both the animal
and human population, and with standard incidence for disease transmission (Bhunu
& Mushayabasa, 2011; Bhunu et al., 2012). However, the analysis presented in Bhunu
and Mushayabasa (2011) and Bhunu et al. (2012) is not complete, and here we present
an alternative full equilibrium analysis for the first model by Bhunu and Mushayabasa,
and establish global stability of the endemic equilibrium in both populations under suit-
able conditions on the parameters (Bhunu & Mushayabasa, 2011). We utilize the theory
developed by Markus (1956) and later by Thieme and Castillo-Chavez (Castillo-Chavez
& Thieme, 1994; Thieme, 1992) for asymptotically autonomous systems together with
the techniques of identifying suitable Lyapunov functions for SIR models with standard
incidence described by Vargas-De-León (2011).

We note that these ideas can be readily generalized for multiple reservoir (and human)
populations, and aremore widely applicable than the special case of monkeypox. In partic-
ular, birds can harbour avian flu viruses that can adapt to and spread in human populations
(Centers for Disease Control and Prevention, 2017a), bats are a reservoir for rabies (Gilbert
et al., 2015), and ebola viruses are also thought to have a natural animal reservoir (Centers
for Disease Control and Prevention, 2017b). The model considered in this paper would
suggest that once the disease becomes endemic in the reservoir population, endemic dis-
ease in the human population is inevitable. Thus it could be suggested that an effective
control measure would be the mass culling of animals that harbour the disease causing
pathogens to prevent the establishment of an endemic disease in the animal population.
While this strategy is widely used for controlling avian fluwithin domestic bird populations
(Centers for Disease Control and Prevention, 2017a), it is not practical or even possible
for the cases of monkeypox, rabies, or ebola within wild populations. The prediction of
endemic levels of the disease in the human population (while it may be a good approxi-
mation at times) are not wholly realistic, due to fluctuations in incidence of monkeypox in
the human population (Nolen et al., 2016).

2. Description of themodel

We consider two populations, denoted byA andH, in which a disease spreads. Both popu-
lations are divided into susceptible, infectious and recovered individuals, denoted by Sa, Ia
and Ra, and Sh, Ih and Rh, respectively. The total number of individuals in each population
is given as Na(t) = Sa(t) + Ia(t) + Ra(t) and Nh(t) = Sh(t) + Ih(t) + Rh(t). Susceptible
individuals in A are recruited through migration and birth at the rate �a and susceptible
individuals in H are recruited at a rate of �h (Bhunu & Mushayabasa, 2011). Let da, dh
be the death rates by the disease for A and H, respectively, μa,μh be the natural death
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rates for A andH, respectively, and ρa, ρh be the recovery rates with permanent immunity
for A and H, respectively. It is assumed that no one in population H can infect any indi-
vidual in population A, while individuals in A can infect those in H on suitable contact.
Although this model can be used to describe epidemics of different diseases, in the case
of monkeypox population A is the animal population and H represents the human pop-
ulation. Disease transmission is modelled using standard incidence, assuming a constant
(density-independent) contact rate both within and across the two populations resulting
in infection rates

fa(Sa, Ia,Ra) = βa1Ia
Na

Sa, and fh(Sa, Ia,Ra, Sh, Ih,Rh) =
(

βa2Ia
Na

+ βhIh
Nh

)
Sh,

where βa1 , βa2 and βh are the effective contact rates in population A, between populations
A andH, and in populationH, respectively. We assume that�a,�h,μa,μh, ρa, ρh are pos-
itive, while da, dh,βa1 ,βa2 and βh are non-negative parameters. Thus we have the following
system of non-linear differential equations (1a)–(1f) (Bhunu &Mushayabasa, 2011)

dSa
dt

= �a − μaSa − βa1Ia
Na

Sa, (1a)

dIa
dt

= βa1Ia
Na

Sa − (μa + ρa + da)Ia, (1b)

dRa
dt

= ρaIa − μaRa, (1c)

dSh
dt

= �h − μhSh −
(

βa2Ia
Na

+ βhIh
Nh

)
Sh, (1d)

dIh
dt

=
(

βa2Ia
Na

+ βhIh
Nh

)
Sh − (μh + ρh + dh)Ih, (1e)

dRh
dt

= ρhIh − μhRh. (1f)

Since

N′
a = �a − μaNa − daIa and N′

h = �h − μhNh − dhIh,

the set � = �a × �h, where

�a =
{
(Sa, Ia,Ra) ∈ R

3
+ : Sa ≥ 0, Ia ≥ 0, Ra ≥ 0, Sa + Ia + Ra ≤ �a

μa

}

and

�h =
{
(Sh, Ih,Rh) ∈ R

3
+ : Sh ≥ 0, Ih ≥ 0, Rh ≥ 0, Sh + Ih + Rh ≤ �h

μh

}
,

is positively invariant under the dynamics of (1a)–(1f), and solutionswith initial conditions
in � exist globally.
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3. Equilibrium analysis

System (1a)–(1f) has several different types of potential equilibria: disease-free, endemic
disease in only one of the populations and endemic disease in both populations. Using
the method of van der Driessche and Watmough (Bhunu & Mushayabasa, 2011; Castillo-
Chavez, Feng, &Huang, 2001; van den Driessche &Watmough, 2002), the basic reproduc-
tion numbers of the model areR0a andR0h , where

R0a = βa1
μa + ρa + da

and R0h = βh

μh + ρh + dh
.

In the following we address the feasibility and stability properties of each of the different
equilibria of the system (1a)–(1f). Our analysis relies heavily on the results of Vargas-De-
León given below (Vargas-De-León, 2011).

Consider the dynamics of the disease in the reservoir population A given by (1a)–(1c).
The system has a disease-free equilibrium E0a = (�a/μa, 0, 0) and a unique endemic
equilibrium E∗

a with coordinates

S∗
a = �a(ρa + μa)

μa(ρa + μa)R0a + daμa(R0a − 1)
= �a

μa
− μa + ρa + da

μa
I∗a , (2a)

I∗a = �aμa(R0a − 1)
μa(ρa + μa)R0a + daμa(R0a − 1)

= �a(βa1 − (μa + ρa + da))
(βa1 − da)(μa + ρa + da)

, (2b)

R∗
a = �aρa(R0a − 1)

μa(ρa + μa)R0a + daμa(R0a − 1)
= ρa

μa
I∗a . (2c)

We note that I∗a > 0 wheneverR0a > 1 or βa1 < da, but in the latter case the resulting S∗
a is

negative. Thus the endemic equilibrium is feasible, that is, E∗
a ∈ �a, if and only ifR0a > 1.

The following theorems are proved by Vargas-De-León by the construction of appropriate
Lyapunov functions (Vargas-De-León, 2011).

Theorem 3.1: If R0a ≤ 1, then the disease-free equilibrium E0a of (1a)–(1c) is globally
asymptotically stable in �a.

Theorem 3.2: Assume thatμa > da andR0a > 1, then the unique endemic equilibrium E∗
a

of (1a)–(1c) is globally asymptotically stable in the interior of �a.

Once we know the dynamics of the disease in population A from the theorems above,
we can consider how this affects disease propagation in population H. Here our analysis
diverges fromwhat was done previously in Bhunu andMushayabasa (2011). Individuals in
H can get infected by contact with infectious individuals in population A or H. However,
we know that if R0a ≤ 1, then Ia(t) → 0, Na(t) → �a/μa as t → ∞, while if R0a > 1
and μa > da, then Ia(t) → I∗a > 0, Na(t) → N∗

a = S∗
a + I∗a + R∗

a as t → ∞. Thus we can
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think of (1d)–(1f) as a non-autonomous system

dSh
dt

= �h − μhSh −
(

βa2g(t) + βhIh
Nh

)
Sh, (3a)

dIh
dt

=
(

βa2g(t) + βhIh
Nh

)
Sh − (μh + ρh + dh)Ih, (3b)

dRh
dt

= ρhIh − μhRh, (3c)

where g(t) := Ia(t)/Na(t). By Theorems 3.1 and 3.2, we have that

lim
t→∞ g(t) = limt→∞ Ia(t)

limt→∞ Na(t)
= Iea

Ne
a
,

where the limits Iea and Ne
a depend on R0a and the corresponding parameters. That is,

Iea = 0 whenR0a ≤ 1 and Iea = I∗a whenR0a > 1. This makes (1d)–(1f) an asymptotically
autonomous system with limit system

dSh
dt

= �h − μhSh −
(

βa2
Iea
Ne
a

+ βhIh
Nh

)
Sh, (4a)

dIh
dt

=
(

βa2
Iea
Ne
a

+ βhIh
Nh

)
Sh − (μh + ρh + dh)Ih, (4b)

dRh
dt

= ρhIh − μhRh, (4c)

and we can use the theory developed for such systems (Castillo-Chavez & Thieme, 1994;
Thieme, 1992) to address the stability properties of our model in all possible cases. In par-
ticular, we repeatedly make use of the following corollary (Thieme, 1992) applied to our
systems:

Corollary 3.3: If solutions of the system (3a)–(3c) are bounded, and the equilibrium E of the
limit system (4a)–(4c) is globally asymptotically stable, then any solution (Sh(t), Ih(t),Rh(t))
of the system (3a)–(3c) satisfies (Sh(t), Ih(t),Rh(t)) → E as t → ∞.

3.1. Endemic equilibrium in both populations

We start with the following claim:

Proposition 3.4: Assume that R0a > 1, βa2 > 0 and μa > da, so the disease in the reser-
voir population tends to the endemic equilibrium E∗

a. Then (1d)–(1f) has a unique endemic
equilibriumE∗

h ∈ �h, andE1 = (E∗
a ,E∗

h) is the unique endemic equilibriumof (1a)–(1f) in�.
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Proof: To calculateE∗
h = (S∗

h, I
∗
h ,R

∗
h), we follow the steps in (Bhunu&Mushayabasa, 2011),

and set the right sides of Equations (1d)–(1f) equal to zero to obtain

�h =
(

μh + βa2I∗a
N∗
a

+ βhI∗h
N∗
h

)
S∗
h, (5)

(
βa2I∗a
N∗
a

+ βhI∗h
N∗
h

)
S∗
h = (μh + ρh + dh) I∗h , (6)

ρhI∗h = μhR∗
h. (7)

In Bhunu and Mushayabasa (2011), the unique endemic equilibrium was found subject to
βh > dh(1 + βa2I∗a/μhN∗

a ). Instead, we show the existence of the unique endemic equi-
librium using a method similar to Afassinou, Chirove, and Govinder (2017) that holds
regardless of the stated inequality.

For simplification, define

λ∗
a = βa2I∗a

N∗
a

, mh = μh + ρh + dh, λ∗
h = βhI∗h

N∗
h
,

a = �hλ
∗
a

mh
, b = �h

mh
, c = ρha

μh
, d = ρhb

μh
, e = �h + a + c, f = b + d.

Using (5),

S∗
h = �h

μh + λ∗
a + λ∗

h
. (8)

From (6) and using (8),

I∗h = S∗
h
(
λ∗
a + λ∗

h
)

mh
=
(

�h

μh + λ∗
a + λ∗

h

)(
λ∗
a + λ∗

h
mh

)
= a + bλ∗

h
μh + λ∗

a + λ∗
h
. (9)

Clearly, by (7) and (9),

R∗
h = ρh

μh
I∗h =

( a + bλ∗
h

μh + λ∗
a + λ∗

h

)(
ρh

μh

)
= c + dλ∗

h
μh + λ∗

a + λ∗
h
. (10)

Then it follows that
I∗h
N∗
h

=
( a + bλ∗

h
μh + λ∗

a + λ∗
h

)(
μh + λ∗

a + λ∗
h

�h + a + bλ∗
h + c + dλ∗

h

)
= a + bλ∗

h
e + fλ∗

h

so that

λ∗
h = βh

(
a + bλ∗

h
)

e + fλ∗
h

. (11)

Rearranging (11), we obtain

fλ∗
h
2 + λ∗

h (e − βhb) − βha = 0. (12)

The above quadratic equation in λ∗
h has one positive root. Now (8), (9) and (10) imply that

the corresponding E∗
h = (S∗

h, I
∗
h ,R

∗
h) is feasible. �
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Consider now the endemic equilibrium E1 = (E∗
a ,E∗

h) ∈ �. We prove the following
theorem.

Theorem 3.5: If R0a > 1, μa > da, βa2 > 0 and μh > dh then the unique endemic equi-
librium E1 = (E∗

a ,E∗
h) of (1a)–(1f) is globally asymptotically stable in the interior of �.

Proof: Since R0a > 1 and μa > da Theorem 3.2 implies that E∗
a is a globally asymp-

totically stable equilibrium of (1a)–(1c) in the interior of �a. Using this result, and the
assumption that βa2 > 0 we have that the system

dSh
dt

= �h − μhSh −
(

βa2
I∗a
N∗
a

+ βhIh
Nh

)
Sh,

dIh
dt

=
(

βa2
I∗a
N∗
a

+ βhIh
Nh

)
Sh − (μh + ρh + dh)Ih,

dRh
dt

= ρhIh − μhRh

is the asymptotic limit of system (1d)–(1f), and E∗
h is its unique equilibrium.We claim that

E∗
h is a globally asymptotically stable equilibrium of (4a)–(4c).
Consider the function L : {(Sh, Ih,Rh) ∈ �h : Sh > 0, Ih > 0, Rh > 0} → R

L = Nh − N∗
h − N∗

h ln
(
Nh

N∗
h

)
+ N∗

h (dh + 2μh)

βh
(
I∗h + R∗

h
) [

Ih − I∗h − I∗h ln
(
Ih
I∗h

)]

+ (dh + 2μh)

2ρh

(
1 + S∗

h
I∗h + R∗

h

)((Rh − R∗
h
)2

Nh

)
+ D

(
Nh − N∗

h
)2 + E

(
Rh − R∗

h
)2 ,

where D,E>0 are yet to be determined. L ∈ C1(�h), L(S∗
h, I

∗
h ,R

∗
h) = 0 and L is positive

semi-definite. Calculating the derivative of L along solutions of (4a)–(4c) and using the
relationships

�h =
(

μh + βa2I∗a
N∗
a

+ βhI∗h
N∗
h

)
S∗
h,

βa2I∗a
N∗
a

+ βhI∗h
N∗
h
S∗
h = (μh + ρh + dh) I∗h ,

ρhI∗h = μhR∗
h,

we obtain

L′ = (
μh
(
S∗
h + I∗h + R∗

h
)+ dhI∗h − μh (Sh + Ih + Rh) − dhIh

) (Nh − N∗
h

Nh

)

+ N∗
h (dh + 2μh)

βh
(
I∗h + R∗

h
)
[

βa2I∗aShI∗h
(
Ih − I∗h

)
N∗
a IhI∗h

− βa2I∗aS∗
hIh
(
Ih − I∗h

)
N∗
a IhI∗h

+βhShN∗
h
(
Ih − I∗h

)
N∗
hNh

− βhS∗
hNh

(
Ih − I∗h

)
N∗
hNh

]
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+ (dh + 2μh)

2ρh

(
1 + S∗

h
I∗h + R∗

h

)(2
(
ρh(Ih − I∗h) − μh(Rh − R∗

h)
) (
Rh − R∗

h
)

Nh

−N′
h
(
Rh − R∗

h
)2

N2
h

)
+ 2DN′

h
(
Nh − N∗

h
)

+ 2E
(
ρhIh − μhRh − ρhI∗h + μhR∗

h
) (
Rh − R∗

h
)
.

Since

βhShN∗
h
(
Ih − I∗h

)− βhS∗
hNh

(
Ih − I∗h

) = βh
(
Ih − I∗h

) (
ShN∗

h − S∗
hNh

)
= βh

(
Ih − I∗h

) ((
Sh − S∗

h
) (
I∗h + R∗

h
)− S∗

h
(
Ih − I∗h

)− S∗
h
(
Rh − R∗

h
))

and

βa2I
∗
aShI

∗
h
(
Ih − I∗h

)−βa2I
∗
aS

∗
hIh
(
Ih − I∗h

) =βa2I
∗
a
(
Ih − I∗h

) (
Ih
(
Sh − S∗

h
)− Sh

(
Ih − I∗h

))
,

we have

L′ = (
μh
(
S∗
h + I∗h + R∗

h
)+ dhI∗h − μh (Sh + Ih + Rh) − dhIh

) (Nh − N∗
h

Nh

)

+ N∗
h (dh + 2μh)

βh
(
I∗h + R∗

h
)
[

βa2I∗a
(
Ih − I∗h

) (
Sh − S∗

h
)

N∗
a I∗h

− βa2I∗aSh
(
Ih − I∗h

)2
N∗
a IhI∗h

+βh
(
Ih − I∗h

) (
Sh − S∗

h
) (
I∗h + R∗

h
)

N∗
hNh

− βhS∗
h
(
Ih − I∗h

)2
N∗
hNh

−βhS∗
h
(
Ih − I∗h

) (
Rh − R∗

h
)

N∗
hNh

]

+ (dh + 2μh)

2ρh

(
1 + S∗

h
I∗h + R∗

h

)(2ρh
(
Ih − I∗h

) (
Rh − R∗

h
)

Nh

−2μh
(
Rh − R∗

h
)2

Nh
− N′

h
(
Rh − R∗

h
)2

N2
h

)

+ 2DN′
h
(
Nh − N∗

h
)+ 2Eρh

(
Ih − I∗h

) (
Rh − R∗

h
)− 2Eμh

(
Rh − R∗

h
)2 .

Notice that the first term in L′ can be written as

((
Sh − S∗

h
)+ (

Ih − I∗h
)+ (

Rh − R∗
h
)

Nh

) (−μh
(
Sh − S∗

h + Ih − I∗h + Rh − R∗
h
)

−dh
(
Ih − I∗h

))
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= −μh
((
Sh − S∗

h
)− (

Rh − R∗
h
))2

Nh
− (dh + μh)

(
Ih − I∗h

)2
Nh

− (dh + 2μh)
(
Sh − S∗

h
) (
Ih − I∗h

)
Nh

− (dh + 2μh)
(
Ih − I∗h

) (
Rh − R∗

h
)

Nh
, (13)

so we can write

L′ = −μh
((
Sh − S∗

h
)− (

Rh − R∗
h
))2

Nh
− (dh + μh)

(
Ih − I∗h

)2
Nh

+ N∗
h (dh + 2μh)

βh
(
I∗h + R∗

h
)
(

βa2I∗a
(
Ih − I∗h

) (
Sh − S∗

h
)

N∗
a I∗h

)

−
(
N∗
h (dh + 2μh)

βh
(
I∗h + R∗

h
)
)(

βa2I∗aSh
(
Ih − I∗h

)2
N∗
a IhI∗h

+ βhS∗
h
(
Ih − I∗h

)2
N∗
hNh

)

− (dh + 2μh)

2ρh

(
1 + S∗

h
I∗h + R∗

h

)(2μh
(
Rh − R∗

h
)2

Nh
+ N′

h
(
Rh − R∗

h
)2

N2
h

)

+ 2DN′
h
(
Nh − N∗

h
)+ 2Eρh

(
Ih − I∗h

) (
Rh − R∗

h
)− 2Eμh

(
Rh − R∗

h
)2 .

Now rearranging the terms as in (13), we obtain

L′ = −μh
((
Sh − S∗

h
)− (

Rh − R∗
h
))2

Nh
− (dh + μh)

(
Ih − I∗h

)2
Nh

+ N∗
h (dh + 2μh)

βh
(
I∗h + R∗

h
)
(

βa2I∗a
(
Ih − I∗h

) (
Sh − S∗

h
)

N∗
a I∗h

)

−
(
N∗
h (dh + 2μh)

βh
(
I∗h + R∗

h
)
)(

βa2I∗aSh
(
Ih − I∗h

)2
N∗
a IhI∗h

+ βhS∗
h
(
Ih − I∗h

)2
N∗
hNh

)

− (dh + 2μh)

2ρh

(
1 + S∗

h
I∗h + R∗

h

)(2μh
(
Rh − R∗

h
)2

Nh
+ N′

h
(
Rh − R∗

h
)2

N2
h

)

− 2Dμh
((
Sh − S∗

h
)− (

Rh − R∗
h
))2 − 2D (dh + 2μh)

(
Ih − I∗h

)2
− 2D (dh + 2μh)

(
Sh − S∗

h
) (
Ih − I∗h

)− 2D (dh + 2μh)
(
Ih − I∗h

) (
Rh − R∗

h
)

+ 2Eρh
(
Ih − I∗h

) (
Rh − R∗

h
)− 2Eμh

(
Rh − R∗

h
)2 .

At this point we can see that most terms of L′ are negative semi-definite in �h, except for
the third term, some of the ones involving parameters D and E, and potentially the fifth
term involving N′

h. To deal with this term we utilize the assumption that μh > dh, and
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obtain

2μh
(
Rh − R∗

h
)2

Nh
+ N′

h
(
Rh − R∗

h
)2

N2
h

=
(
2μhNh + N′

h
) (
Rh − R∗

h
)2

N2
h

= (2μh (Sh + Ih + Rh) + �h − μh (Sh + Ih + Rh) − dhIh)
(
Rh − R∗

h
)2

N2
h

= (μh (Sh + Rh) + �h + (μh − dh) Ih)
(
Rh − R∗

h
)2

N2
h

≥ 0.

Now we can choose the values of D and E in such a way that all the remaining terms that
may not be negative semi-definite cancel out. In particular, let

N∗
h (dh + 2μh)

βh
(
I∗h + R∗

h
) (

βa2I∗a
N∗
a I∗h

)
− 2D(dh + 2μh) = 0 and

− 2D (dh + 2μh) + 2Eρh = 0.

This implies

D = N∗
hβa2I∗a

2βhN∗
a I∗h

(
I∗h + R∗

h
) > 0 and

E = N∗
hβa2I∗a (dh + 2μh)

2ρhβhN∗
a I∗h

(
I∗h + R∗

h
) > 0,

andwith these parameters L′ is negative semi-definite in�h, with L′ = 0 if and only if Sh =
S∗
h, Ih = I∗h ,Rh = R∗

h. Thus the largest compact invariant set in {(Sh, Ih,Rh) ∈ �h : L′ = 0}
is {E∗

h}, therefore, by the LaSalle invariance principle {E∗
h} is globally asymptotically stable

in �h (LaSalle, 1976; LaSalle & Lefschetz, 1961). Now Corollary 3.3 implies that E2 is a
globally asymptotically stable equilibrium of (1a)–(1f). �

Note that our theorem shows that if the disease is endemic in the reservoir popula-
tion, and βa2 > 0, then irrespective of the reproductive numberR0h the disease becomes
endemic in the human population (if μh > dh).

3.2. Disease-free equilibrium in the reservoir population

The other equilibrium of the reservoir system (1a)–(1c) is the disease-free equilibrium
given by Ea = (S0a, I0a ,R0a) = (�a/μa, 0, 0). By Theorem 3.1 we know that this equilibrium
is globally asymptotically stable if R0a ≤ 1. In this case, Ia(t) → 0 as t → ∞, so in the
limit there is no infection in population H coming from the reservoir population A. Thus,
in the limit, dynamics in population H become exactly the same as the general dynamics
in the reservoir population, and Corollary 3.3 applies. Thus we have the following results.

Proposition 3.6: Assume thatR0a ≤ 1, so the disease dies out in the reservoir population.
Additionally, letR0h ≤ 1. Then the disease-free equilibriumE0 = (�a/μa, 0, 0,�h/μh, 0, 0)
of (1a)–(1f) is globally asymptotically stable in �.
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Proposition 3.7: Assume that R0a ≤ 1, R0h > 1 and μh > dh. Then the equilibrium
E2 = (�a/μa, 0, 0, S∗

h, I
∗
h ,R

∗
h) of (1a)–(1f) is globally asymptotically stable in �. (Note that

(S∗
h, I

∗
h ,R

∗
h) are given by the same expressions as (2a)–(2c)with the parameters corresponding

to population H.)

4. Numerical results and possible modifications to themodel

In this section we present some numerical results related to the model (1a)–(1f) with ani-
mals as the reservoir population A and humans represented as population H. Figure 1
shows the results of a numerical simulation of (1a)–(1f) using MATLAB’s ode45 and
the parameters �a = 152500/3, μa = 1/8, ρa = 1/20, da = 1/30, �h = 2900/6, μh =
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Figure 1. The above shows the results for a simulation with all parameters constant and the criteria for
Theorem 3.5 met.
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1/6, ρh = 17/24, dh = 1/8 individuals per month and βh = 31/24, βa1 = 3/8 and βa2 =
41/120 as the contact rates. The initial values used were S0h = 2000, I0h = Rhh = R0a =
0, S0a = 30000 and I0a = 1000. These are artificial values and are used only for illustra-
tion purposes. Under these conditions, the endemic equilibrium of (1a)–(1f) is globally
asymptotically stable.

We used monkeypox as a motivating example for our next simulation. Since there is
no longer any vaccination against smallpox and this vaccine provided some immunity
againstmonkeypox, there is waning herd immunity againstmonkeypox (Hutin et al., 2001;
Levine et al., 2007; Lloyd-Smith et al., 2009; McCollum&Damon, 2014; Nolen et al., 2016;
Rimoin & Graham, 2011; Rimoin et al., 2007, 2010). Thus, for the next simulation, we
assume that as time goes on there is an increasing likelihood that a human will get
infected when they come into contact with an infected animal. For this simulation, we
use βa2(t) = 1/(1 + 9 e−t). Figure 2 shows the results of a numerical simulation with this

Figure 2. The results for a simulation with all parameters constant except βa2(t)which is an increasing
function of time.
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βa2(t) and all other parameters the same as for Figure 1. The analysis for our asymptot-
ically autonomous system is still valid because βa2(t) → 1 as t → ∞ and so if we define
g(t) := βa2(t)Ia(t)/Na(t), then g(t) → Iea/Ne

a as t → ∞. Since βa2 → 1, it makes sense
that Figure 2 shows the system approaching a higher I∗h value than in Figure 1.

In the proof of the global asymptotic stability for the co-existence equilibrium, we
assumed that μa > da and μh > dh. However, even if we break both of those conditions,
the numerical results still seem to indicate that the co-existence endemic equilibrium
of (1a)–(1f) is globally asymptotically stable. Figure 3 shows the results of a simulation of
this kind, with�a = 152500/3, μa = 1/25, ρa = 1/20, da = 1/10, �h = 2900/6, μh =
1/9, ρh = 17/24, dh = 1/6 individuals per month and βh = 31/24, βa1 = 3/8 and βa2 =

Figure 3. The results of a simulation with all parameters constant, but withμa < da andμh < dh.
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41/120 as the contact rates. The initial values used are the same as those in the previous
two sets of results.

We also simulate a more complicated scenario where there are multiple reservoir popu-
lations. Suppose there are n such reservoir populations,A1,A2, . . . ,An and one population
H as in the previous model. Sh, Ih, Rh and Nh are defined as before with Sai , Iai and
Rai representing the susceptible, infected and recovered individuals in population Ai, for
i = 1, 2, . . . , n, with the total number of individuals in population Ai being given as Nai .
Susceptible individuals in Ai are recruited through migration and birth at the rate�ai and
susceptible individuals inH are recruited at a rate of�h. We represent the death rates from
disease in populationAi by dai and the death rate by disease in populationH as dh. Further,
we assume μai ,μh are the natural death rates for Ai and H, respectively, and ρai , ρh be the
recovery rates with permanent immunity for Ai and H, respectively. It is assumed that no
one in population H can infect any individual in any Ai population, while individuals in
any Ai population can infect those in H on suitable contact. We assume there is no cross-
infection between Ai and Aj when i 	= j. Disease transmission is modelled using standard
incidence, assuming a constant (density-independent) contact rate both within and across
the two populations resulting in infection rates

fai(Sai , Iai ,Rai) = βai1Iai
Nai

Sai , for i = 1, 2, . . . , n, and

fh(Sa1 , Ia1 ,Ra1 , . . . , San , Ian ,Ran , Sh, Ih,Rh) =
(( n∑

i=1

βai2Iai
Nai

)
+ βhIh

Nh

)
Sh,

where βai1 is the effective contact rate within population Ai, βai2 is the effective contact
rate between populations Ai and H and βh is the effective contact rate within population
H. We assume that, for i = 1, 2, . . . , n, �ai ,�h,μai ,μh, ρai , ρh are positive parameters and
dai , dh,βa1i ,βa2i andβh are non-negative parameters. Specifically, this leads to the following
model. For i = 1, 2, . . . , n,

dSai
dt

= �ai − μaiSai −
βai1Iai
Nai

Sai , (14a)

dIai
dt

= βa1i Iai
Nai

Sai − (μai + ρai + dai)Iai , (14b)

dRai
dt

= ρai Iai − μaiRai , (14c)

dSh
dt

= �h − μhSh −
(( n∑

i=1

βai2Iai
Nai

)
+ βhIh

Nh

)
Sh, (14d)

dIh
dt

=
(( n∑

i=1

βai2Iai
Nai

)
+ βhIh

Nh

)
Sh − (μh + ρh + dh)Ih, (14e)
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dRh
dt

= ρhIh − μhRh. (14f)

Let

�ai =
{
(Sai , Iai ,Rai) ∈ R

3
+ : Sai ≥ 0, Iai ≥ 0, Rai ≥ 0, Sai + Iai + Rai ≤ �ai

μai

}

and

�h =
{
(Sh, Ih,Rh) ∈ R

3
+ : Sh ≥ 0, Ih ≥ 0, Rh ≥ 0, Sh + Ih + Rh ≤ �h

μh

}
.

Then for i = 1, 2, . . . , n, the set �̃ = �a1 × �a2 × · · · × �an × �h is positively invariant
under the dynamics of (14a)–(14f) and solutions with initial conditions in �̃ exist globally.

Define E(t)
ai := (S(t)

ai , I
(t)
ai ,R

(t)
ai ) and Eeai := (Seai , I

e
ai ,R

e
ai) for i = 1, 2, . . . , n. Depending on

the parameters, Eeai is either the disease-free equilibrium or the endemic equilibrium. By
the structure of the model in (14a)–(14f) – with animals uninfected by humans and each
animal population independent, that is, unable to infect any other animal population – we
have that E(t)

ai → Eeai for i = 1, 2, . . . , n, and each Eeai is globally asymptotically stable by
Theorems 3.1 and 3.2 under appropriate conditions. Thus, it is straightforward to extend
the results of the equilibrium analysis for (1a)–(1f) and we have the following corollary.

Corollary 4.1: If there exists an i ∈ 1, 2, . . . , n such thatR0ai > 1, μai > dai and βai2 > 0,
and μh > dh, then the unique endemic equilibrium Ẽ = (Eea1 , . . . ,E

e
an ,E

∗
h) of (14a)–(14f) is

globally asymptotically stable in the interior of �̃.

In the simplest scenario for this model, we assume i=2. Figure 4 shows the results of an
epidemic simulation with two animal populations and one human population. The initial
values used for this simulation are S0a1 = 3000, I0a1 = 100, S0a2 = 2500, I0a2 = 40, S0h =
2000, I0h = 100 and R0a1 = R0a2 = R0h = 0. The contact rates are βa11 = 1/4, βa21 =
1/9, βa12 = 1/8, βa22 = 1/11 and βh = 31/24. The parameter values, with units of
individuals per month, are �h = 2900/6, μh = 1/6, ρh = 17/24, dh = 1/8, �a1 =
152500/2, μa1 = 1/8, ρa1 = 1/20, da1 = 1/30, �a2 = 500, μa2 = 1/25, ρa2 = 1/10 and
da2 = 1/30.

Looking at the system (1a)–(1f) and revisiting our assumptions, the infection in the
human population depends on infection in both populations. In Figure 5 we see the change
in I∗h/N

∗
h as R0a changes. The values used for this figure were �a = 152500/3, μa =

1/25, ρa = 1/20, da = 1/10, �h = 2900/6, μh = 1/9, ρh = 17/24, dh = 1/6 individu-
als permonth and βa2 = 0.3. In order to get the change inR0a , we use a range of βa1 values,
namely 0 ≤ βa1 ≤ 1.9. The initial values used were S0h = 2000, I0h = Rhh = R0a = 0, S0a =
3000 and I0a = 1000. (These values are simply for illustration purposes.) We notice that
I∗h/N

∗
h increases afterR0a = 1. When βh = 1/3 we haveR0h ≈ 0.338 and when βh = 1/9

we have R0h ≈ 0.113. Even if βh = 0, when R0a ≥ 1, we see there is infection in the
human population so limiting infection from humans to humans is not enough to fully
mitigate this disease in humans. In all three curves there is a sharp increase in I∗h/N

∗
h for

1 ≤ R0a ≤ 2 so that the differences between the different I∗h/N
∗
h curves are nearly indis-

tinguishable the closerR0a is to 1. While we do not know what βa1 is in reality, this shows
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Figure 4. The results of a simulation with two animal populations as in (14a)–(14f) for i= 2. The first
two columns show the results for populations A1 and A2, respectively. The last column shows the results
for the human population.

that if it is high enough for there to be endemic infection in the animal population, there
will be some level of infection in the human population. Figure 6 uses the same parame-
ters as in 5, but with βh ≥ 1. Specifically, βh = 1 where R0h ≈ 1.014, βh = 1.5 when we
haveR0h ≈ 1.521 and βh = 2 whenR0h ≈ 2.028. As expected, the increase in βh results
in higher values for I∗h/N

∗
h than in Figure 5. While difficult, it is important to continue

studying monkeypox in both human and animal populations since infection in the animal
population has a substantial impact on infection in the human population.

In Figure 7, we use the same parameters as in Figure 5, but we consider I∗a/N∗
a as a

function of R0a . Since we changed βh to obtain three curves in Figure 5 but βh has no
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Figure 5. The above illustrates the ratio I∗h/N
∗
h as a function ofR0a . The lowest curve represents the case

when βh = 0 so we see that there is still infection in the human population as long asR0a ≥ 1.

Figure 6. The above illustrates the ratio I∗h/N
∗
h as a function ofR0a forR0h > 1.

role in the value of I∗a/N∗
a , the curve in Figure 7 is the same regardless of βh. We note that,

as would be expected, changing R0a has a greater effect on I∗a/N∗
a than it did on I∗h/N

∗
h

reflected in Figure 5.
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Figure 7. The above illustrates I∗a/N∗
a as a function ofR0a .

Figure 8. The above illustrates βa2 I
∗
a/N

∗
a as a function of R0a for three different values of βa2 with

βh = 0.

We also know that changes in βa2 impact the animal-to-human cross-infection. Figure 8
shows βa2I∗a/N∗

a as a function of R0a for the same values as in Figure 5 with βh = 0.
These results indicate that controlling the disease in the human population also depends
on reducing the value of βa2 , as would be expected. Continuing to educate people in areas
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affected by monkeypox on recognizing the symptoms and proper handling of infected
animals is crucial in limiting the spread of this disease among humans.

Futuremodifications to themodel include possiblymaking themigration and birth rates
functions of time, �a(t) and �h(t), in addition to experimenting with different functions
for βa2(t). These adjustments may more accurately convey seasonal influences as well as
other environmental influences and trends.
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