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ABSTRACT
Thermoregulation in endotherms allows the maintenance of the
body temperature independent of ambient temperature. Experi-
mental data have revealed complex interactions between the phys-
iological mechanisms of thermoregulation and environmental con-
ditions. We derive a nonlinear partial integro-differential dynamical
model based on physical first principles and fundamental physio-
logical mechanisms to understand the role of some thermal control
mechanisms in the thermoregulation process of endotherms. The
model is composed of four layers representing different tissues and it
incorporates six thermal feedback control mechanisms. Thesemech-
anisms are heat production due tometabolic rate andheat exchange
within the body given its internal structure, and themodel considers
heat exchange due to conduction, heat transport by blood flow, heat
exchangewith the ambient through convection, radiation, and evap-
oration from the respiratory tract and superficial evaporation in both
passive and active situations. Ourmodel sheds new light on previous
explanations about the classic metabolism-ambient temperature U-
shaped curve.
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1. Introduction

Thermoregulation is a fundamental physiological process with implications not only
for the organismal level but also, from an ecological standpoint, as a process in which
organisms interact with environmental factors to define a species thermal niche (Hill,
Wyse, & Anderson, 2012). Most mammals and birds maintain a relatively constant
body temperature independent of environmental temperatures by means of homeostatic
mechanisms that regulate rates of heat production and heat loss (Hill et al., 2012; Ran-
dall & Burggren, 2001). Therefore, mammals and birds are known as homeothermic
endotherms. The uncoupling between body temperature and environmental conditions
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has allowed mammals and birds to colonize habitats that otherwise would not be suit-
able, thus expanding their geographical distribution over evolutionary time (Khaliq, Hof,
Prinzinger, Böhning-Gaese, & Pfenninger, 2014; Kronfeld-Schor & Dayan, 2013).

The basic experimental facts concerning thermoregulation in homeothermic
endotherms are known since the late eighteen hundreds (Scholander, Hock,Walters, John-
son, & Irving, 1950). An essential experimental result, which has been demonstratedmany
times for several species of birds and mammals, is the relationship between total internal
heat produced due to metabolism, known asmetabolic rate, and ambient temperature (Hill
et al., 2012; Randall & Burggren, 2001). The shape of this relationship is captured in the so-
called metabolism-ambient temperature U-shaped curve (Figure 1), which forms the basis
for understanding the dynamics of the rate of heat transfer between an animal and its envi-
ronment (Hill, Muhich, & Humphries, 2013; Hill et al., 2012; Randall & Burggren, 2001).
This curve is usually obtained by measuring oxygen consumption and its shape is consis-
tent across endotherms. Metabolic rate scales with body mass and ambient temperature
according to a power function of the form Q = i0B3/4 e−E/kT , where Q is the metabolic
rate, i0 is a normalization constant independent of body size and temperature, B is the
body size, E is the activation energy, k = 1.38 × 10−23 is Boltzmann constant, and T is the
absolute temperature in K (Brown, Gillooly, Allen, Savage, &West, 2004; Darveau, Suarez,
Andrews, &Hochachka, 2002; Gillooly, Charnov,West, Savage, & Brown, 2002;Heldmaier,
Ortmann, & Elvert, 2004; Kleiber, 1932; Scholander et al., 1950). This empirically derived
curve, remarkably continues to inspire conceptual and theoretical interest.

Despite the importance of this curve, its shape is commonly explained by a rather sim-
ple model that dates back to the early 1900s (Harris & Benedict, 1919; Kleiber, 1932). In
these works, the authors applied a specially simple form of Fourier’s law to heat flow in the
body of homeothermic animals. The animal’s body is represented by a core with a constant
temperature Tbc, surrounded by an insulating layer with heat conductivity k, thickness h,
surface area S, and surface temperature T . According to themodel (Kleiber, 1972), the rate
of heat flow, dH/dt, may be written as1

dH
dt

= k
S
h
(Tbc − T ). (1)

The term C ≡ k(S/h) is known as the average body condutance. Under the assump-
tion that all the internal heat produced is exchanged with the ambient, i.e. Q = dH/dt,
Equation (1) became the classical model for explaining the shape of the curve shown in
Figure 1, which can be found nowadays in textbooks (e.g. Hill et al., 2012.)

In the next section we review this classical model to expose its hidden simplify-
ing hypotheses and its shortcomings. We conclude that this model is too simple to
provide a satisfactory explanation for experimental data (Barnes & Buck, 2000; Brown
& Lasiewski, 1972; Cooper, Withers, & Cruz-Neto, 2009; Gordon, 1990; Hart, 1957; Hill
et al., 2012; Johnson, 1968; Scholander et al., 1950; Tattersall, 2016) that shapes the curve
shown in Figure 1. In fact, the classical model assumes heat conduction as the only relevant
heat transport mechanism in the animal’s body, not taking into account heat transport due
to blood flow. In addition, the model does not incorporate important nonlinear effects due
to heat exchange by radiation, which is a heat exchange mechanism that accounts for at
least 50% of total heat exchange of organisms (Gates, 2012, p. 24).
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Figure 1. Classic metabolism-ambient temperature U-shaped curve valid for mammals and birds. The
thermoneutral zone (TNZ) is the range of ambient temperatures (Ta) within which an animal’s resting
metabolic rate is independent of ambient temperature and constant. The lower and upper limits of the
TNZ are the lower (TLC) and upper (TUC) critical temperatures. Within the TNZ, body temperature (Tbc) is
maintainedby themodulationofbody insulation,which is lownearTUC andhighnear TLC, andby thermal
control mechanism of vasomotor adjustment. Below the TNZ, body insulation is high and approximately
constant, thus the body temperature is maintainedwithmechanisms that increase the rate of metabolic
rate as ambient temperature falls. The absolute value of the slope of the curve at Ta < TLC is the con-
ductance C. Thus, for ambient temperatures below TUC we have basically dry heat exchange. Above the
TNZ, body insulation is low and approximately constant, thus the body temperature is maintained by
mechanisms of evaporative heat exchange that require an increase in the metabolic rate as ambient
temperature rises.

In addition to the metabolism-ambient temperature curve, animal surface temperature
as a function of ambient temperature is another commonly investigated relationship in
thermoregulation studies. This relationship can be close to linear such as that observed for
the bill surface temperature in sparrows (Greenberg, Cadena, Danner, & Tattersall, 2012),
whereas this relationship can also be nonlinear such as that observed for the bill surface
temperature in toucans (Tattersall, Andrade, & Abe, 2009). The linear dependence has
positive slopes with values always smaller than one (Greenberg et al., 2012). The nonlin-
ear dependencies have been explained as a consequence of vasomotor adjustment, which
works as a thermoregulatory mechanism (Tattersall et al., 2009). However, to our knowl-
edge, there is no clear theoretical explanation based on physics first principles for all these
experimental results.

In this work, we introduce a four-layer model for heat production and exchange based
on physics first principles. Ourmodel considers the internal structure of the body, different
types of internal heat transport, different mechanisms for heat exchange with the ambient
(including nonlinear ones), as well as control mechanisms used for thermoregulation.

Our goal is to shed light on the roles played by specific thermal control mecha-
nisms in the process of maintaining a prescribed temperature in the body core, which
is defined as the set of the most important organs of an animal (Hill et al., 2012; Ran-
dall & Burggren, 2001). As for thermal control mechanisms, we consider (i) changes in
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metabolic rate, (ii) changes in insulation layer characteristics (e.g. raising of fur or feath-
ers), (iii) changes in blood fluxes due to blood vasomotor adjustment in tissues near the
body core, (iv) changes in blood fluxes due to blood vasomotor adjustment in tissues near
the surface, (v) evaporation from the respiratory tract (e.g. panting), and (vi) superficial
evaporation (e.g. sweating).

The thermal control mechanisms (i) and (ii) are considered in the classical model by
means of dQb/dt and h, respectively. To take (iii) and (iv) into account, we use an approach
similar to Pennes’ bio-heat transfer (BHT)model, which has been successfully used in stud-
ies of heat flux in vascularized tissues, such as hyperthermia and hypothermia treatments
(Arkin, Xu, & Holmes, 1994; Okajima, Maruyama, Takeda, & Komiya, 2009). Mechanisms
(v) and (vi) are important at high ambient temperatures. In particular for animals with no
significant number of sweat glands, that rely mostly on evaporation from the respiratory
tract, to take this type of evaporation into account, we assume its rate to be proportional
to the volume of air breathed per unit of time and it increases by rapid shallow breath-
ing, as seen typically in dogs and domestic fowl, and known as panting (Gates, 2012; Hill
et al., 2012; Richards, 1970).

We model animals under experimental laboratory conditions, i.e. animals at rest, with-
out direct exposure to sun light or reflected radiation, controlled ambient temperature
and low humidity. Thus, for the sake of simplicity, we did not include control by postural
changes. In Section 3.6, we provide further comments on how postural changes could be
considered as an additional thermal control mechanism and how the effect of wind speed
could be incorporated into our model.

Our model predicts how the metabolic rate and the body surface temperature depend
on the ambient temperature under simplified conditions in which we can solve the model
analytically. In particular, our model explains:

• details of the classical U-shaped relationship between metabolic rate and ambient
temperature shown in Figure 1;

• season-dependent shifts in this relationship as a response to changes in the insulation
layer properties (e.g. fur colour and thickness in mammals);

• extension of the TNZ to high temperatures due to vasomotor adjustment;
• linear and nonlinear responses of body surface temperature as a function of ambient

temperatures as observed in infrared thermal assays.

Finally, we remark that our work concentrates in understanding qualitative aspects of
thermoregulation.However, we believe that ourmodelmay be useful for further theoretical
developments as well as for numerical applications.

2. The classical model revisited

According to Hill et al. (2012), the animal’s metabolic rate is low and independent of Ta
inside the TNZ, where thermoregulation is achieved by autonomic modulation of body
insulation. The TNZ is limited by its lower and upper critical temperatures TLC and TUC,
respectively. Below the TLC body insulation is at its maximum value and heat production
required for thermoregulation increases as Ta falls. The rate of change of heat produc-
tion is given by conductance, C. Therefore, for ambient temperatures below TUC the body
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temperature ismaintained constant by dry heat exchange, which does not involve the evap-
oration or condensation of water. Above TUC, dry heat exchange is not enough tomaintain
body temperature constant and the metabolic rate increases with heat exchange through
evaporation.

Mechanistic details of the animal-ambient heat exchange process are well-known from
an experimental standpoint (Hill et al., 2012, 2013; Randall & Burggren, 2001; Rey
et al., 2015). However, the theoreticalmodel commonly used for the thermoregulation pro-
cess relies heavily on arguments derived from Fourier’s law of heat flow (Hill et al., 2013;
Randall & Burggren, 2001), which only explains the shape of the metabolic-temperature
curve for ambient temperatures below TUC.

If factors other than ambient temperature are held constant, the ‘rate of dry heat
transfer’ is proportional to the difference Tbc − Ta, known as Fourier’s law of heat flow
(Hill et al., 2012). To explain the shape of the metabolism-temperature curve, Randall
and Burggren (2001) write the Fourier’s law of heat flow as

Q = C(Tbc − Ta). (2)

As the ambient temperature dropswithin the TNZ, thermal insulation increases from its
minimum value up to its maximum, for instance by raising fur or feathers. Therefore, ther-
mal conductance C, given by the inverse of the animal’s thermal insulation, I, is bounded
between a minimum and a maximum value. Because the body temperature of a mam-
mal or bird is typically higher than the animal’s upper-critical temperature, we have that
(Tbc − Ta) > 0 and dry heat exchange carries heat away from the body when Ta < TLC
(Hill et al., 2012). To compensate for the heat loss, the organism makes heat metabolically
at a rate that matches its rate of heat loss so that the body temperature can be kept constant.
Equation (2) gives a straight line with negative slope−C for the relationship betweenQ and
Ta when Ta < TLC. According to Randall and Burggren (2001), the thermal conductance
determines the slope of the plot below the neutral zone. Therefore, low conductance implies
a shallower slope and less metabolically heat production is required at low temperatures.
When the ambient temperature is in the TNZ, Hill et al. (2012) suggest that a mammal
or bird responds to a decrease in ambient temperature by decreasing their conductance,
which increases the animal’s resistance to heat loss, such that the animal’s rate of heat loss
and its metabolic rate remain constant.

2.1. Criticism of the classical explanation

All the previous explanations are interesting and revealing, but they deserve some crit-
icisms as previously discussed by Kingma, Frijns, Shellen, and Van Marken Lichten-
belt (2014). First of all, a more precise approach should consider that heat exchange
between an animal and the ambient depends directly on T (the body exchanges heat
through its surface) and indirectly on Tbc. This indirect dependence is due to heat transfer
occurring inside the body, and it is at this point that the classical explanation has some
implicit hypotheses that must be clarified. The main one is that the Fourier’s law of heat
flow is a linear law for one specific mechanism of heat transfer, that is, heat transfer by con-
duction. In other words, the classical explanation is based on the hypothesis that the only
heat transfer mechanism inside the body is heat conduction.
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Figure 2. Schematic diagram of heat flow from the body core of an animal through internal tissues and
coat (feathers or fur) to the ambient. The animal’s body core is at temperature Tbc, its surface is at tem-
perature T , and the ambient temperature is denoted by Ta. This system is described by Equation (3) in
a simplified scenario that considers homogeneousmedia, steady-state situation, conduction as the only
mechanism of heat transport inside the body, and convection as the only mechanism of heat exchange
with the ambient.

Under this (over)simplifying hypothesis and assuming homogeneous conditions (con-
stant coefficients) in steady state, and that heat is exchanged with the ambient through
convection, Equation (2) can indeed be obtained. To do this based on first principles (see
Figure 2), we start by observing that heat loss due to the convection mechanism is given by

Q = Cs(T − Ta), (3)

where T is the surface temperature andCs is the superficial convection coefficient. Assum-
ing that conduction is the only heat transport mechanism inside the body, heat loss
from the body core to the surface can be expressed by Q = C̃(Tbc − T ), where C̃ is
the mean body thermal conductance (see Equation (1)). Therefore, if all the heat pro-
duced in the body core is transferred to the surface and exchanged with the ambient, we
can replace this expression in Equation (3) to obtain T = [Cs/(Cs + C̃)]Ta + [C̃/(Cs +
C̃)]Tbc. This expression can be replaced back in Equation (3) to obtain Fourier’s law shown
in Equation (2) with C = CsC̃/(Cs + C̃). We conclude that only in this oversimplified sce-
nario, Equation (2) is appropriate to describe heat exchange between the animal’s body core
and the ambient.

However, the assumption that T is homogeneous in space is inadequate. In fact,
although it is reasonable to assume that Tbc is constant, surface temperature, T , is spatially
heterogeneous because different body regions play different roles in the thermoregula-
tion process. Therefore, a realistic thermoregulation model should consider different T
associated with different body regions.

More important, conduction is not the only heat transport mechanism inside the body.
Blood mass circulating through the body transports heat in an efficient way from the body
core to the surface affecting T (Randall & Burggren, 2001). From the mathematical point
of view this is a more complex mechanism than heat conduction. Therefore, it is not clear
that T depends linearly on Ta and Tbc and, consequently, that Q can be expressed by
Equation (2). Another point is that, in addition to convection, radiation is an important
mechanism of heat exchange with the ambient that must be considered. Heat exchange by
radiation is given by σε(T 4 − T4

a ), where σ is the Stefan–Boltzmann constant and ε is the
emissivity of the body surface, introducing a nonlinearity to the thermoregulation model.
Moreover, heat exchange through evaporation, which is the most important mechanism
of heat exchange at Ta > TUC, is also not considered in the classical model. Therefore, the
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classical explanation (Equation (2)) for the shape of the metabolism-ambient temperature
curve (Figure 1) is too simple to be satisfactory.

We aim to develop and analyse a model for heat production and exchanges that
considers the internal structure of the body, different types of internal heat transfer, dif-
ferent mechanisms for heat exchange with the ambient, and control mechanisms used for
thermoregulation.

3. Definitions, hypotheses, relevant physical variables and parameters,
derivation of the thermal balance equations

In this section, we describe the concepts, notations, relevant physical parameters, and
variables used in our model. We also derive the relevant thermal balance equations.

We denote by� a bounded domain corresponding to the stylized body of a thermoreg-
ulated animal under consideration. Different from previous works (Hill et al., 2012), which
divided the animal’s body into two layers (see Figure 3(a)), we divided the animal’s body
into four layers (see Figure 3(b)). Each layer corresponds to a group of organs or tissues
with similar roles in thermoregulation (see Figure 3(b)). The animal body is also divided
into J ∈ N regions represented by different colours in Figure 3(b), such that physical vari-
ables may change with time, but are assumed to be uniform across each region. Table A1 in
Appendix 1 displays the relevant parameters and variables we use, and the next subsections
detail the particularities of each layer. We use subscript and superscript indices to denote
the layer and the region that a variable corresponds to, respectively. Subscript indices can
be bc for body core, s for tissues surrounding the body core, p for perfused tissues near
the surface, and c for coat. For instance, the variable T(i)

p corresponds to the temperature
distribution in the superficial perfused tissue of the ith region (see Figure 3).

In the next subsections we will derive the equations for variables and parameters of
our model based on first principles, i.e. by balancing the thermal energy in each of the
subdomains of the previouslymentioned layers. These equations all have the following gen-
eral, standard form (see Gates, 2012; Hill et al., 2012; Lienhard & Lienhard, 2001; Randall
& Burggren, 2001):

time rate of the thermal energy density = diffusion term

+ sum of sources of thermal energy densities

− sum of sinks of thermal energy densities. (4)

To obtain the equations with thermal energy balance, we have to identify the expressions
for the terms of Equation (4) in each case. Asmentioned previously, the heat transfermech-
anisms considered in this work are (i) conduction inside and between layers of tissues, (ii)
blood flow (mass transfer), (iii) evaporative cooling by the respiratory tract (panting), (iv)
superficial evaporative cooling, (v) heat exchange by convection, and (vi) heat exchange
due to radiation. All these mechanisms will be explained in detail in what follows.

3.1. Layer 1: body core

The innermost layer is the body core �bc ⊂ �, which includes all of the essential inter-
nal organs, such as heart, lungs, stomach, liver, brain, and so on. For proper functioning,
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Figure 3. Comparison between the classical model of an animal’s body and the four-layer model of an
animal’s body proposed in this paper. (a) A classical model of an animal’s body and its layers (adapted
from Hill et al., 2012). The body core layer (�bc), the outer layer (�ol) separating the body core from the
surface and the surroundingambient (�a). (b) The four-layermodel of ananimal’s body introduced in this
paper. Layer 1: the body core layer (�bc) is formedby all of the essential internal organs, which, for proper
functioning, are required to be maintained near an objective temperature (Tobj). Layer 2: The surround-
ing tissue layer (�s) is the next layer and is formed by all blood perfused tissues that surrounds the body
core and also take part in heat exchange. These surrounding tissues can be separated according to the
layers that are on top of each of them. Layer 3: The next layer corresponds to the blood perfused tissues
near the surface (�p) that play a significant role in thermoregulation. Such tissues are on top of previ-
ous layers. Blood perfused tissues are distinguished according to the possibility of passive or active (via
vasomotor adjustment) blood flux control. Layer 4: the coat layer (�c) is formed by the subdomains pro-
tecting the previous subdomains. The coat is in direct contactwith the ambient and exchanges heatwith
it. We assume that the animal exchanges heat with the external ambient by convection, by radiation, by
evaporation via the respiratory tract and via superficial evaporation. Different colours represent different
body regions (e.g. legs, head, trunk), which are denoted in our notation by the superscript index (i).

these organs are required to bemaintained near a given fixed temperature (Hill et al., 2013;
Randall & Burggren, 2001).

For simplicity, we assume that the body core has homogeneous physical properties
(we work with average values) and that its temperature may vary in time, but it is the
same across the entire subdomain. For proper functioning, the body core is required to
be maintained at the objective temperature Tobj, which is the temperature that the ther-
moregulation mechanisms should attain (Hill et al., 2012; Randall & Burggren, 2001). The
current body core temperature at time t is denoted by Tbc(t), which may be different from
Tobj. We denote by mbc the known body core mass and by cbc its known (mean) specific
heat. In such cases of spatial homogeneity it is more convenient to work with the integrated
form of Equation (4). Then, integrating it on the body core volume, we obtain:

time rate of the total thermal energy = total heat flux at the body core boundary

+ sum of sources of thermal energy.

− sum of sinks of thermal energy. (5)
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First, the term corresponding to the total thermal energy in the body core at time t is
expressed asmbccbcTbc(t) (see Lienhard&Lienhard, 2001, for instance). Second, due to the
functioning of the organs in the body core (metabolism), there is heat production qbc per
unit of volume and unit of time, which yields to a total heat contribution of qbc vol(�bc)

per unit of time, where vol(�bc) is the known body core volume. The last two terms in
Equation (5), are closely related to the heat transfer mechanisms.We observe that from the
heat transfer mechanisms considered in this article, three of them directly contribute to
the balance of thermal energy of the body core: (i) conduction to and from surrounding
tissues, (ii) blood flow (mass transfer), and (iii) evaporative cooling by panting. The other
two heat exchangemechanisms (superficial evaporative cooling and convection) only indi-
rectly affect body core temperature through heat flow from their interfaces with the other
layers of tissue.

Contributions due heat conduction:Thermal energy is exchanged between the body core
and its surrounding tissues �

(i)
s , i = 1, . . . , J, due to contact along the interfaces �̄

(i)
s ∩

�̄bc.2 The heat flux from �
(i)
s to �bc is −k(i)

s ∇T(i)
s .n(i)

s = −k(i)
s (∂T(i)

s /∂n(i)
s ), where T(i)

s
is the temperature distribution in �

(i)
s , k(i)

s is its heat diffusion coefficient, ∇ denotes the
gradient operator, n(i)

s is the external unit normal to�
(i)
s , and ∂T(i)

s /∂n(i)
s is the directional

derivative of T(i)
s in the normal direction. Therefore, the thermal energy flowing from�

(i)
s

to �bc is
∫
�̄

(i)
s ∩�̄bc

−k(i)
s (∂T(i)

s /∂n(i)
s ) ds(x), where ds(x) denotes the surface area element

in �̄
(i)
s ∩ �̄bc, and the total heat flux at the body core boundary is the sum of all the terms

of this kind.
Contributions due blood flow: Blood leaves the body core to irrigate all the tissues in the

organism and provides nutrients and oxygen (Hill et al., 2012; Randall & Burggren, 2001;
Schmidt-Nielsen, 1997). In addition, blood leaves the body core at temperature Tbc and
carries thermal energy away. However, blood also returns from blood perfused tissues car-
rying some thermal energy back to the body core. We assume that blood flows from the
body core to surrounding tissues regions with blood perfusion �

(i)
s of Layer 2 and back

through independent circulatory pathways. Similarly, blood flows from the body core to
blood perfused regions �

(j)
p of Layer 3 (Figure 3). We assume that there is no direct blood

flow between any surrounding tissues regions with blood perfusion �
(j)
s of Layer 2 and

any blood perfused region �
(j)
p of Layer 3. This assumption prevents the possibility of

counter current heat exchange. At the end of this section we discuss how counter current
heat exchange could be incorporated in our model.

3.1.1. Concepts and notations
Let a generic blood perfused tissue be denoted by O, its temperature by TO . In addition,
let the known physical parameters of this tissue be the mass density ρO , the specific heat
per unit of mass cO , the heat diffusion coefficient kO , and the heat production per unit
volume qO .

We denote by φO the normalized density of volumetric blood flux inO effectively used
for heat exchange, according to the BHT approach (Pennes, 1948). Such φO gives the blood
vessels distribution used for heat exchange and their respective capacities. According to
the mechanism used for blood flux control, the tissue region O can be classified either as
passive or active blood flux region.
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Passive blood flux subdomains: IfO is less specialized for thermoregulation, blood ves-
sels do not undergo significant constriction or dilation and constant volumetric blood flux
is maintained (Arkin et al., 1994; Gordon, 1990; Hill et al., 2012; McCafferty et al., 2011;
Savage & Brengelmann, 1996; Tattersall et al., 2009). Thus, we have:

• wO > 0 denotes the known constant volumetric blood flux in �
(i)
p .

• φ̃O = φ̃O(x) for x ∈ O denotes the known volumetric density of blood vessels for
thermoregulation inO. We also have 0 ≤ φ̃O(x) ≤ wO and

∫
O φ̃O(x) dx = wO .

• φO = φO(x) = φ̃O(x)/wO denotes the associated normalized volumetric density of
blood vessels for thermoregulation inO. This quantity must satisfy 0 ≤ φO(x) ≤ 1 and∫
O φO(x) dx = 1.

Active blood flux subdomains: If O is specialized for thermoregulation, it is pro-
vided with vasomotor adjustment mechanism and it is able to change the volumetric
blood flux by contracting or dilating the blood vessels in response to the body temper-
ature (Arkin et al., 1994; Gordon, 1990; Hill et al., 2012; McCafferty et al., 2011; Savage
& Brengelmann, 1996; Tattersall et al., 2009). In this case, we have:

• wO = wO(t) > 0 denotes the volumetric blood flux inO at time t; suchwO(t) is a priori
unknown and may depend on time.

• φ̃O = φ̃O(x,wi) for x ∈ O denotes the known volumetric density of blood ves-
sels for thermoregulation in O. We also have 0 ≤ φ̃O(x,wO(t)) ≤ wO(t) and∫
O φ̃O(x,wO(t)) dx = wO(t). In this case, the density of the volumetric blood flux may
depend on the amount wO(t) of blood that they distribute in the tissue.

• φO(x,wO) = φ̃O(x,wO)/wO denotes the associated normalized volumetric density of
blood vessels for thermoregulation inO. This quantitymust satisfy 0 ≤ φO(x,wO(t)) ≤
1 and

∫
O φO(x,wO(t)) dx = 1.

By using these previous notations, the amount of blood transported per unit of time
from the body core to O is wOρbl when O is a passive blood flux domain and wO(t)ρbl
when O is an active blood flux domain. In these expressions ρbl is the blood density, and
wO and wO(t) are the volumetric blood flux per unit of time arriving at O, respectively,
in the passive and active cases. Thus, the thermal energy per unit of time transferred from
�bc toO contributes with the following sink terms in Equation (5):

−wOρblcblTbc (for passive blood flux domains),
−wO(t)ρblcblTbc (for active blood flux domains),

where cbl is the blood specific heat (see Lienhard & Lienhard, 2001, for instance).
Blood also returns from blood perfused tissues, O, carrying thermal energy back to

the body core. Because thermal balance is fast in the blood vessels of the perfused tissues
(Arkin et al., 1994; Gordon, 1990; Kellogg, 2006), the blood returns to the body core at
a temperature corresponding to the average temperature of the volumetric blood vessels
distribution in O. Such averages temperatures are, respectively,

∫
O φO(x)TO(x, t) dx for

passive blood flux domains and
∫
O φO(x,wO(t))TO(x, t) dx for active blood flux domains.

Therefore, the thermal energy per unit of time reentering the body core contributes with
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the following source terms in Equation (5) is:

wOρblcbl
∫
O

φO(x)TO(x, t) dx (for passive blood flux domains),

wO(t)ρblcbl
∫
O

φO(x,wO(t))TO(x, t) dx (for active blood flux domains).

The previous arguments will be applied to each of the blood perfused regions that are
important for thermal regulation. Away from the body core, these regions lay basically in
the the layer of surrounding tissues, where the muscles are located and in the third layer,
where more superficial tissues are located. These latter tissues, by their position, facilitate
heat exchange of the blood perfused in them with the ambient and thus play an important
role in thermoregulation.

We denote the blood perfused regions in the layers of surrounding tissue by �
(i)
s ,

i = 1, . . . , Js and the first J̄s (0 ≤ J̄s ≤ Js) of them are considered passive blood flux domains
and the last ones, active blood flux domains. We then can use the previous respective
expressions for the heat exchange by replacing O by �

(i)
s , TO by T(i)

s , and also by replac-
ing either wO by w(i)

s and φO by φ
(i)
s (x) for passive blood flux tissues or wO by w(i)

s (t) and
φO(x,wO(t)) by φ

(i)
s (x,w(i)

s (t)) for active blood flux tissues.
Similar arguments hold for the superficial blood perfused tissues. We denote by �

(i)
p ,

i = 1, . . . , Jp such regions. We consider the first J̄p (0 ≤ J̄p ≤ Jp ) of them to be passive
blood flux domains and the last ones, active blood flux domains. We will also use such
previous expressions when considering the balance of thermal energy in Layers 2 and 3.
In blood perfused tissues near the surface (Layer 3), for instance, we will replace O by
�

(i)
p , TO by T(i)

p , and also by replacing either wO by w(i)
p and φO by φ

(i)
p (x) for passive

blood flux tissues or wO by w(i)
p (t) and φO(x,wO(t)) by φ

(i)
p (x,w(i)

p (t)) for active blood
flux tissues. Similar arguments will be made for blood perfused tissues surrounding the
body core (Layer 2).

Contributions of evaporative cooling from the respiratory tract (panting): By panting,
water vapour leaves the body at body core carrying thermal energy away (Richards, 1970).
We assume that the amount of heat loss depends on the respiratory ventilation rate, vr,
which is the average volume of air per unit of time expelled by the animal. This ventilation
rate is proportional to the respiratory frequency and depth of breathing (Richards, 1970).
We are interested in the net ventilation rate that assumes values in the interval [vmin, vmax],
where vmin is the basal ventilation rate at rest and vmax is the maximum ventilation rate
that depends on biological constraints of the organism. Notice that our phenomenological
approach does not describe the biological details occurring in the respiratory tract during
panting. Please see Fiala, Lomas, and Stohrer (1999) for more details. We assume the mass
of water vapour expelled per unit of time in ventilation is written as

lαv = α0(Tbc,Ta) + α̃(Tbc,Ta)v, (6)

where Tbc is the body core temperature and Ta is the external ambient temperature. The
parameter α0(Tbc,Ta) is the mass of water vapour expelled at basal ventilation rate, vmin,
and α̃(Tbc,Ta) is a positive parameter. The increase of ventilation rate from vmin to v is
associated with an additional heat production per unit of volume, qv , due to extra work
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done by muscles of the respiratory tract. This additional heat production depends on the
excess ventilation, v = vr − vmin, which we assume to be given by

qv = q̃v(Tbc,Ta)v, (7)

where q̃v(Tbc,Ta) is a parameter that may depend on the body core and the ambi-
ent temperatures. Thus, the total energy per unit of time generated in the body core is
(qbc + qv) vol(�bc). Finally, the thermal energy per unit of time lost to the ambient due
to the ventilation mechanism is the product of the mass of water expelled and the L is
the latent heat of water vaporization per unit of mass (see Lienhard & Lienhard, 2001, for
instance). Thus,

αvL = α0L + α̃vL. (8)

This contributes with a sink term −αvL in Equation (5).

3.1.2. Balance of thermal energy in the body core
By using the previous notations and arguments in Equation (5) and rearranging the terms,
we can write the following integro-differential equation for the balance of the thermal
energy in the body core:

d
dt

(mbccbcTbc(t)) = (qbc + qv) vol(�bc) − αvL

−
J̄s∑
i=1

w(i)
s ρblcblTbc(t) −

Js∑
i=J̄s+1

w(i)
s (t)ρblcblTbc(t),

+
J̄s∑
i=1

w(i)
s ρblcbl

∫
�

(i)
s

φ(i)
s (x)T(i)

s (x, t) dx

+
Js∑

i=J̄s+1

w(i)
s (t)ρblcbl

∫
�

(i)
s

φ(i)
s (x,w(i)

s (t))T(i)
s (x, t) dx

−
J̄p∑
i=1

w(i)
p ρblcblTbc(t) −

Jp∑
i=J̄p+1

w(i)
p (t)ρblcblTbc(t),

+
J̄p∑
i=1

w(i)
p ρblcbl

∫
�

(i)
p

φ(i)
p (x)T(i)

p (x, t) dx

+
Jp∑

i=J̄p+1

w(i)
p (t)ρblcbl

∫
�

(i)
p

φ(i)
p (x,w(i)

p (t))T(i)
p (x, t) dx

+
Js∑
i=1

∫
�̄

(i)
s ∩�̄bc

−k(i)
s

∂T(i)
s

∂n(i) ds(x). (9)

The first term in the right-hand side corresponds to the total heat production in the
body core per unit of time. The second term is the heat lost due to the evaporation by the
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respiratory tract. The third and fourth terms correspond to heat leaving the body core (at
the body core temperature) due to passive and active blood flux per unit of time, respec-
tively. The fifth and sixth terms are heat returning to the body core due to passive and
active blood flux per unit of time, respectively, after temperature equalization due to heat
exchange in the blood perfused tissues. The last term is heat exchanged per unit of time
through thermal conduction among the body core and its surrounding tissues.

3.2. Layer 2: tissues surrounding the body core

The next innermost layer consists of muscles, bones and other tissues that surround the
body core and that also take part in heat exchange in addition to other specific functions
theymay have. These surrounding tissues are denoted by�

(i)
s ⊂ �, i = 1, . . . , Js, and their

temperature by T(i)
s . The known physical variables of this layer are the mass density ρ

(i)
s ,

the volume, vol(�(i)
s ), the specific heat per unit of mass c(i)s , the heat diffusion coefficient

k(i)
s , and heat production per unit of volume q(i)

s .
We use φ

(i)
s to describe the normalized density of volumetric blood flux in�

(i)
s , accord-

ing to the BHT approach (Pennes, 1948). According to the mechanism used for blood flux
control we propose that each subdomains �

(i)
s can be classified as passive or active blood

flux subdomains.
Because the properties and temperatures in this layer are assumed not to be spatially

uniform, we use the local form of the balance of thermal energy given by Equation (4) to
describe the thermoregulation process in this layer (see Lienhard & Lienhard, 2001). The
thermal energy density is now expressed as ρ

(i)
s c(i)s T(i)

s . Next, the diffusion term is given
by the divergence of the heat flux by conduction, that is, div(k(i)

s ∇T(i)
s ). As for the heat

source terms densities, one of them is due to metabolism, q(i)
s . Another source term is due

to thermal energy carried by the blood flow coming from the body core, w(i)
s φ

(i)
s ρblcblTbc,

and then a sink term due to the loss of thermal energy carried by the blood flow returning
to the body core, −w(i)

s φ
(i)
s ρblcblT

(i)
s .

3.2.1. Balance of thermal energy in the tissues surrounding the body core
By using the expressions obtained in the last subsection in Equation (5), rearranging the
terms, the balance of thermal energy per unit volume in �

(i)
s is written as:

∂

∂t
(ρ(i)

s c(i)s T(i)
s ) = div(k(i)

s ∇T(i)
s ) + w(i)

s φ(i)
s ρblcbl(Tbc − T(i)

s ) + q(i)
s , (10)

where φ
(i)
s = φ

(i)
s (x) for i = 1, . . . , J̄s, and φ

(i)
s = φ

(i)
s (x,w(i)

s ) for i = J̄s + 1, . . . , Js. The
first and the second terms on right-hand side correspond to heat conduction and the heat
generated in the tissue per unit of time, respectively.

Notice that the previous treatments of the contribution of the blood flow to the heating
are similar to BHT (Pennes, 1948). The distribution φ

(i)
s of blood vessels in�

(i)
s appears as

a product factor in the source-sink term of the original Pennes’ model.
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3.3. Layer 3: blood perfused tissues near the surface

The next layer in our model consists of blood perfused tissues that play a significant role in
thermoregulation. Lying on top of each of the subdomains�

(i)
p , i = 1, . . . , J, we have a cor-

responding �
(i)
p ⊂ �, i = 1, . . . , J, subdomain that corresponds to blood perfused tissue.

Their temperature is denoted by T(i)
p and the known physical variables of this layer are the

mass density ρ
(i)
p , the specific heat per unit of mass c(i)p , the heat diffusion coefficient k(i)

p ,
and the heat production per unit volume q(i)

p . Again we use φ
(i)
p to describe the normalized

density of volumetric blood flux in �
(i)
p , according to the BHT approach (Pennes, 1948).

3.3.1. Balance of thermal energy in the blood perfused tissues near the surface
By proceeding exactly as we did for the regions of the previous layer, the balance of thermal
energy per unit volume in �

(i)
p is written as:

∂

∂t
(ρ(i)

p c(i)p T(i)
p ) = div(k(i)

p ∇T(i)
p ) + w(i)

p φ(i)
p ρblcbl(Tbc − T(i)

p ) + q(i)
p , (11)

where φ
(i)
p = φ

(i)
p (x) for i = 1, . . . , J̄p, and φ

(i)
p = φ

(i)
p (x,w(i)

p ) for i = J̄p + 1, . . . , Jp. The
first term in the previous right-hand side represents heat transport in the tissue due to
diffusion by conduction. As before, the second term is the source-sink term associatedwith
heat exchange among the tissue and the blood in the perfusing vessels. The third term is
the heat production rate in the tissue.

Remark: The previous two layers look quite similar since both are assumed to have similar
nets of perfused blood vessels, and so one could think that they could be considered just
one layer. However, we stress that these layers play different roles in thermoregulation,
and it is important to consider them individually. In fact, blood perfused tissues near the
surface (Layer 3) are always engaged in thermoregulation, even when the animal is at rest
because near the surface they are more directly enrolled in heat exchange with the external
ambient. The same is not true for the tissues surrounding the body core (Layer 2). These
tissues display an important role in thermoregulation specially when themuscles are active
during exercise. These situations require large increases of their metabolic rates q(i)

s and
lead to an increase ofmuscle temperaturesT(i)

s . The exceedingmuscle temperature requires
an increase of blood flow in the muscles to take away the heat excess and prevent muscle
from damage.

3.4. Layer 4: coat

The outermost layer in our model is the coat subdomains denoted �
(i)
c ⊂ �, with i =

1, . . . , Jc. The coat is in direct contact with the ambient and exchanges heat with it by con-
vection and radiation (Hill et al., 2012; Randall & Burggren, 2001). We assume that inside
the coat subdomains heat flows only by conduction and heat production inside the coat is
negligible. An important aspect of this layer is that it can be used for active thermoregula-
tion in certain animals, which is done by the raising of hairs or feathers (Hill et al., 2012;
Randall & Burggren, 2001), for instance. We analyse the effects of this mechanism in the
model by considering changes in coat width. The temperature of �

(i)
c at point x and time
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t is denoted by T(i)
c = T(i)

c (x, t). The known physical variables of the coat are mass density
ρ

(i)
c , the specific heat per unit of mass c(i)c , the heat diffusion coefficient k(i)

c , the heat pro-
duction per unit volume q(i)

c (assumed to be zero), the convection coefficient d(i) > 0 at
the interface with the ambient �̄(i)

c ∩ �̄a, and the emissivity ε(i) of the interface �̄
(i)
c ∩ �̄a.

3.4.1. Balance of thermal energy in the coat
The balance of thermal energy per unit of volume of the ith subdomain �

(i)
c , i = 1, . . . , Jc,

is written as

∂

∂t
(ρ(i)

c c(i)c T(i)
c ) = div(k(i)

c ∇T(i)
c ), (12)

where the term in the right-hand side represents heat transport in the tissue due to diffusion
by conduction in the coat.

Remark: Counter current heat exchange is related to the existence of a blood flow connec-
tion between the blood perfusion systemof a region�

(j)
s of Layer 2 and the blood perfusion

system of the associated region �
(j)
p of Layer 3. For instance, suppose we have a situation

where blood flows from the body core to �
(1)
s , then to �

(1)
p and only then returns to the

body core. Imagine no circulatory pathway from the body core to�
(1)
p . This situation could

be easily included in our model just by taking out or including appropriated terms of the
equations that describe the balance of energy in the body core. In Equation (9), the indexes
i in the first summation of the fifth line and the summation in the sixth line would start
with i=2 instead of 1. Equation (10) would be the same, and Equation (11) for i=1 would
become

∂

∂t
(ρ(1)

p c(1)p T(1)
p ) = div(k(1)

p ∇T(1)
p ) + w(1)

p φ(1)
p ρblcbl(T̄(1)

s − T(1)
p ) + q(1)

p ,

with

T̄(1)
s =

∫
�

(1)
s

φ(1)
s (x)T(1)

s (x, t) dx and w(1)
p = w(1)

s .

We will analyse this type of situation in future works.

3.5. Interface conditions

The previous balance equations holding for different body regions must be supplemented
by conditions at their interfaces. In fact, heat is also exchanged through the interfaces
between subdomains that are in contact with each other, and temperature and the ther-
mal fluxes must be continuous at these interfaces. For instance, the interface condition
associated to the interface �̄

(i)
s ∩ �̄

(i)
p is such that

T(i)
s = T(i)

p and − k(i)
s

∂T(i)
s

∂n(i) = −k(i)
p

∂T(i)
p

∂n(i) , on �̄(i)
s ∩ �̄(i)

p .
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3.6. Heat exchangewith the ambient and boundary conditions

The ambient is denoted by�a = R3 − �̄. The relevant physical parameters related to heat
exchange between the animal and the ambient is the known air temperature Ta and also
its relative humidity ra (Gates, 2012; Hill et al., 2012; Randall & Burggren, 2001).

Heat is exchanged with the ambient through heat fluxes due to convection, fconv, evap-
oration from the surface, fevap and radiation, frad,3 occurring at the body’s boundary
(Gates, 2012; Hill et al., 2012; Randall & Burggren, 2001), which is composed of the inter-
faces between the subdomains �c

i and the ambient. Thus, the boundary conditions of
the problem are obtained by requiring that the total heat flux is the sum of the previous
particular forms of the fluxes:

−k(i)
c

∂T(i)
c

∂n(i) = fconv + fevap + frad on �̄(i)
c ∩ �̄a.

To complete these conditions, following Cooney (1976), we next briefly describe each
of these heat fluxes at the right-hand side.

Convection: a rather good approximation for the thermal convective flux at a part �̄c
i ∩

�̄a of the boundary between the body and the external ambient is given by the expression

fconv = d(i)(T(i)
c − Ta),

where d(i) is the convection coefficient associated with that part of the boundary, T(i)
c is the

temperature at the boundary surface, and Ta the ambient temperature near the boundary.
Superficial evaporation: the details of the heat flux due to superficial evaporation are

complex. Therefore, we propose a phenomenological approach and use a rather good
approximation for the range of temperatures with which we are concerned:

fevap = κ(i)
evapSrL(P(T(i)

c ) − raP(Ta)),

where T(i)
c and Ta are as before; ra is the relative humidity of the air; Sr is the sweating rate

per unit of area of the surface; L is the latent heat of water vaporization per unit of mass
at ambient pressure (generally assumed as 1 atm); P(·) is the vapour pressure of water as
a function of temperature in the condition of ambient pressure. Observe that raPv(Ta) is
the partial pressure of water vapour in the ambient air. P(·) decays in a complicated way
with the increase of the temperature, but within the range we are considering, it may be
approximated by an linear expression P(T) = g1T − g2 for suitable positive coefficients g1
and g2.

Moreover, the coefficient κ(i)
evap may depend on several aspects such as the coat evapora-

tive resistance and wind speed. Details of these dependences and values for the param-
eters involved in the present arguments can be found, for instance, in Cooney (1976),
Yildirim (2005) and also Parsons (2013).

We also remark that the values of the sweating rate are restricted to the interval 0 ≤
Smin
r ≤ Sr ≤ Smax

r < +∞. Here, Sr = Smin
r corresponds to the situation of passiveminimal

superficial evaporation, without active sweating (latent heat loss), whereas Sr > Smin
r cor-

responds to active sweating situations. Thus, both passive and active situations are included
in the model.
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Radiation: the thermal flux due to radiation is given by

frad = σε(i)[(273.16 + T(i)
c )4 − (273.16 + Ta)

4],

where ε(i) is the emissivity coefficients (0 ≤ ε(i) ≤ 1) of the surface that are exchanging
heat with the ambient, and σ is the Stefan–Boltzmann constant,4 and the other symbols
meanings are the same as before.

Thus, the boundary condition associated with the part �̄c
i ∩ �̄a becomes:

−k(i)
c

∂T(i)
c

∂n(i) = d(i)(T(i)
c − Ta) + κ(i)

evapSrL(P(T(i)
c ) − raP(Ta))

+ σε(i)[(273.16 + T(i)
c )4 − (273.16 + Ta)

4], on �̄(i)
c ∩ �̄a, (13)

where d(i)’s and ε(i)’s are, respectively, the convection and emissivity coefficients
(0 ≤ ε(i) ≤ 1) of the surfaces that are exchanging heat with the ambient, and σ is the
Stefan–Boltzmann constant.5

Remark: The parameters in Equation (13) are assumed to be fixed known constants, as
we are not considering postural changes or wind speed variation. However, they could
be incorporated at the expense of having a more complex model, by using expressions
known in specific cases. For instance, the convection coefficient d(i) depends on the posi-
tion at the interface between the coat and the ambient with respect to its geometry and
angle, and whether the convection is free or forced, whichmay be a function of wind speed
(Gates, 2012).

4. Thermal feedback controls

The neurophysiological details of the control mechanisms involved in thermoregulation
in endotherms are rather complex, and they are still important subjects of scientific inves-
tigation (Jessen, 2001). However, in order not to complicate too much the present model,
we do not include the neurophysiological bases of the specific actions of the controls to be
considered and instead take again a phenomenological approach.

We exemplify this approach in the present context by describing how we consider the
process of change in the thermal insulation in an specific part of the coat, say �c

i , by
changing some of its specific physical characteristics, whose value at a time t is denoted by
Ii(t). For instance, under certain temperature limits, fast thermal insulation control can be
obtained by the raising or the lowering of feathers or hairs. In this case, we could consider
Ii(t) as the width of the resulting coat at time t.

To obtain an equation for changes in Ii(t), we observe that for a difference of the actual
body temperature and the required objective temperature, the body must respond by
increasing or decreasing the thermal insulation at a certain rate. This rate must be propor-
tional to Rci (Tbc(t) − Tobj), meaning that it must be a function of the difference between
the actual body temperature and the objective temperature and its sign determineswhether
there will be an increase or a decrease of the thermal insulation.

Moreover, for biological reasons, there must be a minimum and a maximum value for
Ii(t). That is, through time the values of Ii(t) must be in an interval [Imin

i , Imax
i ] where
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Imin
i < Imax

i are, respectively, known minimum and maximum values for the characteris-
tic variable that determines the thermal insulation. This is guaranteed if we assume the
following feedback control equation for Ii:

d
dt
Ii(t) = −Rci (I

min
i − Ii(t))(Ii(t) − Imax

i ), (14)

We stress that for initial condition Imin
i < Ii(0) < Imax

i , Equation (14) forces Imin
i <

Ii(t) < Imax
i for t > 0. Moreover, in this case, the thermal insulation decreases for Rc

i > 0
(which must be the case when Tbc > Tobj) and increases for Rci < 0 (which must be the
case when Tbc < Tobj ).

Thus, the dependence of such rate Rc
i on Tbc − Tobj must imply an automatic feed-

back control, which we describe as a proportional-integrated-differential (PID) controller
(Bennett, 1996), with certain non-negative parameters (λci,P, λ

c
i,I , λ

c
i,D) as follows:

• As for the proportional part of the controller, when the current body core temperature
is above the objective temperature it acts by decreasing the coat thermal insulation to
loose heat to the ambient. On the contrary, when the body core temperature is below the
objective temperature the proportional part of the controller increases the insulation to
lower the heat lost to the ambient.

• As for the integral part of the controller, it acts similarly to the proportional part but with
respect to the past values of the difference between the body core and objective tempera-
turesmodulated by a given positive forgetting kernel kci,f (·). Such a forgetting kernelmust
be an integrable function kci,f (·) ≥ 0 on [0,+∞] such that limτ→+∞ kci,f (τ ) = 0. Exam-

ples are kc,(1)i,f (τ ) = exp(−aτ), a>0, or kc,(2)i,f (τ ) = b > 0 for 0 ≤ τ ≤ τ̄ and k(2)
i,f (τ ) = 0

for τ > τ̄ .
• The differential part of the control acts by hampering sudden changes and oscillations

in the thermal insulation.

Therefore,

Rci = λci,P(Tbc(t) − Tobj) + λci,I

∫ t

0
kci,f (t − s)(Tbc(s) − Tobj) ds

+ λci,D
d
dt

(Tbc(t) − Tobj). (15)

The same arguments apply to the other control mechanisms we consider in the present
work. The only possible difference is the − sign in the right-hand side of Equation (14),
which, depending on physical/biological meaning of the control under consideration,
should be changed to +. That would be, for instance, a situation for the vasomotor adjust-
ment in the perfused tissues near the surface because it is necessary an increase of blood
flow near surface to facilitate heat exchange when Tbc(t) > Tobj, in contrast with coat
insulation which decreases under the same condition.

In the next subsection we summarize this approach in general terms and show the
differences for each kind of control in Table 1.
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Table 1. We consider a linear PID controller to maintain the variable z(t) within a desired interval
[zmin, zmax].

Mechanism Variable corresponding to z(t) zmin zmax κ

Change in metabolic rate Metabolic rate, q(t) qmin qmax +1
Change of coat properties Thermal insulation, I(t) Imin Imax +1
Vasomotor adjustment in Layer 2 Volumetric blood flux,ws(t) wmin

s wmax
s −1

Vasomotor adjustment in Layer 3 Volumetric blood flux,wp(t) wmin
p wmax

p −1
Changes in evaporation from the respiratory tract Excess ventilation rate, v(t) vmin vmax +1
Changes in superficial evaporation Sweating rate, Sr(t) Smin

r Smax
r +1

Note: In this table we show the meaning of this variable depending on the thermal control mechanism considered.

4.1. General approach

We consider six thermal control mechanisms in animals:

• Changes in the metabolic rate.
• Changes in the thermal insulation due to changes in properties of the coat.
• Changes in the blood fluxes due to vasomotor adjustment in the tissues surrounding

the body core.
• Changes in the blood fluxes due to vasomotor adjustment in the tissues near the surface.
• Changes in evaporation from the respiratory tract due to changes in ventilation rate.
• Changes in evaporation from the animal’s surface due to changes in the sweating rate.

For each mechanism we assume that there is a variable z(t) that has to be controlled
such that its value lies inside the interval z(t) ∈ [zmin, zmax] at any given time t. To model
and control the responses of z(t) as a function of changes in Tbc we use a PID controller
with non-negative parameters λzP, λ

z
I and λzD (Bennett, 1996). Such PID controller can be

expressed as

d
dt
z(t) = −R[zmin − z(t)][z(t) − zmax]κ ,

R = λzP(Tbc(t) − Tobj) + λzI

∫ t

0
gz(t − τ)(Tbc(τ )

− Tobj) dτ + λzD
d
dt

(Tbc(t) − Tobj),

(16)

where κ = −1when the thermal controlmechanismbeing considered is based on vasomo-
tor adjustment, and κ = 1 otherwise.6 The proportional part of the controller guarantees
that the feedback control acts by decreasing z(t) when Tbc > Tobj or increasing z(t) oth-
erwise. The integral part of the controller acts similarly as the proportional part but
with respect to the past values of Tbc − Tobj. The past values are modulated by a given
positive forgetting kernel gz(·), which must be an integrable function on [0,+∞] and
limτ→+∞ gz(τ ) = 0.7 Finally, the differential part of the control acts by hampering sudden
changes and oscillations in z(t).
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4.2. Interpretation of z(t) for different thermal control mechanisms

Minimum and maximum values of z(t) are usually related to physical or energetic con-
straints of the system. For instance, the minimum value of the metabolic rate corresponds
to the value required to keep all the animal’s essential functions working properly. On the
other hand, themaximum value ofmetabolic rate corresponds to themaximum energy the
animal is able to produce.

In the case of changes in the properties of the coat, the minimum and maximum values
of thermal insulation may depend specifically of what property is changing. The thermal
insulation can be modified at a fast time scale in certain temperature ranges by raising or
lowering of feathers or hairs, which ultimately changes the effective width of the coat. In
this scenario, minimum and maximum values of thermal insulation would represent the
situation where the hair is totally flat and erect, respectively. Season-dependent coat prop-
erties may also change at a much slower time scale. For instance, the thickening of the fur
during winter lowers the convection constant d(i), and alterations in fur colour changes
the associated coat emissivity ε(i). Notice that both these variables have limits due to phys-
ical constraints. For the mechanism based on vasomotor adjustment, the minimum and
maximum values of blood fluxes are a direct consequence of the minimum and maximum
that vessels can be constricted and dilated, respectively. Minimum andmaximum values of
evaporation from respiratory tract correspond to theminimum andmaximum frequencies
the animal can breathe per unit of time, while minimum and maximum values of super-
ficial evaporation correspond to the to minimum (passive evaporation) and maximum of
the sweating rate.

Table 1 shows the correspondence between z(t) and real physical variables for each
thermal control mechanism.

5. Endurable temperatures and steady-state equations

We are interested in steady-state solutions of our model that correspond to a situation
where thermal equilibrium between the animal and the ambient is achieved. To define
these solutions more precisely we need to introduce definitions of endurable temperature
and set of endurable temperatures.

Definition: endurable temperature is the ambient temperature Ta such that when an
organism is placed at an ambient at this temperature for long enough to reach the thermal
equilibrium with the ambient, Tbc remains at Tobj.

Definition: set of endurable temperatures is the set of all endurable ambient temperatures
Ta.

Therefore, ourmodel admits a steady-state solution (Tbc = Tobj) when the ambient is at
an endurable temperature. From the physiological point of view, it means that the thermal
control mechanisms incorporated into the model are capable of sustaining Tbc = Tobj as
long as the ambient is maintained at temperature Ta. The set of endurable temperatures is
usually expected to be an interval and we then call it interval of endurable temperatures.

To determine the existence of endurable temperatures, we must analyse the existence
of solutions of our model that do not depend on time and with Tbc = Tobj. This is done
in the next section where we write the previous thermal balance equations as well as the
feedback control equations with no time dependency.
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5.1. Steady-state thermal balance equations

The steady-state version of Equation (9) that gives the thermal balance in the body core is

(qbc + qv) vol(�bc) − αvL −
Js∑
i=1

w(i)
s ρblcblTbc

+
J̄s∑
i=1

w(i)
s ρblcbl

∫
�

(i)
s

φ(i)
s (x)T(i)

s (x) dx

+
Js∑

i=J̄s+1

w(i)
s ρblcbl

∫
�

(i)
s

φ(i)
s (x,w(i)

s )T(i)
s (x) dx

−
Jp∑
i=1

w(i)
p ρblcblTbc +

J̄p∑
i=1

w(i)
p ρblcbl

∫
�

(i)
p

φ(i)
p (x)T(i)

p (x) dx

+
Jp∑

i=J̄p+1

w(i)
p ρblcbl

∫
�

(i)
p

φ(i)
p (x,w(i)

p )T(i)
p (x) dx

−
Js∑
i=1

∫
�̄

(i)
s ∩�̄bc

k(i)
s

∂T(i)
s

∂n(i) ds(x) = 0, (17)

where w(i)
s , i = 1, . . . , J̄s, and w(i)

p , i = 1, . . . , J̄p are known positive constants, and w(i)
s ,

i = (J̄s + 1), . . . , Js, and w(i)
p , i = (J̄p + 1), . . . , Jp, are unknown positive constants.

The steady-state version of Equation (10) that gives thermal balance in the tissues
surrounding the body core is

div(k(i)
s ∇T(i)

s (x)) + w(i)
s φ(i)

s ρblcbl(Tbc − T(i)
s ) + q(i)

s = 0 in �i for i = 1, . . . , J. (18)

The steady-state version of Equation (11) that gives the thermal balance in the blood
perfused tissues is

div(k(i)
p ∇T(i)

p (x)) + w(i) φ(i)
p ρblcbl(Tbc − T(i)

p (x)) + q(i)
p = 0 in �

p
i , (19)

where, φ(i) = φ(i)(x) for i = 1, . . . , J̄, and φ(i) = φ(i)(x,w(i)) for i = J̄ + 1, . . . , J. Finally,
the steady-state version of Equation (12) that gives the thermal balance in the coat for
each is

div(k(i)
c ∇T(i)

c (x)) = 0 in �(i)
c for i = 1, . . . , J. (20)

5.2. Steady-state equations for the feedback controls

The steady-state version of the PID controller expressed in Equation (16) can be written as

0 = −R(zmin − z)(z − zmax) (21)
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R = λzP(Tbc − Tobj) + λzI

∫ t

0
kz(t − τ)(Tbc − Tobj) dτ ∀t ≥ 0. (22)

Because we are looking for solutions where Tbc = Tobj, we have from Equation (22) that
Rci ≡ 0 and Equation (21) is satisfied. In addition, as the system evolves towards the steady
state according to Equation (16), we have that, at steady state, the controlled variable is
always zmin ≤ z ≤ zmax for any initial condition inside this interval. These results can be
summarized for each thermal control mechanism as follows:

• The metabolic rate q in the body core can assume any value such that qmin ≤ q ≤ qmax

given that Tbc = Tobj.
• The thermal insulation Ii associated with the coat properties of domain�

(i)
c can assume

any value such that I(i)min ≤ I(i) ≤ I(i)max given that Tbc = Tobj.
• The volumetric blood flux w(i) in the perfused tissue �

(i)
p can assume any value such

that w(i)min ≤ w(i) ≤ w(i)max given that Tbc = Tobj.
• The excess of ventilation rate v can assume any value such that vmin ≤ v ≤ vmax given

that Tbc = Tobj.

5.3. Global steady-state balance

Integrating Equations (18)–(20), using the divergence theorem and the boundary condi-
tions and plugging the result into Equation (17), we obtain

J∑
i=1

∫
�̄

(i)
c ∩�̄a

[d(i)(T(i)
c (x) − Ta) + ε(i)σ [(273.16 + T(i)

c (x))4 − (273.16 + Ta)
4]] ds(x)

= Q − αvL −
J∑

i=1

∫
�̄

(i)
c ∩�̄a

κ(i)
evapSrL(P(T(i)

c ) − raP(Ta)) ds(x). (23)

The left side of Equation (23) represents the total dry heat exchange which does not
involve evaporation of water. On the right side we have the total internal heat production
due to metabolism, Q, given by

Q = (qbc + qv) vol(�bc) +
J∑

i=1
[q(i)

s vol(�(i)
s ) + q(i)

p vol(�(i)
p )], (24)

minus the total thermal energy per unit of time lost to the ambient due to evaporative
cooling.

Equation (23) of energy balance shows that, at steady state, the total internal heat
production must counterbalance the total heat exchange with the ambient. Most of the
previous works on thermoregulation take this global balance for granted and rely on it to
model experimental data. Instead, we show that the global energy balance is an emerging
property of our model and indicates energetic consistency.
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6. Steady-state solutions

In this section we present the analytical expressions for steady-state solutions of our four-
layermodel in the case of a simplified system.Next, wewill use such expressions to advance
more complete explanations for some of the features of Figure 1.

The simplified system to be considered is composed of only one region. Although our
general model may include the simultaneous action of all previously described six thermal
control mechanisms, to simplify the derivation of the expressions, we will remove here the
thermal controls due to vasomotor adjustments in Layer 2 and also due to superficial evap-
oration. The reason for this simplification is that the experimental measurements leading
to Figure 1 are usually obtained with animals at rest, and vasomotor adjustments in Layer
2 and superficial evaporation are expected to bemore engaged when the animal is in active
situations, as discussed in Section 3.3.

We divide our analysis into two parts. First, we consider the case where only pas-
sive blood flux is present. We study the effects of the three remaining thermal control
mechanisms individually. In the second case we incorporate vasomotor adjustment and
we discuss the consequences. As we shall see, our findings for this interesting yet simpli-
fied system allow us to discuss and explain many qualitative aspects of thermoregulation
phenomena.

6.1. Themodel

Our simplified system is composed of one region and layers stacked on top of each other
as shown in Figure 4. We assume the system is in thermal equilibrium with the ambient
so that we can use the steady-state formalism derived in Section 5. All known parameters
are assumed to be constant. Notice that, because we have only one region, we omit the
upper-script index i that runs over different regions from now on.

The subdomains of our system are expressed as

�bc = �̃ × (−hbc, 0);

�s = �̃ × (0, hs);

�p = �̃ × (hs, hp);

�c = �̃ × (hp, hc);

where �̃ ⊂ R2 is given, as well as the positive constants used to specify the limits of each
layer, hbc, hs, hp, and hc. For the sake of simplicity, we also assume that the heat diffusion
coefficient is constant and equals to k in �s, �p, and �c. Another assumption is that the
metabolic rate per unit volume q is the same in�bc,�s, and�p. Therefore, the total inter-
nal heat production due to metabolism given by Equation (24) can be written in this case
as

Q = (q + qv) vol(�bc) + q vol(�s) + q vol(�p). (25)

Finally, we consider only fast time scale changes in the animal’s thermal insulation due
to changes in the width of the coat layer. Therefore, in Sections 6.2 and 6.3 the thermal
control variable I is equivalent to hc. In Section 6.3.2 we discuss the effect of slow time
scale changes in the animal’s thermal insulation and how they affect thermoregulation.
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Figure 4. Geometry of the four-layer model in the simple case where we have only one region. In this
simplified situation where we consider only one domain, the layers are assumed to be slabs that are in
thermal contact. The limits of the body core layer are (−hbc, 0), limits of the surrounding tissue layer are
(0, hs), limits of the perfused tissue layer are (hs, hp), and the limits of the coat layer are (hp, hc). Relevant
variables of our problem are given as a function of the spatial variable z that corresponds to the vertical
direction.

6.2. Passive blood flux

To recover the equations for the case where no vasomotor adjustment is present, we set
J̄ = J = 1 in the equations of Section 5. The unknowns of our problemare the temperatures
at each layer. More precisely, we want to find the value of Tbc as a function of Ta, and the
functions Ts(z), Tp(z) and Tc(z). Under the assumptions described above, we can write
the equations derived in Section 5 as

(q + qv) vol(�bc) − αvL − wρblcblTbc

+ wρblcbl
hp − hs

∫ hp

hs
Tp(z) dz + area(�̃)k

dTs

dz

∣∣∣∣
z=0

= 0, (26)

d2Ts

dz2
= −q

k
, z ∈ [0, hs], (27)

d2Tp

dz2
− wρblcbl

k
Tp = −wρblcbl

k
Tbc − q

k
, z ∈ [hs, hp], (28)

d2Tc

dz2
= 0, z ∈ [hp, hc], (29)

together with the following conditions at the internal interfaces between layers

Ts(z = 0) = Tbc, (30)
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Tp(z = hs) = Ts(z = hs), (31)

− k
dTp

dz

∣∣∣∣
z=hs

= −k
dTs

dz

∣∣∣∣
z=hs

, (32)

Tc(z = hp) = Tp(z = hp), (33)

− k
dTc

dz

∣∣∣∣
z=hp

= −k
dTp

dz

∣∣∣∣
z=hp

, (34)

and the boundary condition at the interface with the external ambient

− k
dTc

dz

∣∣∣∣
z=hc

= d(Tc(hc) − Ta) + εσ [(273.16 + Tc(hc))4 − (273.16 + Ta)
4]. (35)

First, we reduce Equation (23) to our simplified case as

X = (T − Ta) + a[(273.16 + T )4 − (273.16 + Ta)
4], (36)

where a = εσ/d, the surface temperature is defined as

T ≡ Tc(z = hc), (37)

and

X = q
(hp + hbc)

d
+ qv

hbc
d

− αvL
1

d area(�̃)
. (38)

Expression (36) is similar to Equation (3). However, in Equation (36) the thermal con-
trol mechanisms are explicitly shown and include a correction term that comes from the
radiative heat exchange incorporated into our four-layer model. It is worth mentioning
that the emissivity of biological tissues is known to be between 0.95 and 0.98 (Gates, 2012;
Monteith&Unsworth, 2008), whereas the heat convection coefficient depends on the prop-
erties of the fluid, type of flow and the object shape. Values of the coefficient have been
measured and tabulated for most common fluids and object shapes for both forced and
free convection (Gates, 2012; Monteith & Unsworth, 2008). For instance, the heat convec-
tion coefficient of air lies in the interval [10−3, 104]Wm−2 K−1. Therefore, the constant
a = εσ/d is of order 10−5 at most, which does not make the correction term negligible
and reflects the importance of the terms introduced due to radiative heat exchange.
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Next, we use Taylor expansion up to 2nd order in Equation (36) to find

T (Ta,X ) =̃T (0, 0) + ∂T
∂Ta

∣∣∣∣
0,0

Ta + ∂T
∂X

∣∣∣∣
0,0

X

+ 1
2

∂2T
∂T2

a

∣∣∣∣
0,0

T2
a + ∂2T

∂Ta∂X

∣∣∣∣
0,0

TaX + 1
2

∂2T
∂X 2

∣∣∣∣
0,0

X 2. (39)

Next, by evaluating Equation (36) at X = 0, we have

(T − Ta) + a[(273.16 + T )4 − (273.16 + Ta)
4] = 0;

by denoting F(x) = x + ax4, this last equality can be rewritten as the equation

F(273.16 + T ) − F(273.16 + Ta) = 0.

Because F(x) is a strictly increasing function, the only solution of this last equation is T =
Ta. Finally, evaluating Equation (36) at X = 0 and Ta = 0, we obtain

T (Ta = 0,X = 0) = 0. (40)

By using Equation 40 in Equation (39) and calculating the partial derivatives by implic-
itly deriving Equation (36) at Ta = 0 and X = 0, we obtain an expression for the surface
temperature as a function of the ambient temperature as

T (Ta,X ) =̃Ta + 1
1 + 4(273.16)3a

X

− 12(273.16)2a
[1 + 4(273.16)3a]2

TaX − 1
2

12(273.16)2a
[1 + 4(273.16)3a]3

X 2. (41)

Finally, we combine Equations (26) and (27) to obtain an expression forTs(z) in terms of
Tp and Tbc. Plugging the result into Equation (28) and using the boundary conditions (31)
and (32), we find an expression for Tp and Ts in terms of known parameters and Tbc. We
use this result together with Equations (26), (33), and (34) to obtain an expression for Tc
in terms of Tbc that can be written as

Tc(z) = (−G1q − G2qv − G3αv + G4)z − G5q − G6qv − G7αv + G8, for hp ≤ z ≤ hc,
(42)

where the coefficients Gi, i = 1, . . . 8, depend only on Tobj and the known parameters
ρbl, cbl, hbc, hs, hp, k and w. Please, refer to Appendix 2 for more details. Neglecting the
quadratic terms in Equation (41) and substituting the expression for T in (42), we have

Ta + 1
d + 4(273.16)3εσ

[
q(hp + hbc) + qvhbc − αvL

1
area(�̃)

]

=̃ [−G1q − G2qv − G3αv + G4]hc(−G5q − G6qv − G7αv + G8). (43)

As Ta changes, the three thermal control mechanisms must change to satisfy
Equation (43). To gain insights about the thermoregulation phenomena, we analyse this
expression in the next section when thermal control mechanisms change individually.
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6.2.1. Changes in thermal insulation of the coat
Increasing the metabolic rate is biologically expensive (Greenberg et al., 2012; Tatter-
sall, 2016). Therefore, it is expected that the animal would keep, for as long as possible, the
metabolic rate at its minimum, qmin. Extra ventilation rate that would imply an additional
metabolic rate should also be kept as v=0 as long as possible. In fact, there are some ranges
of Ta that the resting animal is capable of maintaining a constant Tbc with q = qmin and
v=0. This is achieved by raising or lowering of feathers or hairs, which ultimately changes
the coat width, hc, and therefore its insulation. Thus, assuming a constant q = qmin and
v=0, Equation (43) gives the following relation between Ta and hc

Ta =̃ − M1hc + M2, (44)

where
M1 = G1qmin + G3α0 − G4 and

M2 = −G5qmin − G7α0 + G8

− 1
d + 4(273.16)3εσ

[
qmin(hp + hbc) − α0L

1
area(�̃)

]
,

(45)

whereM1 and the term between brackets are positive for biological reasons. When ambi-
ent temperature changes in the interval [TTNZ

1 ,TTNZ
2 ], the animal’s insulation, represented

here by the width of the coat layer, changes accordingly in the range [hmin
c , hmax

c ] so that
Equation (44) is satisfied. The limits of the interval of ambient temperatures are

TTNZ
1 = −M1hmax

c + M2 and TTNZ
2 = −M1hmin

c + M2. (46)

The interval [TTNZ
1 ,TTNZ

2 ] corresponds to the TNZ, that is, the interval of comfort
temperature attained with metabolic rate at its minimal value (Hill et al., 2012). This
explains the presence of the flat region in the experimental data of the average internal
heat production as functions of the ambient temperature (see Figure 5).

6.2.2. Changes inmetabolic rate
Because coat width is biologically limited to the maximum value hmax

c , the mechanism of
thermal regulation by changing the animal’s insulation fails in maintaining Tbc = Tobj for
ambient temperatures below TTNZ

1 . Therefore, to guarantee the existence of a steady-state
solution at Ta < TTNZ

1 , the metabolic rate q has to change as a function of Ta according to
Equation (43) with hc = hmax

c and v=0 as

Ta + 1
d + 4(273.16)3εσ

[
q(hp + hbc) − α0L

1
area(�̃)

]

=̃ [−G1q − G3α0 + G4]hmax
c + (−G5q − G7α0 + G8). (47)

From the definition of TTNZ
1 , we have

TTNZ
1 + 1

d + 4(273.16)3εσ

[
qmin(hp + hbc) − α0L

1
area(�̃)

]

=̃ [−G1qmin − G3α0 + G4]hmax
c + (−G5qmin − G7α0 + G8). (48)
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Figure 5. Classic metabolism-ambient temperature curve according to our findings. (a) In the absence
of vasomotor adjustment, we conclude that in the TNZ, represented by the B) interval, an endotherm
maintains its body core temperature by changing its thermal insulation (see Equation (44)), while
metabolic rate is kept at itsminimum.Changes in thermal insulationare the result of changes in thewidth
of the coat hc. At low temperatures, in the A) interval, the animal’s thermal insulation is at its maximum
value and the metabolic rate is required to increase to maintain the body core temperature according
to the linear function expressed in Equation (52). At high temperatures, in the D) interval, the animal’s
thermal insulation is at itsminimumand themechanisms of evaporative cooling take place. As the ambi-
ent temperature rises, the mechanism of evaporative cooling requires an increase in the metabolic rate
according to the linear function in Equation (57). (b) In the presence of vasomotor adjustment and with
the animal’s metabolic rate at its minimum value, we observed that the TNZ can either be expanded to
the right or to the left, as shown by the C) interval, depending on the biological and physical parameters
(see discussion at the end of Section 6.3).

Subtracting Equation (48) from Equation (47) we find

− G1(q − qmin)hmax
c − G5(q − qmin) =̃Ta − TTNZ

1 + (hp + hbc)
d + 4(273.16)3εσ

(q − qmin),

(49)
which can be expressed as

q =̃ − A(Ta − TTNZ
1 ) + qmin, (50)

where

A = 1

G1hc,max
1 + G5 + (hp+hbc)

d+4(273.16)3εσ

, (51)

with A>0 for biological reasons. The metabolic rate given by Equation (25) can finally be
written as

Q =̃ − A(Ta − TTNZ
1 )V + qminV , (52)

where we use the fact that qv = 0 when v=0, and V represents the animal’s body volume.
Equation (52) indicates that Q increases linearly as the ambient temperature Ta decreases
belowTTNZ

1 , as illustrated in Figure 5(a). In addition, as the ambient temperature decreases,
the animal is capable of maintaining the required body core temperature by increasing the
metabolic rate up to its maximum value Qmax, which is defined by biological constraints.
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Figure 6. Schematic graph of metabolism-ambient temperature curve during summer and winter.
Some animals change the thickness and brightness of their fur in a slow time scale seasonal-dependent
process. Because thicker fur corresponds to larger values of hmax

c , our model suggests that the thicker
the fur, the lower the value of TTNZ1 according to Equation (46), which ultimately represents a shift of the
dashed curve with respect to solid one. According to Equation (45), the same shift should be observed
when the coat emissivity coefficient ε is lowered, which occurs when the fur becomes lighter. Ourmodel
also suggests that as eitherhmax

c increases or ε decreases, the slope ofQ × Ta, givenbyA in Equation (52),
decreases.

The ambient temperature for which Qmax is achieved is defined as

T− =̃TTNZ
1 − Qmax − Qmin

A
, (53)

and it represents a critical low temperature below which other behavioural mechanisms,
like hibernation, would have to be used to avoid death.

We highlight a fundamental difference between our model and the classical model used
in the literature. The classical model serves as a mere expression for data fitting, which is of
no much help in explaining the underlying physical and biological reasons behind certain
behaviours, such as season-dependent slope in Figure 6. Just like the classical model, we
also obtained the correct linear dependence between Q and Ta given by Equation (52).
However, this expression takes into consideration all the important physical mechanisms
and biological parameters of the problem through the equation’s coefficients. As we will se
in Section 6.4, Equation (52) can be used to predict the behaviour depicted in Figure 6.

6.2.3. Changes in ventilation rate
At high ambient temperatures the coat width is at its minimum value hmin

c and the
mechanism of thermal regulation by changing the animal’s insulation fails. Under these
circumstances, the animal has to increase the heat loss by evaporation from the respira-
tory tract to maintain Tbc = Tobj. This is done by increasing the ventilation rate through
rapid shallow breathing, as seen typically in dogs and domestic fowl, and known as panting
(Richards, 1970). To guarantee the existence of a steady-state solution, the excess of ven-
tilation rate v changes as a function of Ta according to Equation (43) with hc = hmin

c and
q = qmin as

Ta + 1
d + 4(273.16)3εσ

[
qmin(hp + hbc) + qvhbc − αvL

1
area(�̃)

]

=̃ [−G1qmin − G2qv − G3αv + G4]hcmin + (−G5qmin − G6qv − G7αv + G8). (54)
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From the definition of TTNZ
2 , we have

TTNZ
2 + 1

d + 4(273.16)3εσ

[
qmin(hp + hbc) − α0L

1
area(�̃)

]

=̃ [−G1qmin − G3α0 + G4]hcmin + (−G5qmin − G7α0 + G8). (55)

Subtracting Equation (55) from Equation (54) we find

Ta − TTNZ
2

v
+ 1

d + 4(273.16)3εσ

[
qvhbc − α̃L

1
area(�̃)

]

=̃ [−G2qv − G3α̃]hcmin − G6qv − G7α̃. (56)

The last expression can be rewritten as

v =̃B(Ta − TTNZ
2 ), (57)

where

B = 1
α̃L−qvhbc area(�̃)

[d+4(273.16)3εσ ] area(�̃)
− [G2qv + G3α̃]hcmin − G6qv − G7α̃

. (58)

The previous expression holds for TTNZ
2 < Ta ≤ T+, where

T+ =̃TTNZ
2 + vmax − vmin

B
. (59)

Using Equations (7) and (57) in the definition of Q given by Equation (25), we find the
relationship between the metabolic rate and the ambient temperature as

Q =̃ q̃ev vol(�bc)(Ta − TTNZ
2 )BV + qminV . (60)

We conclude that because B>0 and with TTNZ
2 < Ta ≤ T+, there is a steady-state

solution in which Tbc = Tobj. Under these circumstances, Equation (60) indicates that Q
changes linearly with positive slope as Ta increases, as illustrated in Figure 5(a).

6.3. Active blood flux

To understand the role of the active blood flux in thermoregulation, we consider the same
system illustrated in Figure 4, with absence of thermal control by changes inmetabolic rate
and animal’s insulation. Therefore, the parameters corresponding to these thermal control
mechanisms are assumed to be fixed. To recover the equations for the case where blood flux
is controlled by vasomotor adjustment, we set J̄ = 0 and J=1 in the equations of Section 5.
In addition to the unknown temperatures of each layer, we also have now the volumetric
blood flux w as an unknown variable. We assume that changes in w lead to changes in the
superficial area �̃ which is actively exchanging heat with the ambient. As a consequence,
�̃ depends on w such that �̃ = �̃(w).
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If the blood flux uniformly fills out�p, the blood volume in the perfused tissue must be
equal to vol(�p) = area(�̃)(hp − hs). Therefore, it should be true that

area(�̃) = w
hp − hs

. (61)

Equations (26)–(35) derived in Section 6.2 are also valid under the assumptions
described above. The reduced version of Equation (23) to our simple case with active blood
flux is also given by Equation (36) but, because we have now a variable effective area for
heat exchange according to Equation (61) and because we know vol(�bc) = area(�̃)hbc,
we can rewrite Equation (36) as

Y = (T − Ta) + a[(273.16 + T )4 − (273.16 + Ta)
4], (62)

where

Y = (q + qv)
vol(�bc)(hp − hs)

d w
+ q

hp
d

− αvL
hp − hs
d w

. (63)

Equation (62) can be analysed as it was done in Section 6.2 to obtain an expression sim-
ilar to Equation (43) that includes now the unknown variable w and relates the ambient
temperature and the different thermal control mechanisms. The resulting expression can
now be analysed as thermal control mechanisms of changes in metabolic rate, insulation,
and evaporation are considered individually. By doing so, we found a steady-state solu-
tion for ambient temperature below TTNZ

1 when we set hc = hmax
c , v=0 and w = wmin,

and we let the metabolic rate change in the interval [qmin, qmax]. We also found that there
is a steady-state solution when q = qmin, v=0, w = wmin and we let hc to change in
the interval [hmin

c , hmax
c ]. This solution indicates that the animal is able to maintain the

body core temperature constant when the ambient temperature changes in the interval
[TTNZ

1 ,TTNZ
2 ]. Finally, we found that above TTNZ

2 there is an steady-state solution that cor-
responds to changes in the excess ventilation rate in the interval [0, vmax − vmin] while the
other thermal control mechanisms are kept constant at hc = hmin

c , q = qmin, w = wmax.
In summary, as Ta drops and heat loss to the ambient increases, more heat needs to be

produced by the animal’s body so that the equilibrium between production and exchange
is maintained. We have mathematically shown that the thermal control mechanism of
increasing the metabolic rate linearly when Ta < TTNZ

1 is due to the increase in heat pro-
duction required to maintain Tbc constant at these ranges of ambient temperature (Hill
et al., 2012; Tattersall, 2016). The mechanism of changing the thermal insulation works
for body temperature regulation within the TNZ (Hill et al., 2012; Kellogg, 2006; Savage
& Brengelmann, 1996; Tattersall, 2016; Tattersall et al., 2009). Conversely, the mechanism
of evaporative cooling acts when Ta > TTNZ

2 (Dawson, 1982; Hill et al., 2012; McCaf-
ferty et al., 2011; Schmidt-Nielsen, 1997; Tattersall, 2016). Together, our findings explain
the shape of the metabolism-ambient temperature U-shaped curve for the full range of
ambient temperatures, as illustrated in Figure 5(a). We focus now on the thermal control
mechanism of vasomotor adjustment. As we shall see in the next section, the action of this
mechanism may extend the animal’s TNZ beyond TTNZ

2 .
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6.3.1. Changes in active blood flux
Similar computations to those performed to obtain Equation (42) can be done in the case
of active blood flux. Assuming the case where q = qmin and v=0, we obtain the expression

Tc(z) =
(
G̃1 − G̃2

w

)
z + G̃3 − G̃4

w
, for hp ≤ z ≤ hc, (64)

where the coefficients G̃i, i = 1, . . . , 4 depend only on Tobj and the known parameters ρbl
and cbl, hbc, hs, hp, and k. The dependence of Tc(z) on w has been written explicitly for
convenience. Using Equation (37), the surface temperature for the case of active blood flux
can be expressed as

T =
(
G̃1 − G̃2

w

)
hc + G̃3 − G̃4

w
. (65)

Plugging this Equation (65) in Equation (62) we obtain an expression relating w and Ta
that can be approximately inverted and written as

Ta =̃H1 − H2

w
, (66)

where the coefficients H1 and H2 depend on the same known parameters as G̃i plus the
width of the coat layer, hc. As the ambient temperature changes, there must be a cor-
responding change in blood flux to satisfy Equation (66). Because we have H2 > 0 for
biological reasons, as the ambient temperature changes within the interval [T∗

1 ,T
∗
2 ], the

active blood flux changes within the interval [wmin,wmax] such that T∗
1 =̃H1 − H2/wmin

and T∗
2 =̃H1 − H2/wmax. Therefore, for Ta within the interval [T∗

1 ,T
∗
2 ], there is a corre-

spondent steady-state solution with Tbc = Tobj. In addition, we conclude that the interval
[T∗

1 ,T
∗
2 ] is contained within the animal’s TNZ because themetabolic rate is at its minimum

value.
The steady-state solutions of our four-layer model indicate that at least two thermal

control mechanisms act in the animal’s TNZ. Both changes in animal’s thermal insulation
and vasomotor adjustment can be used to keep the body core temperature constant in
the TNZ. This can be achieved by having these two mechanisms totally overlapping each
other in the same range of ambient temperature. However, we think that a more biologi-
cally reasonable possibility is that these mechanisms complement each other, such that the
vasomotor adjustment is triggered in either region where the thermal insulation is close to
its minimum or its maximum value.

Active blood flux at maximum insulation: if the biological and physical parameters are
such thatT∗

1 ≤ TTNZ
2 < T∗

2 ≡ TTNZ
3 , then the TNZ is extended towards high ambient tem-

peratures, as illustrated in Figure 5(b). This should be the case of animals that live in
regions where Ta is high, such as toucans or desert mammals (Greenberg et al., 2012; Tat-
tersall, 2016). We remark that in such cases, the corresponding expression for the excess
evaporation rate for ambient temperatures larger than TTNZ

3 is given by

v =̃B(Ta − TTNZ
3 ). (67)

Active blood flux atminimum insulation: on the other hand, if the biological and physical
parameters are such thatT∗

1 ≤ TTNZ
1 < T∗

2 < TTNZ
2 , then the TNZ is extended towards low
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ambient temperatures. This should be the case of animals that live in regions where Ta is
high, such as toucans or desert mammals (Greenberg et al., 2012; Tattersall, 2016). This
could be the case of certain aquatic mammals, like whales, which use shunt mechanisms
in their vascular system for thermoregulation (Heyning, 2001; Parry, 1949).

6.3.2. Size and season-dependent changes
In addition to the fast time scale changes in the animal’s thermal insulation caused for
instance by raising fur or feathers, it is also known that slow time scale season-dependent
mechanisms may affect thermal insulation. For instance, some animals tend to develop a
thicker and/or lighter fur in winter (Hill et al., 2012) in response to the drop in Ta.

To analyse the consequences of these slow time scale changes, we observe that thicker
fur corresponds to larger values for hmax

c in Sec. 6.2. From the expression of TTNZ
1 given by

Equation (46), a larger value for hmax
c yields a lower value of TTNZ

1 . Changes to a lighter fur
in winter correspond to a lower value for the coefficient of emissivity of the coat. From the
expression ofM2 in Equation (45), lower values of ε imply a smaller value ofM2 and, from
Equation (46), a lower value of TTNZ

1 .
On the other hand, the slope of the metabolism-ambient temperature curve when

Ta < TTNZ
1 , given by Equation (51), decreases as either hmax

c increases or ε decreases.
Therefore, our four-layer model explains the seasonal changes in both the slope of the
metabolism-ambient temperature curve and in the shift of TTNZ

1 to the left as illustrated
in Figure 6. These changes are in agreement with experimental data of animals monitored
in both winter and summer (Hart, 1957; Nilssen, Sundsfjord, & Blix, 1984; Scholander
et al., 1950).

6.3.3. Changes in body size
Equation (51) implies that A decreases as hp + hbc increases and all the other parame-
ters are held fixed (including the ambient temperature Ta ). On the other hand, when
Ta ≤ TTNZ

1 , Equation (50) can be rewritten as q =̃A(TTNZ
1 − Ta) + qmin, meaning that q

decreases ashp + hbc increases and all the other parameters are held fixed. Since an increase
hp + hbc corresponds to an increase in the animal’s size (volume or weight), this argu-
ment leads to the conclusion that an increase in the animal size corresponds to a decrease
in the metabolic rate when Ta ≤ TTNZ

1 , which is in agreement to the experimental data
(Heldmaier et al., 2004; Scholander et al., 1950).

6.4. The relationship between surface and ambient temperature

Distinct regions of the body of an endotherm are known to be at different tempera-
tures at the same time for a given ambient temperature (Angilletta, Brandon, Matthew,
& Justin, 2010; McCafferty et al., 2011). We use heuristic and approximation arguments
together with previous reasoning to obtain an approximate expression for the surface tem-
perature of different regions in terms of Ta. We assume that in the short run each region
equilibrates its temperature independently and is responsible for exchanging a fixed frac-
tion f (i) of dry heat, i.e. total internal heat producedminus heat lost by evaporative cooling,
such that

J∑
i=1

f (i) = 1. (68)
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The coefficients of convection d(i) and emissivity ε(i) are assumed to be constants.
The surface temperature at �̄

(i)
c ∩ �̄a is also constant and denoted by T (i). Therefore,

Equation (23) can be written for each region as

(T (i) − Ta) + ε(i)σ

d(i) [(273.16 + T (i))4 − (273.16 + Ta)
4] = f (i)(Q − αvL)

d(i) area(�̄(i)
c ∩ �̄a)

. (69)

We analyse the equation above as it was done to obtain Equation (41) from
Equation (36). After some computation we find

T (i) =̃Ta + f (i)(Q − αvL)

[d(i) + 4(273.16)3ε(i)σ ] area(�̄(i)
c ∩ �̄a)

. (70)

By taking into account the thermal control mechanisms studied in the previous sections
and how they shape the metabolism-ambient temperature curve in absence of vasomotor
adjustment, we can write the metabolic rate as a function of Ta as

Q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Qmin − C1(Ta − TTNZ

1 ) for T− ≤ Ta ≤ TTNZ
1 ,

Qmin for TTNZ
1 < Ta < TTNZ

2 ,

Qmin + C2(Ta − TTNZ
2 ) for TTNZ

2 ≤ Ta ≤ T+,

(71)

where we assume that the metabolic rate cannot increase above Qmax when Ta < T−, and
the positive constants and C1 and C2 are given by

C1 = Qmax − Qmin

TTNZ
1 − T− , and (72)

C2 = q̄vv
max

TTNZ
1 − T− . (73)

By using Equation (71) and Equation (8) in Equation (70), and recalling that the excess
ventilation rate is v=0 on [T−,TTNZ

2 ] and Equation (57), on [TTNZ
2 ,T+], we conclude that,

T (i) =̃

⎧⎪⎪⎨
⎪⎪⎩

(1 − D1)Ta + D2 for T− ≤ Ta ≤ TTNZ
1 ,

Ta + D3 for TTNZ
1 < Ta < TTNZ

2 ,

(1 + D4)Ta + D5 for TTNZ
2 ≤ Ta ≤ T+,

(74)

where

D1 = C1f (i)

[d(i) + 4(273.16)3ε(i)σ ] area(�̄(i)
c ∩ �̄a)

,

D2 = (Qmin + C1TTNZ
1 − α0L)f (i)

[d(i) + 4(273.16)3ε(i)σ ] area(�̄(i)
c ∩ �̄a)

,
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D3 = (Qmin − α0L)f (i)

[d(i) + 4(273.16)3ε(i)σ ] area(�̄(i)
c ∩ �̄a)

,

D4 = (C2 − α̃BL)f (i)

[d(i) + 4(273.16)3ε(i)σ ] area(�̄c(i) ∩ �̄a)
,

D5 = (Qmin − C2TTNZ
3 − α0L + α̃BLTTNZ

2 )f (i)

[d(i) + 4(273.16)3ε(i)σ ] area(�̄(i)
c ∩ �̄a)

.

In the absence of vasomotor adjustment, the effective area used for heat exchange
area(�̄(i)

c ∩ �̄a) does not depend on Ta, and the coefficients Di, i = 1 . . . 5, are constants.
Therefore, the surface temperature T (i) as a function of the ambient temperature Ta con-
sists of a piecewise linear function, as illustrated in Figure 7. Because the coefficients
Di, i = 1 . . . 5, are positive, Equation (74) indicates that the slope of this function is smaller
than one for T− < Ta < TTNZ

1 , whereas the the slope is one in the TNZ. The slope of the
linear function for TTNZ

2 < Ta < T+, given by 1 + D4 in Equation (74), depends on the
term C2 − α̃BL. This means that, depending on the efficiency of the evaporative cool-
ing mechanism, the slope can be either smaller or greater than one. For this reason, the
corresponding line shown in Figure 7 is merely illustrative.

When vasomotor adjustment is present, we obtain the same equations as before, but
now with TTNZ

2 replaced with TTNZ
3 indicating the expansion of the TNZ, and the excess

evaporation rate is given by v=0 on [T−,TTNZ
3 ) and Equation (67) on [TMAT

3 ,T+]. In
addition, the effective area used for heat exchange is altered due to contraction or dilation of
blood vessels in response to the body temperature. According to Equation (74), changes in
area(�̄(i)

c ∩ �̄a) as a function ofTa yields a nonlinear dependence between T (i) andTa.We
conclude that the presence or absence of vasomotor adjustment leads to a striking change
from linear to nonlinear behaviour ofT × Ta. This change explainswhy some authors have

Figure 7. Schematic graph of surface temperature as a function of ambient temperature according to
our four-layers model. The relationship T × Ta for Ta ∈ [T−, T+] consists of a piecewise linear function
expressed by Equation (74). The slope of the linear function in the interval [T−, TTNZ1 ] is smaller than
one because D1 > 0, while the slope in the interval [TTNZ1 , TTNZ2 ] is one. In the interval [TTNZ2 , T+], the
slope can be either smaller or greater than one depending on physical and biological parameters of the
animal being considered. In particular, it depends on the efficiency the evaporative coolingmechanism.
Therefore, the line shown in the interval [TTNZ2 , T+] is merely illustrative.
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used experimental data of T × Ta acquired from thermal infrared assays, as an evidence
of whether an animal relies on vasomotor adjustment for thermoregulation.

A natural question in the present setting is whether steady-state solutions are stable
solutions of the corresponding dynamical system. This is expected to be true, at least in
a particular range of Ta because we used feedback controls only. However, a mathemat-
ical proof of this statement is rather difficult and it would require a careful analysis of a
nonlinear dynamical system in infinity dimensions (in our case we have an integro-partial
differential equations model). A simpler analysis based on a linearization around a specific
steady-state solution would require the study of the spectrum (eigenvalues) of the associ-
ated linearized integro-partial differential operator, which is also very hard. In any case,
such analyses are out of the scope of the present paper.

7. Discussion and conclusions

We presented a dynamical four-layer model for thermoregulation of endotherms by tak-
ing into account heat production due to metabolic rate and heat exchange within the body
given its internal structure. Ourmodel assumes that heat exchange inside the body is due to
conduction and heat transport by blood flow. In addition, heat is exchanged with the ambi-
ent through convection, radiation, and evaporation from the respiratory tract. In addition,
four possible thermal control mechanisms are taken into account: changes in (i) thermal
insulation, (ii) metabolic rate, (iii) changes in blood fluxes due to blood vasomotor adjust-
ment in tissues near the body core, (iv) changes in blood fluxes due to blood vasomotor
adjustment in tissues near the surface, (v) evaporation from the respiratory tract, and (vi)
superficial evaporation.

Numerical simulations could be used to understand the evolution of the dynamical
model and the interplay among the several thermal control mechanisms in rather real-
istic situations (Dudley, Bonazza, & Porter, 2013). Numerical simulations could also be
helpful to elucidate the consequences of the interactions of several body regions with dif-
ferent thermal control mechanisms, and how the steady-state solutions are dynamically
approached.

We analysed the steady-state solutions of our model analytically as an attempt to fully
understand themetabolism-ambient temperatureU-shaped curve. Our findings are able to
explain qualitatively many aspects observed in experimental data, which are not properly
explained in classical models of thermoregulation in endotherms. We explained

(1) the linear increase in the metabolically rate away from the TNZ;
(2) the role of vasomotor adjustment as a thermal control mechanism capable of expand-

ing the range of the TNZ;
(3) season and size-dependent changes of the metabolism-ambient temperature curve,

and
(4) the linear and nonlinear dependence of surface temperature as a function of Ta.

We believe that from the physical first principles and the physiological concepts revised
here and applied to build our model we can lay the foundations for a solid understand-
ing of thermoregulation phenomena in endotherms. For instance, in its present form, our
model considers all the possibilities of the changes in the metabolic rate (e.g. shivering
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and non-shivering mechanisms are implicitly considered) in a unified way. As it is, our
model could contribute to highly important models that are currently applied to medical
science (Fraguela, Matlalcuatzi, & Ramos, 2015), which aim to determine the temperature
inside the incubator that would thermally stabilize a premature newborn in the shortest
time possible.

Later on, a more detailed model, distinguishing different mechanisms which increase
the metabolic rate can be developed. Another possibility of improving our model is to
include transpiration as a mechanism for thermoregulation. Furthermore, field conditions
with, for instance, direct exposition to the sun or wind can be incorporated into our model
by including terms associated with the dependence of the convection coefficient on the
wind speed, and so on. A probably more complex thermoregulation mechanism to be
incorporated is postural change in response to ambient temperature.

The mathematical richness of our model also raises interesting questions for future
work. For instance, steady-state solutions (with Tbc = Tobj) are expected to be the attrac-
tors of our dynamicalmodel. Additional investigation is required to test whether this is true
and which steady states are verified for a given initial condition determined by experimen-
tal data. However, examining our arguments we observe that the steady-state equations
admit other equilibrium states with Tbc = Tobj. However, such other equilibria cannot
be attainable as asymptotic limits as t → +∞ starting from arbitrary initial data if they
evolve according the stated evolution equations. Such equations include the control equa-
tions with coefficients R depending on Tbc(t) − Tobj (as in expression (15) and (16) for the
special case of the time evolution of the thermal insulation of the coat).

Notes

1. Notice that we changed the original notation from Kleiber (1972).
2. A bar over the name of a set denotes its closure.
3. In the present work we do not consider heat exchange due to direct insolation (direct exposure

to the sun rays) or reflected radiation.
4. All temperatures in this paper are measured in Celsius degrees.
5. All temperatures in this paper are measured in Celsius degrees.
6. Different from the other threemechanisms, thermal control based on the vasomotor adjustment

requires the controlled variable to change in the same direction as Tbc − Tobj to facilitate heat
exchange.

7. For example gz(τ ) = e−aτ , a> 0.
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Appendix 1

Table A1. Notation of main variables and parameters used in this paper.

Notation Definition Unit (MKS)

Global variables
αv Water mass expelled per unit of time at ventilation v kg/s
α0 Basal water mass expelled per unit of time kg/s
qv Additional heat per unit of volume produced due to evaporation W/m3

Tobj Objective temperature ◦C
Tbc Body core temperature ◦C
Ta Ambient temperature ◦C
T Surface temperature ◦C
V Body volume m3

v Excess ventilation m3/s

Region and layer specific variables
c Specific heat J/(kg ◦C)
k Heat diffusion coefficient W/(m2◦C)
m Mass kg
n External unit normal vector –
� Domain –
q Heat produced per unit of volume W/m3

ρ Density kg/m3

T Temperature ◦C
Perfused tissue specific variable
w Volumetric blood flux m3/s
φ̃ Volumetric density of blood vessels –
φ Normalized volumetric density of blood vessels –

Coat specific variables
d Convection coefficient W(m2◦C)
ε Emissivity –

Model specific variables
J Total number of regions –
J̄ Number of regions provided with vasomotor adjustment –

Notes: Global variables do not take any additional index. Region and layer specific variables take two additional indices. A
superscript index that indicates the corresponding body region, and a subscript index that indicates the corresponding
layer,which canbebc for body core, s for surrounding tissue,p for perfused tissue, and c for coat. Therefore, the variablem(i)

s
corresponds to the mass of the surrounding tissue of the ith region. Perfused tissue specific variables take an additional
superscript index to indicate the region they belong to and the same is true for coat specific variables.

Appendix 2

The solution of Equation (27) can be written as

Ts(z) = − q
2k

z2 + A1z + A2. (A1)

Combining this expression with Equation (30), we have

Ts(z) = − q
2k

z2 + A1z + Tobj. (A2)
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We use Equation (A2) to rewrite Equation (26) as

(q + qv) vol(�bc) − αvL − wρblcblTbc + wρblcbl
hp − hs

∫ hp

hs
Tp(z) dz + area(�̃)kA1 = 0. (A3)

Therefore, A1 can be written as

A1 = −(q + qv) vol(�bc) + αvL + wρblcblTobj

area(�̃)k
− wρblcbl

area(�̃)k(hp − hs)

∫ hp

hs
Tp(z) dz. (A4)

Solving Equation (28), we have

Tp(z) = B1 exp(−az) + B2 exp(az) + Tobj + q
wρblcbl

, (A5)

with

a =
√
wρblcbl

k
. (A6)

Combining Equations (A5) and (A2) in Equation (31), we obtain

exp(−ahs)B1 + exp(ahs)B2 = C1, (A7)

with
C1 = − q

wρblcbl
− q

2k
hs2 + A1hs. (A8)

Combining Equations (A5) and (A2) in Equation (32), we obtain

− a exp(−ahs)B1 + a exp(ahs)B2 = C2, (A9)

with
C2 = −q

k
hs + A1. (A10)

Solving Equations (A7) and (A9) for B1 and B2, we obtain

B1 = aC1 − C2

2a exp(−ahs)
= −

a( q
wρblcbl

+ q
2kh

2
s ) − q

khs
2a exp(−ahs)

+ ahs − 1
2a exp(−ahs)

A1, (A11)

and

B2 = aC1 + C2

2a exp(ahs)
= −

a( q
wρblcbl

+ q
2kh

2
s ) + q

khs
2a exp(ahs)

+ ahs + 1
2a exp(ahs)

A1. (A12)

Integrating Equation (A5) with respect to z from z = hs to z = hp, we obtain∫ hp

hs
Tp(z)dz = −B1

e−ahp − e−ahs

a
+ B2

eahp − eahs

a
+
(
Tobj + q

wρblcbl

)
(hp − hs). (A13)

Using the definitions of B1 and B2, the last equation can be written as∫ hp

hs
Tp(z) dz = D1q + D2A1 + Tobj(hp − hs), (A14)

where

D1 = −
(
exp(−ahp) − exp(−ahs)

a

)(−a( 1
wρblcbl

+ 1
2kh

2
s ) + 1

khs
2a exp(−ahs)

)

+
(
exp(ahp) − exp(ahs)

a

)(−a( 1
wρblcbl

+ 1
2kh

2
s ) − 1

khs
2a exp(ahs)

)

+ 1
wρblcbl

(hp − hs), (A15)
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and

D2 = −
(
exp(−ahp) − exp(−ahs)

a

)(
ahs − 1

2a exp(−ahs)

)

+
(
exp(ahp) − exp(ahs)

a

)(
ahs + 1

2a exp(ahs)

)
. (A16)

Replacing Equation (A4) in Equation (A14), we have∫ hp

hs
Tp(z) dz = E1q − E2qv + E3αv + E4, (A17)

where

E1 =
(
D1 − D2 vol(�bc)

area(�̃)k

)(
1 + D2wρblcbl

area(�̃)k(hp − hs)

)−1

,

E2 = D2 vol(�bc)

area(�̃)k

(
1 + D2wρblcbl

area(�̃)k(hp − hs)

)−1

,

E3 = D2L
area(�̃)k

(
1 + D2wρblcbl

area(�̃)k(hp − hs)

)−1

,

E4 =
(

+D2wρblcblTobj

area(�̃)k
+ Tobj(hp − hs)

)(
1 + D2wρblcbl

area(�̃)k(hp − hs)

)−1

.

(A18)

Notice that a, Di, and Ej for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 4, are constants that depend only on known
physical and biological parameters. Next, by replacing Equation (A17) in Equation (A4), we have

A1 = −
(
vol(�bc)

area(�̃)k
+ wρblcblE1

area(�̃)k(hp − hs)

)
q

−
(
vol(�bc)

area(�̃)k
− wρblcblE2

area(�̃)k(hp − hs)

)
qv

+
(

L
area(�̃)k

− wρblcblE3
area(�̃)k(hp − hs)

)
αv

+ wρblcblTobj

area(�̃)k
− wρblcblE4

area(�̃)k(hp − hs)
, s (A19)

which can be used in Equations (A11) and (A12) to determine B1 and B2 in terms of known param-
eters, the metabolic rate per unit volume q, the additional metabolic rate per unit volume due to
evaporative cooling qv and the vapour mass lost by respiration αv .

B1 = −F1q − F2qv + F3αv + F4, (A20)

B2 = −F5q − F6qv + F7αv + F8, (A21)

with

F1 =
a( 1

wρblcbl
+ 1

2kh
2
s ) − 1

khs
2a exp(−ahs)

+ ahs − 1
2a exp(−ahs)

(
vol(�bc)

area(�̃)k
+ wρblcblE1

area(�̃)k(hp − hs)

)
, (A22)

F2 = ahs − 1
2a exp(−ahs)

(
vol(�bc)

area(�̃)k
− wρblcblE2

area(�̃)k(hp − hs)

)
, (A23)
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F3 = ahs − 1
2a exp(−ahs)

(
L

area(�̃)k
− wρblcblE3

area(�̃)k(hp − hs)

)
, (A24)

F4 = ahs − 1
2a exp(−ahs)

wρblcblTobj

area(�̃)k
− wρblcblE4

area(�̃)k(hp − hs)
, (A25)

F5 =
a( 1

wρblcbl
+ 1

2kh
2
s ) + 1

khs
2a exp(ahs)

+ ahs + 1
2a exp(ahs)

(
vol(�bc)

area(�̃) k
+ w ρblcblE1

area(�̃)k(hp − hs)

)
, (A26)

F6 = ahs + 1
2a exp(ahs)

(
vol(�bc)

area(�̃)k
− wρblcblE2

area(�̃)k(hp − hs)

)
, (A27)

F7 = ahs + 1
2a exp(ahs)

(
L

area(�̃)k
− wρblcblE3

area(�̃)k(hp − hs)

)
, (A28)

F8 = ahs + 1
2a exp(ahs)

wρblcblTobj

area(�̃)k
− wρblcblE4

area(�̃)k(hp − hs)
. (A29)

Therefore,Ts(z) andTp(z) can now be expressed as a function of q, qv , αv and known parameters
of the problem. Finally, the solution of Equation (29) is

Tc(z) = F9z + F10 for hp ≤ z ≤ hc. (A30)

Using Equations (33) and (34) together with the expressions for B1 and B2 given in Equa-
tions (A20) and (A21), we find

F9 = −aB1 exp(−ahp) + aB2 exp(ahp)

= (aF1 exp(−ahp) − aF5 exp(ahp))q

+ (aF2 exp(−ahp) − aF6 exp(ahp))qv

− (aF3 exp(−ahp) − aF7 exp(ahp))αv

− aF4 exp(−ahp) + aF8 exp(ahp), (A31)

F10 = B1 exp(−ahp) + B2 exp(ahp) + Tobj + q
wρblcbl

− F9hp

= −{F1 exp(−ahp) + F5 exp(ahp) − [aF1 exp(−ahp) − aF5 exp(ahp)]hp}q
− {F2 exp(−ahp) + F6 exp(ahp) − [aF2 exp(−ahp) − aF6 exp(ahp)]hp}qv

+ {F3 exp(−ahp) + F7 exp(ahp) + [aF3 exp(−ahp) − aF7 exp(ahp)]hp}αv

+ F4 exp(−ahp) + F8 exp(ahp) − [−aF4 exp(−ahp) + aF8 exp(ahp)]hp

+ Tobj + q
wρblcbl

. (A32)

Using Equations (A31) and (A32) in Equation (A30), we have the following expression for the
coat temperature distribution

Tc(z) = (−G1q − G2qv − G3αv + G4)z − G5q − G6qv − G7αv + G8, for hp ≤ z ≤ hc, (A33)
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with

G1 = −[(aF1 exp(−ahp) − aF5 exp(ahp))],

G2 = −[(aF2 exp(−ahp) − aF6 exp(ahp))],

G3 = −[−(aF3 exp(−ahp) − aF7 exp(ahp))],

G4 = −aF4 exp(−ahp) + aF8 exp(ahp),

G5 = {F1 exp(−ahp) + F5 exp(ahp) + [aF1 exp(−ahp) − aF5 exp(ahp)]hp}],
G6 = {F2 exp(−ahp) + F6 exp(ahp) + [aF2 exp(−ahp) − aF6 exp(ahp)]hp}],
G7 = −{F3 exp(−ahp) + F7 exp(ahp) − [aF3 exp(−ahp) − aF7 exp(ahp)]hp},
G8 = F4 exp(−ahp) + F8 exp(ahp) − [−aF4 exp(−ahp) + aF8 exp(ahp)]hp + Tobj + q

wρblcbl
.

None of the coefficientsGi, i = 1, . . . , 8, depend on hc, q, qv ,αv , andTa. They only depend onTobj
and the known parameters ρbl, cbl, hbcs , hs, hp, k, and w. Therefore, they can be directly computed,
given the biological and physical parameters of interest. Expressions for G̃i, i = 1, . . . 4, Hs, H2, H̃1
and H̃2 that appear in Section 6.3.1 can be similarly obtained.

Appendix 3. Tables

Table A2. We consider a linear PID controller to maintain the variable z(t) within a desired interval
[zmin, zmax].

Mechanism Variable corresponding to z(t) zmin zmax κ

Change in metabolic rate Metabolic rate, q(t) qmin qmax +1
Change of coat properties Thermal insulation, I(t) Imin Imax +1
Vasomotor adjustment in Layer 2 Volumetric blood flux,ws(t) wmin

s wmax
s −1

Vasomotor adjustment in Layer 3 Volumetric blood flux,wp(t) wmin
p wmax

p −1
Changes in evaporation from the respiratory tract Excess ventilation rate, v(t) vmin vmax +1
Changes in superficial evaporation Sweating rate, Sr(t) Smin

r Smax
r +1

Note: In this table we show the meaning of this variable depending on the thermal control mechanism considered.
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Table A3. Notation of main variables and parameters used in this paper.

Notation Definition Unit (MKS)

Global variables
αv Water mass expelled per unit of time at ventilation v kg/s
α0 Basal water mass expelled per unit of time kg/s
qv Additional heat per unit of volume produced due to evaporation W/m3

Tobj Objective temperature ◦C
Tbc Body core temperature ◦C
Ta Ambient temperature ◦C
T Surface temperature ◦C
V Body volume m3

v Excess ventilation m3/s

Region and layer specific variables
c Specific heat J/(kg ◦C)
k Heat diffusion coefficient W/(m2 ◦C)
m Mass kg
n External unit normal vector –
� Domain –
q Heat produced per unit of volume /mW3

ρ Density kg/m3

T Temperature ◦C
Perfused tissue specific variable
w Volumetric blood flux m3/s
φ̃ Volumetric density of blood vessels –
φ Normalized volumetric density of blood vessels –

Coat specific variables
d Convection coefficient W(m2 ◦C)
ε Emissivity –

Model specific variables
J Total number of regions –
J̄ Number of regions provided with vasomotor adjustment –

Notes: Global variables do not take any additional index. Region and layer specific variables take two additional indices. A
superscript index that indicates the corresponding body region, and a subscript index that indicates the corresponding
layer,which canbebc for body core, s for surrounding tissue,p for perfused tissue, and c for coat. Therefore, the variablem(i)

s
corresponds to the mass of the surrounding tissue of the ith region. Perfused tissue specific variables take an additional
superscript index to indicate the region they belong to and the same is true for coat specific variables.
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