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ABSTRACT

We describe a hybrid numerical method to solve a boundary value
problem where an unknown parameter of the model is chosen
to satisfy an additional boundary condition. After the solution of
the differential equation is approximated using a one-step method,
a secant method is used to update the value of the unknown
parameter. The model is a generalization of a model first used
to describe water flow through roots, which was later used to
describe water flow through the tank bromeliad Guzmania lingulata.
In both cases, identification of the unknown parameter represents
the decomposition of overall plant conductance into components in
the radial and axial directions. We describe convergence of the one-
step and secant portions of the method in a base case corresponding
to previous applications of the model and in an intermediate case
corresponding to a first approximation of the geometry of the leaf. We
demonstrate that in the more general case, which better represents
the geometry of G. lingulata, the one-step method also converges
as expected. Finally, we discuss the implications of including a
better description of the geometry of the leaf in context of radial
conductance and show that our modeling of the leaf geometry
increases the component of the overall leaf conductance in the radial
direction by as much as 25%.
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1. Introduction

We present a hybrid numerical method to approximate the solution of the second order,
linear differential equation, together with boundary data

d2u
dx2

= a2g(x)u,

u(0) = 1,
u′(0) = −v0, (1)
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on the interval 0 ≤ x ≤ 1, where the non-negative function g satisfies 0 ≤ g(x) ≤ 1, and
the parameter a is chosen to satisfy the boundary condition u′(1) = 0.

A variant of this model was first considered by Landsberg and Fowkes (1978) in the
context of water transport through a root and later used byNorth, Lynch,Maharaj, Phillips,
and Woodside (2013) to describe water transport through leaves of the tank bromeliad
Guzmania lingulata. Both of these modeling efforts seek to better understand how plants
transport water by decomposing overall hydraulic conductance into components into the
axial (parallel to growth of the plant) and radial (perpendicular to the surface of the plant
organ, such as a leaf) directions. The ability to compare conductance in the axial and radial
directions allows plant physiologists to categorize a plant’s proclivity to conserve water
(North et al., 2013), to compare profiles of water potential within a leaf (Frensch & Steudle,
1989), to understand rates of gas exchange within individual leaves (Ocheltree, Nippert,
& Prasad, 2012), and to examine the impact of radial water movement on photosynthesis
and growth (McKown, Cochard, & Sack, 2010).

In the context ofG. lingulata, water is absorbed by the tank region of the leaf and is then
transported throughout the blade region, where photosynthesis and water loss occur. The
dimensionless spatial variable x represents length from the tank–blade boundary (x = 0)
toward the tip of the leaf (x = 1), as shown in Figure 1, and the unknown function u
represents scaled water potential within the leaf. Therefore, conditions on the derivative
u′ model the flux of water, so that the condition u′(0) = −v0 indicates an inward flow at
the tank–blade boundary and the additional condition u′(1) = 0 specifies that there is no
flux through the end of the leaf.

A novel component of this modeling approach is the addition of the function g , which
describes the width of the plant as a function of the distance along the blade of the plant.
We seek to build upon the model described by North et al. (2013) which assumes that the
width of G. lingulata is constant along the blade of the plant (equivalently, in the system
(1), g(x) ≡ 1) through incorporation of the nonconstant function g . Under the constant
width assumption (i.e. g(x) ≡ 1), the exact solution of the system (1) can be found using
elementarymethods, and the parameter a can be shown to satisfy a transcendental equation
(Landsberg & Fowkes, 1978). In general, the exact solution may not be available, which
motivates development of the hybrid numerical method.

In Section 2, we describe how a system of the form (1) together with the additional
condition u′(1) = 0 model properties of water flow in G. lingulata. Here, we also give an
estimate for v0 and describe how an increase in the potential difference which drives the
flow corresponds to a decrease in v0.

In Section 3, we describe the hybrid numericalmethod used to approximate the solution
of themodel system.Webeginwith theobservation that the system (1), althoughdependent
on a spatial variable, is mathematically equivalent to an initial value problem. The hybrid
method employs a one-step method to approximate the solution of the system (1) with a
guess for the unknownparameter a and a root-findingmethod to determine the value of the
unknown parameter a satisfying the additional condition u′(1) = 0. Alternating between
an improved guess to the unknown parameter and an approximation for the solution to
the system (1) using that improved guess, we expect to identify a reference value of the
unknown parameter a and an approximate solution to the system (1) simultaneously.

Our method is analogous to a shooting method for a boundary value problem, which
instead incorporates a guess for an artificial initial value to approximate the solution of an
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Figure 1. The length of the blade portion of G. lingulata is of the order 20 cm (North et al., 2013).

initial value problem, then refines that initial value with a root-finding method in order
to satisfy the desired boundary value. Such a shooting method may be found in many
introductory textbooks on numerical analysis, see for instance Bradie (2006). However,
the literature lacks convergence analysis of a two-state method where the root-finding
method is used to determine an unknown parameter of the differential equation, which is
a second novel component of this approach.

In Section 4, we first make use of the constant width assumption to analyze the hybrid
numerical method. In this base case, we compare the approximate solution obtained
using the hybrid method to the exact solution determined using elementary methods and
show that the one-step method and the root-finding method both converge as expected,
demonstrating proof of concept. As an intermediate case, we discuss a specific curvilinear
form for g for which an exact solution to the system (1) is available in terms of special
functions. We similarly show that the one-step method and the root-finding method both
converge as expected. Finally, we apply the hybrid numerical method to the system (1)
with a form for g obtained by fitting the shape of the leaf with a cubic spline. We show that
the one-step method again converges as expected for a broad range of the flux condition
v0 specified by the boundary condition u′(0) = −v0 which corresponds to a potential
difference up to a theoretical value of O (

104
)
MPa.

We close by returning to the context of the stated goal of decomposing total leaf
conductance ofG. lingulata into components in the axial and radial directions, specifically
using a cubic spline representation for g . Our results suggest that improved accounting for
the geometry of the leaf with a cubic spline representation gives a value for the decomposed
radial conductance that is significantly higher in comparison to the base case obtained
previously by North et al. (2013), perhaps by as much as 25%.

2. Modeling equations

Here, we derive the equations that are used to decompose the leaf conductance into
components in the axial and radial directions. Following Ogée, Cuntz, Peylin, and Bariac
(2007), we model the xylem as parallel veins of length L. Similar to previous modeling
efforts by Landsberg and Fowkes (1978) and by North et al. (2013), we divide water flow
within the leaf into components in the axial and radial directions and consider flow from
the tank-blade boundary (z = 0) to the tip of the leaf (z = L). In the axial direction we
assume that the flux JA is driven by the the gradient of the water potential, � as

RAJA = −d�
dz

, (2)
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where RA is axial resistance. Our assumptions on the xylem allow the axial conductance
(the inverse of axial resistance) to be approximated via a measurement of the radius of an
individual vein (North et al., 2013). In the radial direction, we assume that the flux JR is
driven by a difference between the water potential in the vein and that in the mesophyll,
given by �mes, as

RRJR = � − �mes, (3)

whereRR is the unknown radial resistance. In the blade, the potential difference�−�mes >
0, which gives rise to a positive outward flux, JR > 0. In a cross-section of the leaf on the
interval [z, z + �z], conservation of flow gives that

JA(z) = JA(z + �z) + w�zg(z̄)JR(z̄), (4)

where wg(z̄) gives the width of the leaf at z̄ ∈ [z, z + �z]. As �z → 0, z̄ → z and

dJA
dz

= −wg(z)JR. (5)

Therefore,

d2�
dz2

= wRA
RR

g(z)(� − �mes). (6)

If the water potential at the tank-blade boundary is known and the flux through the tip of
the leaf is zero, the boundary conditions are �(0) = �0 and � ′(L) = 0. At the base of the
leaf, the total flux Jleaf is equal to the flux in the axial direction, so that RAJA(0) = RAJleaf,
or equivalently � ′(0) = −RAJleaf. The nondimensional scaling

u(x) = �(z) − �mes

�0 − �mes
(7)

where x = z/L gives rise to the differential equation, together with boundary data

d2u
dx2

= a2g(x)u,

u(0) = 1,
u′(0) = −v0, (8)

where the flux condition is described by the dimensionless value

v0 = LRAJleaf
�0 − �mes

, (9)

the parameter a satisfies

a2 = wL2RA
RR

, (10)
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and a is chosen to satisfy u′(1) = 0. Since the only portion of a that is unknown is the
axial resistance, determination of a is equivalent to decomposing leaf conductance into
components in the axial and radial directions.

Since u′(0) = −v0, the physical interpretation of v0 is scaled inward flux at x = 0. In
many numerical experiments that follow, we use the value v0 = .8. That value is derived
from order of magnitude estimates described by North et al. (2013), summarized here:

L = 20 cm, Jleaf = 8 × 10−11 m3 s−1,
RA = O (

1011
)
MPa s m−4, �0 − �mes = 0.5 MPa.

In other numerical experiments, a range of values is used for v0. Since v0 is inversely
proportional to the potential difference �0 − �mes, the range of values O (

10−4) < v0 <
O (

1
)
corresponds to an increase in the potential difference on the order of 104 MPa.

In comparison to similar derivations by Landsberg and Fowkes (1978) and North et
al. (2013), a benefit of this nondimensional approach is that it reduces the number of
parameters in the model to just two: the parameter a, representing the ratio of radial to
axial resistance, and the flux condition u′(0) = −v0.

3. Numerical method

We seek to identify the value of the parameter a such that the approximate solution to the
system (1) satisfies u′(1) = 0. The value of a is found using two iterative schemes: a one-
step method to approximate the solution to the corresponding initial value problem and a
root-finding method to ensure that the solution satisfies u′(1) = 0. Although description
‘initial value problem’ is typically reserved for a differential equation with time as the
independent variable, the system (1) is mathematically equivalent.

Given any guess as to the unknown parameter a, we can approximate the solution to the
system (1) with a one-step method by treating it as an initial value problem. We divide the
interval 0 ≤ x ≤ 1 into N subintervals with xj = hj, where the width of each subinterval
is h = 1

N . We identify the approximate solution to the system (1) with guess ak using N
subintervals as

vk,N (xj) ≈ u(xj, ak). (11)

Given an approximate solution vk,N corresponding to the unknown parameter ak, we
identify the error in the first derivative at x = 1 as ek,N := v′

k,N (1) − u′(1), where v′
k,N (1)

is obtained directly from the approximate solution of the differential equation. Since we
seek a such that u′(1) = 0, the representation of the error quickly reduces to

ek,N = v′
k,N (1). (12)

We then update the parameter ak with the usual secant method

ak+1 = ak − ak − ak−1

ek,N − ek−1,N
ek,N . (13)

We expect that ek,N → 0 for fixed N as k → ∞.
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Table 1. The algorithm requires two initial guesses of the unknown parameter and combines a one-step
method with a root-finding method until error is below a stated tolerance.

Step Input Scheme Output

Initialization
a0 One-Step Method e0,N
a1 One-Step Method e1,N

While |ek,N | > tol
ak , ak−1, ek,N , ek−1,N Secant Method ak+1

ak+1 One-Step Method ek+1,N

In practice, we begin with a fixed discretization of the spatial interval and two initial
guesses of the unknown parameter represented by a0 and a1. As depicted in Table 1, we
initialize the algorithm by finding an approximation to the solution corresponding to the
guesses of the unknown parameter given by a0 and a1, and compute the corresponding
error terms e0,N and e1,N . The algorithm continues in a two-state process (i.e. obtain
ak+1 via the secant method, then perform the one-step method with ak+1 to obtain the
corresponding error term ek+1,N ) until the error falls below a stated tolerance, at which
point the method is terminated.

Examined alone, convergence properties of a given one-step approach to an initial value
problem are well understood. Similarly, the rate of convergence of the secant method is
well known. Below, we demonstrate numerically that these methods employed in series,
where the secant method changes a parameter of the differential equation in question,
exhibit the expected convergence properties.

4. Numerical results

We begin with the observation that the assumption g(x) ≡ 1 reduces the system (1) to
one equivalent to those considered by Landsberg and Fowkes (1978) and by North et al.
(2013). Under the assumption g(x) ≡ 1, an elementary solution to the system (1) in terms
of the unknown parameter a is readily available.

In this so-called base case, we compare the results of the hybrid numericalmethod to the
elementary solution and show that both the root-findingmethod and the one-stepmethod
converge as expected. As an intermediate case, we use a linearly decreasing function to
represent the geometry of the leaf for which an elementary solution to the system (1) can
be expressed in terms of special functions. In this case, we also show that the root-finding
method and the one-step method converge as expected.

To better incorporate the nonconstant width of the leaf into the model, we approximate
the width as a function of the distance along the blade with a cubic spline. In this case, an
elementary solution is no longer available. Nevertheless, we show that the one-stepmethod
converges as expected.

In many of the numerical experiments below, we use v0 = .8, which was derived in
Section 2 as a representative value for the dimensionless inward flux. In other numerical
experiments, we use a range of values of v0 that correspond to a broad range of values of
the potential difference that drives the flow.
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Figure 2. The leaf shown in Figure 1 is oriented such that x = 0 corresponds to the tank-blade boundary
and x = 1 corresponds to the end of the leaf.
Note: In the base case, the widthw of the leaf is assumed to be constant.

4.1. Base case

We assume that the width of the leaf is constant along the length of the blade so that
g(x) ≡ 1 as illustrated in Figure 2.

In this case, the solution to the system (1) is given by

u(x) = cosh ax − v0
a
sinh ax. (14)

The value of a for which u′(1) = 0 satisfies the transcendental equation

a tanh a − v0 = 0. (15)

Since the flux at the boundary x = 0 is inward, the boundary condition u′(0) = −v0 has
v0 > 0, so there is a unique solution to Equation (15) satisfying a > 0 for all v0. Given v0,
the reference value of a for which u′(1) = 0 is quickly determined in practice by Newton’s
method.

To examine the convergence properties of the root-finding method within the hybrid
numerical scheme, we fix the grid sizeN and define the error between the desired reference
value ofa and the kth approximationdeterminedby the root-findingmethod as ek = a−ak.
By definition, a pth order root-finding method satisfies

|ek| = C|ek−1|p, (16)

where the constantC describes the rate of convergence. Therefore, for a pth order method,
the ratio |ek|/|ek−1|p should approach a constant as k gets large, which reveals the order of
the method.

In particular, the root-finding method we use within the hybrid numerical method is
the secant method, which is well-known to be an order φ method, where φ = 1+√

5
2 is

the golden ratio. The data in Table 2 show that the secant method employed within the
hybrid numerical scheme indeed converges with order φ where C ≈ .9 is the rate of
convergence. We note that rounding error affects the computation of |ek|/|ek−1|φ when
k = 9, leading to the seemingly inconsistent value shown in the final ratio. These data are
obtained using a fourth-order Runge–Kutta method on a grid with N = 640 and the flux
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Table 2. The data show that the secant method, operating within the hybrid numerical scheme in the
base case, converges with order φ, as expected.

k |ek | |ek |/|ek−1|φ
0 6.520e–01
1 4.646e–01 .9282
2 4.770e–01 1.6488
3 1.773e–01 .5875
4 6.253e–02 1.0270
5 1.029e–02 .9131
6 5.531e–04 .9089
7 4.777e–06 .8900
8 2.226e–09 .9053
9 1.155e–14 1.1548

condition u′(0) = −.8. Since the convergence of the root-finding method depends on the
random initial guesses, this behavior is often difficult to illustrate.

In order to examine the convergence properties of the one-step method, we make use
of the elementary solution (14). If the one-step method is an nth order method (i.e. the
local truncation error is O (

hn
)
as h → 0), then we expect the approximate solution

vk,N corresponding to guess ak to satisfy vk,N (xj) = u(xj, ak) + O (
hn

)
. We note that

the structure of the system (1) ensures that oscillations are impossible. Since u′′ ≥ 0
and u′(0) < 0, the additional constraint on the parameter a (namely, identify a such
that u′(1) = 0) guarantees that u is a monotonically decreasing function of x. Since the
approximate solution is determined by a one-step method, the error in the approximate
solution at x = 1 is the largest error on the interval 0 ≤ x ≤ 1.

Suppose that the root-finding method (as described in Section 3) converges to a stated
tolerance in K steps. LetUN := vK ,N represent the approximate solution to the system (1)
using the parameter aK andN grid points. IfUN is obtained through an nth order one-step
method, then we expect that EN , the difference between the approximate solution and the
elementary solution evaluated at x = 1, will have the property that

EN = UN (1) − u(1) = O (
hn

)
. (17)

The data in Table 3 show the results of the two-level refinement study designed to illustrate
nth order convergence of three separate one-stepmethods. The refinement study compares
the error of the numerical approximation usingN grid points to the error of the numerical
approximation using 2N grid points. When using an nth order one-step method, the ratio
of absolute values of successive errors given by RN satisfies

RN = |EN |
|E2N | = O (

hn
)

O (
(h/2)n

) = O (
2n

)
(18)

Therefore, the base-two logarithm of the ratio of absolute values of successive errors,
applied to annth ordermethod should reveal the order of themethod, namely log2 RN = n.

To examine convergence properties of the one-step portion of the hybrid numerical
scheme, we use three different one-step methods. Euler’s method is a first order method,
while the two-point Runge–Kutta (RK2) and four-point Runge–Kutta (RK4) methods
are second order and fourth order, respectively. The data in Table 3 under the column
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Table 3. The results of the two-level refinement test show that the various one-step methods, operating
within the hybrid numerical scheme, converge to the exact solution of the differential equation as
expected in the base case.

Method

Euler RK2 RK4a

N |EN | log2 RN |EN | log2 RN |EN | log2 RN

10 3.401e–02 1.0075 6.791e–04 2.1040 3.669e–07 4.1126
20 1.692e–02 1.0033 1.580e–04 2.0535 2.121e–08 4.0587
40 8.440e–03 1.0016 3.805e–05 2.0272 1.273e–09 4.0300
80 4.215e–03 1.0008 9.336e–06 2.0137 7.791e–11 4.0153
160 2.107e–03 1.0004 2.312e–06 2.0069 4.818e–12 4.0065
320 1.053e–03 1.0002 5.753e–07 2.0034 2.998e–13 4.0150
640 5.264e–04 1.0001 1.435e–07 2.0017 1.854e–14 3.2962
1280 2.632e–04 1.0000 3.582e–08 2.0009 1.887e–15
2560 1.316e–04 1.0000 8.951e–09 2.0004
5120 6.580e–05 1.0000 2.237e–09 2.0002
10240 3.290e–05 1.0000 5.592e–10 2.0001
20480 1.645e–05 1.398e–10
aThe RK4 method is near machine precision at N = 2560, which makes further refinements in the two-level approach
inaccurate.

heading log2 RN illustrate first, second, and fourth order methods, respectively. Although
the behavior shown in Table 3 is for the flux condition u′(0) = −.8, this behavior is
representative of the hybrid numerical method for a wide range of v0.

4.2. Intermediate case

An immediate constitutive form for the function modeling the geometry of the leaf in the
model system (1) is g(x) = 1 − x. This geometry, depicted in Figure 3, models the width
of the leaf as a linearly decreasing function of the length along the blade, with zero width
at the tip of the blade. In this case, the elementary solution to the model system (1) can be
written as the linear combination

u(x) = c1Ai[α(1 − x)] + c2Bi[α(1 − x)], (19)

where Ai and Bi are Airy functions of the first and second kind, and the parameter α

satisfies α3 = a2. The Wronskian of the Airy functions is equal to 1/π , so the constants
that satisfy the boundary conditions at x = 0 are

c1 = π

α
[αBi′(α) − v0Bi(α)], (20)

c2 = −π

α
[αAi′(α) − v0Ai(α)]. (21)

To satisfy the no-flux condition at x = 1, we choose the parameter α to satisfy

α[Ai′(0)Bi′(α) − Ai′(α)Bi′(0)] − v0[Ai′(0)Bi(α) − Ai(α)Bi′(0)] = 0. (22)

In practice, a reference value for α (equivalently, for a) is determined quickly by Newton’s
method.
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Figure 3. The leaf shown in Figure 1 is oriented such that x = 0 corresponds to the tank-blade boundary
and x = 1 corresponds to the end of the leaf.
Notes: In the intermediate case, the function g(x) = 1 − x models the width of the leaf so that it is w at the tank-blade
boundary (x = 0) and zero at the tip of the leaf (x = 1).

Table 4. The data show that the secant method, operating within the hybrid numerical scheme in the
intermediate case, converges with order φ, as expected.

k |ek | |ek |/|ek−1|φ
0 1.171e+00
1 5.471e–01 .4240
2 7.915e–01 2.0998
3 2.153e–01 .3143
4 7.928e–02 .9513
5 1.025e–02 .6193
6 4.554e–04 .7536
7 2.558e–06 .6527
8 6.401e–10 .7154
9 1.554e–15 1.1678

Convergence results similar to that found in Section 4.1 are shown in Tables 4 and 5.
Specifically, Table 4 demonstrates that the secant method, operating within the two-state
hybrid method, converges with order φ where C ≈ .7 is the rate of convergence. Again,
we see that some rounding error exists in the computation of |ek|/|ek−1|φ when k = 9,
which affects the final ratio in the table. Table 5 shows the results of a two-level refinement
study applied to the algorithm for u′(0) = −.8. The data shown in the columns of Table 5
under the heading log2 RN illustrate first, second, and fourth order convergence of the
Euler, RK2, and RK4 methods, respectively.

4.3. General case

To better mimic the shape of the leaf with a nonconstant function g , we obtain numerical
values for the function g by reading ten data points intoWebPlotDigitizer (Rohatgi, 2017),
as shown in Figure 4, and interpolating these points with a cubic spline, which gives a
numerical representation for the function g . In this case, the elementary solution to the
system (1) is no longer available, so a reference value of the parameter a that satisfies the
condition u′(1) = 0 cannot be determined. Therefore examination of the convergence
properties of the root-finding method is not possible.

Nevertheless, examination of the convergence properties of the one-stepmethod can be
achieved by using approximate solutions of the (1) in a three-level refinement study.When



108 F. H. LYNCH ET AL.

Table 5. The results of the two-level refinement test show that the various one-step methods, operating
within the hybrid numerical scheme, converge to the exact solution of the differential equation as
expected in the intermediate case.

Method

Euler RK2 RK4a

N |EN | log2 RN |EN | log2 RN |EN | log2 RN

10 4.695e–02 .9989 3.006e–03 2.0277 1.758e–06 3.9945
20 2.349e–02 .9990 7.372e–04 2.0139 1.103e–07 3.9982
40 1.176e–02 .9994 1.825e–04 2.0070 6.903e–09 3.9993
80 5.880e–03 .9997 4.541e–05 2.0035 4.316e–10 3.9997
160 2.941e–03 .9998 1.133e–05 2.0017 2.698e–11 4.0000
320 1.471e–03 .9999 2.828e–06 2.0009 1.686e–12 3.9854
640 7.354e–04 1.0000 7.066e–07 2.0004 1.065e–13
1280 3.677e–04 1.0000 1.766e–07 2.0002
2560 1.838e–04 1.0000 4.414e–08 2.0001
5120 9.192e–05 1.0000 1.103e–08 2.0001
10240 4.596e–05 1.0000 2.759e–09 2.0000
20480 2.298e–05 6.896e–10
aThe RK4 method is near machine precision at N = 1280, which makes further refinements in the two-level approach
inaccurate.

x

1

0

Figure 4. In order to determine a function g that represents the scaled width of the leaf as a function of
length along the leaf, data points representing the boundary are captured (left) by WebPlotDigitizer.
Note: These points are fit with a cubic spline (right) and used in the numerical approximation of the solution of the model
system.

the value of the parameter a (again, determined by the root-finding method described in
Section 3) has converged to a given tolerance in K iterations, we again define UN := vK ,N
as the approximate solution using that parameter value andN grid points. For an nth order
method, we expect the difference DN between the approximate solution using N and 2N
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Table 6. The results of the three-level refinement test show that the various one-stepmethods, operating
within the hybrid numerical scheme, converge to the exact solution of the differential equation as
expected in the general case.

Method

Euler RK2 RK4a

N |DN | log2 RN |DN | log2 RN |DN | log2 RN

10 2.424e–02 .9611 2.596e–03 2.0246 4.271e–06 4.0155
20 1.245e–02 .9796 6.380e–04 2.0122 2.641e–07 4.0011
40 6.315e–03 .9896 1.582e–04 2.0061 1.649e–08 3.9979
80 3.180e–03 .9947 3.938e–05 2.0030 1.032e–09 3.9919
160 1.596e–03 .9974 9.823e–06 2.0015 6.488e–11 3.9435
320 7.995e–04 .9987 2.453e–06 2.0008 4.217e–12
640 4.001e–04 .9993 6.130e–07 2.0004
1280 2.001e–04 .9997 1.532e–07 2.0002
2560 1.001e–04 .9998 3.830e–08 2.0001
5120 5.005e–05 .9999 9.573e–09 2.0000
10240 2.503e–05 1.0000 2.393e–09 2.0000
20480 1.251e–05 5.983e–10
aThe RK4 method is near machine precision at N = 1280, which makes further refinements in the three-level approach
inaccurate.

grid points to satisfy

DN = UN (1) − U2N (1) = [UN (1) − u(1)] − [U2N (1) − u(1)] = O (
hn

)
. (23)

In this case, when RN represents the ratio of absolute values of successive differences, we
expect it to satisfy

RN = |DN |
|D2N | = |UN (1) − U2N (1)|

U2N (1) − U4N (1)| = O (
hn

)

O (
(h/2)n

) = O (
2n

)
. (24)

Again, the base-two logarithm of RN reveals the order of the method, log2 RN = n.
The data in Table 6 show the results of the three-level refinement test designed to

illustrate convergence of the various one-step methods in the general case incorporating
the geometry of the leaf. Similar to the previous refinement test, the data in Table 6 under
the column heading log2 RN illustrate first, second, and fourth ordermethods, respectively.

Once again, these data are obtained for the flux condition given by u′(0) = −.8.
Nevertheless, the method exhibits the same behavior for a robust range of values of the
parameter v0. This robust behavior is illustrated in in Figure 5, which shows the base-two
logarithm of RN once the method has converged against a variety of flux conditions, v0.

5. Discussion

The numerical method discussed in Sections 3 and 4 was motivated by the observation
that the width of the leaf of G. lingulata is a nonconstant function of the length along the
blade, suggesting a nonconstant function g in the system (1).When g(x) ≡ 1 (the so-called
base case), the solution of the system (1) can be found using elementary methods so that
a reference value of the parameter a that satisfies the additional condition u′(1) = 0 can
be determined by a basic root-finding method. As such, with a nonconstant g in mind,
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Figure 5. The data show the results of the three-level refinement test for a robust range of v0, indicating
the expected convergence of the various one-step methods.
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Figure 6. The graph shows numerical approximations to the scaled potential u as a function of the scaled
spatial variable x where x = 0 represents the tank-blade boundary and x = 1 represents the tip of the
leaf.
Notes: For the same value of the flux condition v0, the scaled potential in the model which considers the geometry of
the leaf is higher than the so-called base case, with the case where g is linearly decreasing along the length of the blade
showing the largest difference.
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Figure 7. The graph shows the ratio of the radial conductance obtained from themodel which considers
the geometry of the leaf to the radial conductance obtained in the so-called base case.
Note: For a robust range of the flux condition v0, that ratio is greater than one.

the base case gave proof of concept for the numerical method used in the more general
case. In an intermediate case where g is a linearly decreasing function of the length along
the blade, the solution of the system (1) can be found in terms of Airy functions. Once
again, a reference value of the parameter a that satisfies the additional condition u′(1) = 0
can be determined by a basic root-finding method. In a more general case, the function
g representing the geometry of the leaf is determined numerically through a cubic spline,
so those elementary solutions are no longer available. Nevertheless, the one-step portion
of the hybrid numerical method converged as expected, yielding approximations to the
desired solution u and reference value a, which achieves the stated goal of decomposing
overall plant conductance into components in the axial and radial directions.

In the context of the model plant, G. lingulata, using the cubic spline geometry yields a
value of the scaled water potential u that is between the value found by the base geometry
and the value found by the intermediate geometry. Figure 6 illustrates this behavior for
the parameter v0 = .8, which is representative of a robust range of that parameter. Since
v0 is a proxy for axial resistance (see Equation (9)), an increase in the leaf water potential
for the same flux condition v0 in the cubic spline case gives rise to a greater potential
difference between the xylem and the mesophyll, suggesting that the radial conductance
may be higher in the cubic spline case than the base case.

Indeed, in comparing the value of the parameter a found in the base case to the value in
the general case, we see agreement with this analysis. Since a2 is inversely proportional to
radial resistance (see Equation (10)), it serves as a proxy for radial conductance. Figure 7
illustrates radial conductance, as determined by the general case and the base case, showing
that the ratio of the value found in the general case to the base case is greater than one
for a robust range of flux condition v0. This ratio, which is valid for a large range of v0,
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illustrates that accounting for the leaf geometry increases the component of the total leaf
conductance in the radial direction by as much as 25%.
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