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ABSTRACT

A basic model highlighting the counter-regulatory roles of insulin and
glucagon is proposed to start a series of models designed to explore
continuous rein control and major aspects of glucose metabolism.
The three-by-three dynamical system uses black boxes to model unit
processes such as the dependencies of insulin secretion rate and
the glucagon secretion rate on blood glucose concentration. The
dependency of basal conditions on insulin resistance and any defects
in insulin or glucagon secretion are shown. Since over-production of
hepatic glucose exists early in the history of diabetes, it is important
that mathematical models should account for this effect by inclusion
of the dynamical equation governing glucagon concentration as this
illustrativemodel does. All solutions are consistent with gross features
of the metabolic process. The model is examined for explicit and
implicit assumptions affecting its validity which determines that the
first extension to the model should account for glucose storage and
the release of stored glucose.
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1. Introduction

The healthy state of the human body depends on tightly regulated glucose metabolism.
Two important counter-regulatory hormones of glucose metabolism include insulin and
glucagon. In a healthy individual, the glucose regulatory systemmanages the body’s blood
glucose concentration (typically between 70 and 120 mg/dl) despite input from eating and
additional use of internal glucose stores. Defects in this regulatory system, if left untreated
or poorly treated, lead to a life-threatening disease state (Type I diabetes) or may lead
to long-term complications, ill-health and possible early death (impaired fasting glucose
tolerance and insulin resistance leading to Type II diabetes).

In order to better understand a complex biological system such as glucose metabolism,
many researchers have relied upon mathematical modelling. Beginning with a model
using ordinary differential equations by Bolie (1961), mathematicians and scientists have
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been developing models for over the past five decades. Other early attempts to describe
glucose regulation appeared in several models during the 1960s and 1970s (Ackerman,
Gatewood, Rosevear, &Molnar, 1965; Della et al., 1970; Serge et al., 1973; Srinivasan et al.,
1970). In 1979, Bergman, Ider, Bowden, and Cobelli published one of the most influential
models of glucose regulation – commonly known as the ‘minimal model’ – highlighting
glucose disappearance following the intravenous glucose tolerance test (IVGTT). The
minimal model incorporates two ordinary differential equations to govern the plasma
glucose concentration,G, and the concentration in a compartment remote from theplasma,
X, and are given as

dG
dt

= (p1 − X)G + p4
dX
dt

= p2X + p3I(t).

I(t) represents the measured plasma insulin and the pi are constants determined by
matching the model’s solution to the observed glucose profile. Using the measured basal
glucose value as an essential parameter in the system, the model provided a good fit to the
short-term data from the IVGTT.

The following year saw improvements in incorporating insulin’s role in models of
glucose metabolism (Toffolo et al., 1980) and further testing and validation of the minimal
model by Bergman, Phillips, andCobelli (1981) followed shortly thereafter. Several reviews
havebeenpublished featuring advancementsmade from theminimalmodel (Ajmera, Swat,
Laibe, Le Novère, & Chelliah, 2013; Bergman, 2002; Bergman, Finegood, & Ader, 1985;
Boutayeb & Chetouani, 2006). These reviews provide a comprehensive list of articles for
interested readers which present adaptations and enhancements to the minimal model.
The usefulness of the minimal model approach in physiological research is in providing
mathematical models with the fewest equations and parameters necessary to provide
solution profiles which fit the observed short-term profiles of glucose and insulin in
a variety of experiments. The models are often tuned to each different experiment. By
definition, these models are too simplistic to capture long-term phenomena.

In contrast to the minimal model approach, comprehensive mathematical models have
been developed to explain more complex long-term behaviour. For example, two distinct
period ranges have been observed for the oscillations in insulin secretion: rapid, 10–15min,
and ultradian, 100–150min. One of the earliest models addressing the biphasic nature of
insulin secretion was developed by Sturis et al. (1991). Their model incorporated a system
of non-linear ordinary differential equations to simulate the ultradian oscillations that
occur in the glucose-insulin feedback system:

dx
dt

= f1(z)− E
(

x
V1

− y
V2

)
− x

t1
,

dy
dt

= E
(
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V1

− y
V2

)
− y

t2
,

dz
dt

= f5(h3)+ I − f2(z)− f3(z)f4(y),

dh1
dt

= 3(x − h1)
t3

,
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dh2
dt

= 3(h1 − h2)
t3

,

dh3
dt

= 3(h2 − h3)
t3

where x is the amount plasma insulin, y is the amount of remote insulin, z is the amount of
glucose, E is a constant rate of insulin exchange between compartments,V1,V2, andV3 are
volumes, f1(z) represents insulin secretion, f2(z) represents insulin-independent glucose
utilization, while f3(z) and f4(y) are insulin-dependent utilizations, f5(h3) represents
glucose production, h1, h2, and h3 are variables representing delay processes between
plasma insulin and glucose production, I is the exogenous glucose delivery rate, t1 and t2
are time constants related to insulin degradation, and t3 is the delay time between plasma
insulin and glucose production. It is not clearly understood fromwhere the oscillations are
generated. The authors identified a difference between simulations and experimental data.
They suggest that glucose plays an important role in the generation of insulin oscillations
and propose that abnormal ultradian oscillations may be due to glucose intolerance.

Despite defects in insulin secretion, Leahy (1990) reports that normoglycemia may be
maintained in individuals with type 2 diabetes, at the cost of elevated insulin levels. Diet,
exercise, and drug intervention are the major treatments used to combat these defects.
Some individuals with impaired fasting glucose tolerance are able to restore an almost
normal blood glucose control through diet and exercise alone (Clark, 1997; Goldhaber-
Fiebert et al., 2003; Horton, 1988). Physical exercise has been identified as both a catalyst
for increasing glucose uptake by the muscles and impacting insulin sensitivity (Borghouts
& Keizer, 2000; Goodyear & Kahn, 1998). Derouich and Boutayeb (2002) proposed an
adaptation to Bergman’s minimal model investigating the effects of physical activity
on the dynamics of glucose and insulin levels but admit that the data used to derive
parameters was based upon studies from healthy subjects. Roy and Parker (2007) explored
effects of both short- and long-term exercise on plasma glucose and insulin levels during
the postexercise recovery period. Numerical analysis of a model using two differential
equations with a delay element and inclusive external periodic functions defining diet and
physical exercise demonstrated stable periodic solutions exist for glycaemia and insulin
dynamics in both normal and diabetic cases (Švitra et al., 2010). Typically, Type II diabetics
require pharmacological intervention.

The importance of understanding themechanisms of glucosemetabolism is obvious for
individuals in ill health; however, themechanisms of glucosemetabolismunderlie a current
debate that is of importance for non-diabetics: Is a severely restricted low-carbohydrate
diet appropriate for humans? An evaluation by Sylvetsky et al. (2016) concluded that
higher intake of carbohydrate from vegetables and fibre and lower intake of sweets and
soda was associated with lower diabetes risk factors. Proponents of such diets note the
sharp rise in insulin concentrations following a high-carbohydrate meal and insulin’s
promotion of energy storage for the eventual weight gain of an individual. To monitor
such intakes, dieters following a low-carbohydrate lifestyle utilize the glycemic index of
foods in order to choose a diet that prevents large after-meal increases in the blood glucose
concentration (Brand-Miller, 2003). The glycemic index compares the change in blood
glucose concentration in an individual after the consumption of a standard quantity of
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carbohydrate to the change in blood glucose concentration in an individual after the
consumption of a same quantity of pure glucose.

Because foods with low glycemic index do not quickly raise the blood sugar to high
levels, the insulin release in a healthy individual is less than the corresponding insulin
release for the same quantity of food with a high glycemic index. However, Sheard et al.
(2004) conclude that restricting total carbohydrate consumption to less than 130 g/day is
not recommended as the brain and central nervous system require glucose as an energy
source. In addition, they conclude that if an individual is considering only the total amount
of carbohydrates consumed, then the glycemic index is a useful tool for blood glucose
regulation; but, the individual needs to also consider the type of carbohydrate that is
consumed.

Equally important to how the body responds to the intake of food is the way the body
maintains glucose levels during the fasting state through release of stores in the liver to
compensate for continued metabolism by the central nervous system and muscle tissue.
Tirosh et al. (2005) report in a large study that young men with fasting plasma glucose
levels in the high-normal range (95–99 dl/mg) are at least three times more likely to
develop Type II diabetes than those with fasting plasma glucose levels in the low-normal
range (less than 81 dl/mg). The results suggest that over-production of hepatic glucose
exists early in the history of diabetes and is exaggerated by obesity. Upon examining this
limited introduction to glucose metabolism, three questions are identifiable with answers
illustratable through use of mathematical simulation: (a) How does total insulin release
correspond to the glycemic index? (b)What relevance does the glycemic index have for blood
sugar control in individuals with impaired fasting glucose tolerance or Type II diabetes? and
(c)What does the basal blood glucose concentration indicate about the individual’s chance
to develop Type II diabetes?

The ultimate goal of the investigation is a mathematical model capable of qualitatively
describing the long-termmetabolism within the body. Proposed in this article is an exten-
sible mathematical model designed to mimic the basic glucose-insulin-glucagon counter-
regulatory system. At a minimum, the model should eventually include the following
effects:

(a) Base Effects
• increased insulin secretion with increasing plasma-glucose concentration,
• increased glucagon secretion with decreasing plasma-glucose concentration,
• maintenance of near-constant concentrations during the postabsorptive period,

(b) Glycogen and Substrate Effects
• dependence of metabolism on stores of glycogen in the liver,
• dependence of metabolism on stores of gluconeogenetic substrates,
• dependence of metabolism on stores of glycogen in the muscle and other tissue,
• production of gluconeogenetic substrates by metabolism of glucose and glyco-
gen in the muscle and other tissue (especially during exercise),

(c) Adipose Tissue Effects
• conversion of excess glucose to fat in adipose tissue,
• conversion of fat to glucose,

and
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(d) Secretion and Compartment Movements
• effects of changes in β-cell mass over time,
• details of phasic secretion of insulin accounting for a pool of rapidly releasable
insulin,

• movement of insulin through the various compartments of the body,
• movement of glucose through the various compartments of the body.

This report presents a model accounting for the base effects enumerated above, which
represents the simplest possible starting point for a model describing the long-term
dynamics of glucose regulation. Future reports will present progressive enhancements
of the model. By proceeding in this manner, the effect of each model component is
understood.

The next section will highlight a related model which served as motivation for the
proposed model. Section 3 details the construction of the proposed model and necessary
fundamentals. Section 4 focuses on the fundamental parameters for the model presented.
Sections 5 and 6 will, respectively, illustrate how basal conditions and other set points
associated with the model are derived from physiological parameters, and briefly discuss
future steps to be taken by the authors.

2. Model motivation

Themathematicalmodelling of glucosemetabolismhas existed for nearly five decades. The
development of ‘minimal models,’ including those relating insulin and glucose (Bergman,
Ider, Bowden, & Cobelli, 1979; Matthews et al., 1985), are useful for describing basic inter-
actions within complex biological systems. The proposed basic glucose-insulin-glucagon
model updates the illustrative model of Saunders et al. (1998) to more accurately model
the regulatory process. They introduced the principal of rein control in which regulation
of blood glucose is directly effected by both insulin and glucagon. The model they propose
tracks changes in glucose (G), glucagon (A), and insulin (B) and is given as

dG
dt

= I + α(A,G)− β(B,G)− γ (R,G),

dA
dt

= A(φ(G)h1(A,B)− D(A)),

dB
dt

= B(ψ(G)h2(A,B)− D(B)).

The terms α(A,G) and β(B,G) describe the effects of glucagon and insulin on the blood
glucose concentration, respectively. Uptake of glucose by muscles and other tissues is
represented by γ (R,G), where R is an externally determined quantity describing the
the activity of the organism. The dependence of the insulin secretion rate on the blood
glucose concentration is modelled by φ(G) and is a decreasing function ofG. The function
ψ(G) represents the dependence of the glucagon secretion rate on the blood glucose
concentration and is an increasing function of G. The two functions hi(A,B) (i = 1, 2)
represent the mutual and self inhibitions of the secretion rates on the insulin and glucagon
levels. The model is best used for illustrative purposes, but not necessarily for simulations.
This illustrative model was the first model proposed where basal concentrations were
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treated as derivable quantities as opposed to explicitly defined fundamental parameters
which are just assumed to exist.

The model proposed in this document is a three-by-three dynamical system with the
following features: (a) the plasma (or extra-cellular fluid) represents a single pool in which
glucose, insulin and glucagon enter and leave at prescribed rates; (b) increasing insulin
concentration increases the rate at which glucose leaves the plasma, i.e. insulin promotes
glucose uptake; (c) increasing glucagon concentration increases the rate at which glucose
enters the plasma, i.e. glucagon promotes hepatic glucose production; (d) insulin secretion
increases with increasing glucose concentration; (e) glucagon secretion increases with
decreasing glucose concentration, and (f) insulin and glucagon disappear from the plasma
independently of their action on the blood glucose level. Each unit process, such as the
insulin secretion rate, depends on many variables and results from complex chemical
processes. In order to model glucose metabolism using the fewest possible variables, each
unit process is modelled using a ‘black box’ in which the output is a prescribed function
of the input. The black-box functions chosen by Saunders et al. (1998) illustrate that
a counter-regulatory glucose-insulin-glucagon system returns blood glucose to constant
levels even after introducing large deviations (in either direction) of the blood glucose
level. The authors demonstrate that under certain assumptions involving mutual and self
inhibitions of the secretion of the counter-regulatory hormones, the glucose set point of
the model is independent of the glucose input or glucose usage and the effectiveness of
the hormones. The glucose set point is established by the ratio of rates of production and
the rates of removal of the hormones from the blood. The authors use the language of
engineering control to assign the name integral rein control to their proposed mechanism.
To describe the control mechanism in the illustrative model of Saunders et al. (1998) and
the model proposed in this study, we coin the term continuous rein control. Unlike the
illustrative model of Saunders, Koeslag, andWessels, the glucose set point of our proposed
extensible model depends on both the insulin-dependent and insulin-independent glucose
usage rates. We also do not require the model to demonstrate near zero steady-state error
a priori.

3. Model fundamentals

Perhaps the most readily identifiable phenomena of the glucose regulatory system are the
healthy body’s ability to return the blood glucose concentration to a constant level after
large inputs associated with eating and the body’s ability to maintain the concentration
despite large usage rates associated with exercise. The term basal state refers to the near-
constant levels of blood glucose, insulin, and glucagon that the body demonstrates for an
extended period after absorption of a meal. Comparing parameter values derived by fitting
nonlinear models to data gathered from individuals with different basal states might lead
to misinterpretations of the processes occurring in each individual unless the model can
determine why that individual has that particular basal state.

Non-zero basal levels of insulin and glucagon in the presence of non-zero disappearance
rates clearly indicate that the secretion of these hormones is a continuous process with
hormone secretion determined by the absolute blood glucose concentration and not
determined by the difference of the concentration from basal values. Dependencies of basal
values on other parameters (for example, the insulin sensitivity and the glucose threshold
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for glucagon secretion) provide important clues regarding the health of the individual.
A complete model must be capable of distinguishing conditions leading to raised fasting
plasma-glucose levels.

4. Model construction

In reviewing the literature on mathematical models of glucose regulation, it becomes
obvious that no mathematical model except Saunders et al. (1998) has proposed that the
basal glucose and insulin levels are derivable from themodel itself. If onewants to construct
a model of long-term glucose regulation, this key phenomena needs to be resolved and
understood. We propose a starting mathematical model with the following features:

Exactly two hormones control glucose metabolism: insulin and glucagon. These hormones
are catalytic in reactions involving blood glucose. That is, glucose uptake into the cells of
the body occurs at a faster rate in the presence of insulin, but the insulin is not consumed
in this process. The release of glucose into the blood stream occurs at a faster rate in the
presence of glucagon, but the glucagon is not consumed in this reaction. Both insulin and
glucagon disappear through a natural decay process independent of how the hormone is used
to regulate the blood glucose.

Specific mathematical forms for the unit processes and any parameter values must be
chosen. Our choice of unit processes are more realistic than the ones chosen by Saunders
et al. (1998). Once the unit processes are established, different parameter values represent
different individuals or states of health in a single individual. By changing the functional
dependence of the rates of insulin and glucagon secretion or the functional dependence
of the rates of glucose uptake and production, one describes a more complex model
of hormone secretion and glucose regulation. The model is also designed to evolve by
extension – such as adding a variable to model liver glycogen stores or accounting for both
the fast and slow release of insulin. At each stage, more complex long-term behaviour is
explored.

We start with a model designed to mimic the basic glucose-insulin-glucagon counter-
regulatory system. The initial three-by-three dynamical system is

dB
dt

= − Ṁ(B)+ ḢP(G,B, I)− ḢU (I ,B,G)− ṖU (I ,B)

− Ė(t)+ Ḟ(t)+ Ḃex(t), (1)
dI
dt

= − δI I + Q̇I(B, I ,G)+ İex(t), (2)

dG
dt

= − δGG + Q̇G(B, I ,G)+ Ġex(t), (3)

where B (the blood glucose concentration in mg/dl), I (the insulin concentration in
µU/ml), and G (the glucagon concentration in pg/ml) are the unknowns of the model.
A single pool of extracellular fluid (volume Vf ) is assumed, and the concentrations are
the total quantity divided by this volume – e.g. B = b/Vf . The exogenous input rates
per volume, Ḃex(t), İex(t), and Ġex(t), are prescribed during an experiment. The rates per
volume that glucose leaves or enters the blood owing to exercise or food, Ė(t) and Ḟ(t), are
also prescribed functions in the model. ḢP is the rate per volume that glucose enters the
blood owing to hepatic glucose production, ḢU is the rate per volume that glucose leaves
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the blood owing to hepatic glucose uptake, ṖU is the rate per volume of insulin-dependent
peripheral glucose uptake, and Ṁ = ṁ/Vf is the rate per volume of insulin-independent
glucose uptake. The secretion rates per volume of insulin and glucagon, Q̇I and Q̇G, are
predominantly functions of the blood glucose concentration, but depend on the insulin
concentration and glucagon concentration if self and mutual inhibitions of secretion exist.
The ordering of the arguments of each function implies the major dependencies of each
term; for example, Q̇G(B, I ,G) implies that the glucagon secretion rate ismostly determined
by the blood glucose concentration with some dependency on the insulin concentration
and even less dependency on the glucagon concentration. The relative importance of these
dependencies is still open to debate.

During this early stage of model development, we choose to keep the terms modeling
the uptake and production of glucose as simple as possible, and we concentrate on models
of insulin and glucagon secretion. Furthermore, we keep the models of secretion simple
by considering only their dependence on the blood glucose concentration. Future reports
will extend themodel by more accurately modelling the uptake and production terms. The
initial model is illustrative only and is not appropriate for fitting of data. The ability of the
model’s solution to fit experimental data only proves the solution’s generality but does not
prove the validity of the interpretation.

5. The basic model

In this first basic model under consideration, the secretion of the two hormones, insulin
and glucagon, is dependent only on the blood glucose concentration. The rate of insulin
secretion depends only on the blood glucose concentration with increasing blood glucose
concentration leading to an increased rate of secretion; however, because it is plausible
that the pancreas has a fixed capacity, the model assumes the existence of a maximum rate
of insulin secretion regardless of the blood glucose level. No attempt is made to account
for the two-phase insulin release that occurs during the intravenous glucose-tolerance test.
Although inappropriate for amodel of a complex organism, a one-compartmentmodel for
insulin is assumed, and the rate of glucose utilization in the body is assumed to be directly
proportional to both the blood glucose concentration and the insulin concentration in
this compartment. Under these assumptions, insulin sensitivity is a constant. The build
up of insulin in the system is prevented by assuming a half-life for insulin, i.e. the level of
insulin decays at a rate proportional to the amount of insulin present. The incorporation
of insulin clearance proportional to blood insulin levels appears in several models (Berzins
et al., 1986; Cobelli & Pacini, 1988; Topp et al., 2000).

Including the effects of the counter-regulatory hormone glucagon allows for rein control
of the blood glucose level. In this simple model, secretion of glucagon depends only on
the blood glucose concentration with decreasing blood glucose concentration leading to
increased secretion of glucagon. Similar to the insulin model, a maximum rate of glucagon
secretion is assumed to exist, and the build up of glucagon in the system is prevented
by assuming that the level of glucagon decays at a rate proportional to the amount of
glucagon present. Furthermore, the rate of hepatic glucose production is assumed to be
directly proportional to the glucagon concentration. The processes of glycogenolysis and
gluconeogenesis are combined in this simple term and will be addressed more completely
in future extensions of this model.
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The model considered in this paper is a special case of system (1)–(3) in three variables:
the blood glucose concentration B, the glucagon concentration G, and the insulin con-
centration I . The hepatic production rate is directly proportional to the concentration of
glucagon in the blood. The hepatic glucose uptake and the insulin-dependent peripheral
uptake are combined into a single term such that the uptake rate is directly proportional to
the product of the insulin concentration and the blood glucose concentration. The insulin-
independent uptake is assumed to proceed at a constant rate. The central nervous system
accounts for the majority of this insulin-independent uptake. The release of glucagon and
the release of insulin into the blood are dependent on the concentration of glucose in the
blood, and maximum release rates of these hormones are assumed to exist. The maximum
release rate of glucagon occurs at zero blood glucose concentration, and the maximum
release rate of insulin occurs for very large blood glucose concentration. The model is

dB
dt

= Ḟ(t)− Ė(t)− Ṁ0 + αG − βB I , (4)

dI
dt

= −δI I + Qmax
I

{
1
2

+ 1
2
tanh

(
B − BI

rI

)}
, (5)

dG
dt

= −δGG + Qmax
G

{
1
2

+ 1
2
tanh

(
BG − B

rG

)}
. (6)

Initially, diet and exercise are included as first-order effects. Food is assumed to be a direct
source of blood glucose and the rate food contributes to the glucose supply is modelled
by Ḟ(t). In contrast, exercise is assumed to be a direct utilization of blood glucose and the
rate exercise diminishes the glucose supply is modelled by Ė(t). Eleven parameters relate
to the internal workings of an individual. Ṁ0 is the (constant) insulin-independent rate
per volume of glucose uptake. The parameters δI and δG are related to the half-lives of the
hormones, and account for the disappearance of insulin and glucagon respectively from
the blood. The constant insulin sensitivity defined as ∂

∂I

(
dB
dt

)
/B is modelled by β , and

α represents the glucagon’s effectiveness at releasing the glycogen stores and converting
proteins to glucose. The development of insulin resistance is reflected in a lowering of
the value of β , while the size of the glycogen stores and availability of substrates for
gluconeogenesis affect the value of α. The constantsQmax

I , BI , and rI relate to the secretion
of insulin, and their values also reflect the health of the individual.Damage to the pancreatic
cells that secrete insulin lowers the value of Qmax

I (the maximum rate of insulin release)
or increases the values of BI and rI , i.e. changes the pancreatic response to the blood
glucose concentration. The constantsQmax

G , BG, and rG relate to the secretion of glucagon.
Although not obviously as affected by the health of the individual, variations in this latter
set of parameters might be responsible for the pre-diabetes condition of hyperinsulinemia
in response to a slightly elevated basal glucose level. The parameters BI and BG are often
referred to as ‘threshold values’ for insulin and glucagon secretion. With this terminology
comes the assumption that the secretion of these hormones is insignificant until the blood
glucose concentration reaches these threshold values; however, the basal level depends
on the continuous balance between the non-zero secretion of the hormones during the
basal state and the disappearance rates of the hormones. In the healthy individual, the
blood glucose concentration only passes the threshold values during severe hypoglycemia
or after significant glucose input such as provided by a carbohydrate meal.
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Figure 1. Three possible representations of insulin secretion, Q̇I(B, I,G), represented by Equations (7)–
(9).
Note: All curves generated using parameter values: Qmax

Ii
≈ 40.644, BIi = 115, and rIi = 15 (i = 1 . . . 3).

Each unit process, such as the insulin secretion rate, results from complex chemical
processes. In order to model glucose metabolism using the fewest possible variables,
the unit processes are modelled using ‘black boxes’ in which the outputs are prescribed
functions of the inputs. As an example, consider the choice for the secretion rate of insulin.
Following experimental observations, the dependency of the secretion rate on the blood
glucose concentration is modelled as a strictly increasing function. Logically, a maximum
rate of secretion at very large concentrations should exist, and themaximum secretion rate
should bemany times the normal basal secretion rate. Insulin secretion rates represented by
sigmoidal functions are present in works by Cobelli, Pacini, and Salvan (1980), Rudenski et
al. (1991), and Topp et al. (2000). Choosing a hyperbolic tangent tomodel insulin secretion
is a common and reasonable choice, but not without consequences. For example, consider
the three following functions as models of insulin secretion:

Q̇I(B, I ,G) = Qmax
I1

{
1
2

+ 1
2
tanh

(
B − BI1

rI1

)}
, (7)

Q̇I(B, I ,G) = Qmax
I2

{
1
2

+ 1
π
tan−1

(
B − BI2

rI2

)}
, (8)

Q̇I(B, I ,G) = Qmax
I3

1

1 + exp
(
−B−BI3

rI3

) , (9)

where in a healthy individual BI > Bbasal. Figure 1 illustrates three different models of in-
sulin secretion, represented by Equations (7)–(9), as functions of the glucose concentration
B.

If rI is half of the difference between BI and Bbasal, the maximum secretion rate is
approximately 55 times the basal secretion rate for functional form (7) but is less than nine
times the basal secretion rate for functional forms (8) and (9). Since the insulin secretion
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response in diabetics is different than the response in healthy individuals, discovering the
changes in metabolism as the parameters Qmax

I , BI , and rI change is necessary. Each of
the three functional forms (7)–(9) produce different results, and these differences help
determine which of the forms is most appropriate.

The other unit processes undergo similar scrutiny, but at this early stage of modelling,
perfection in describing each process is not sought. For most unit processes, choosing
reasonable functional forms and extensively investigating the consequences of parameter
variations is sufficient to discover qualitative trends.After this extensive analysis of the basic
model, new phenomena are added one at a time, and the resulting model is investigated
anew.

Having created the basic model, we must choose the values of the parameters and
then investigate the effects of the various choices. For some choices, the model’s solution
mimics the time history of the blood glucose concentration in a functioning individual,
whereas for other choices, themodel’s solutionmight predict impossibly low blood glucose
concentrations. We attempt to choose parameter values that keep the model’s solution
within the range of human levels. Ideally, once the model is fully formed, many parameter
values would be determined by fitting experimental data. We start with the following
(rounded) constant values and use these values throughout the remainder of this paper:

• δI = .14min−1 sets the half-life of insulin as a little less than five minutes,
• δG = .08min−1 sets the half-life of glucagon as a little more than eight minutes,
• Vf = 13 l = 130 dl is approximately the volume of the extracellular fluid in a 70 kg
individual,

• Ṁ0 = 100mgmin−1 is approximately 6 g h−1.

The other parameters vary in the course of the analysis; however, the analysis requires that
a set of parameters consistent with the metabolism of a healthy individual be chosen in
order to establish a baseline case. The effects of changing the parameter values from this
base state are then examined. An initial set of parameter values is chosen to mimic healthy
conditions for humans; however, no claim is made that any of the choices are the ‘correct’
choices. Also, it is not to be inferred that the particular values delineated below are the only
values leading to healthy conditions. In fact, one purpose of the analysis is to determine
the range of parameter values leading to a healthy individual. The baseline case parameters
chosen are as follows:

• B∗ = 90mg dl−1 is the basal blood glucose concentration.
• I∗ = 8µUml−1 is the basal insulin concentration.
• G∗ = 120 pgml−1 is the basal glucagon concentration.
• αG∗ −βLB∗I∗ = 170mgmin−1/Vf is approximately 10 g h−1/Vf and is equal to the
net hepatic production rate per volume during basal conditions.

• βMB∗I∗ = 70mgmin−1/Vf is approximately 4 g h−1/Vf and is the insulin-dependent
rate per volume of consumption of glucose external to the liver during basal condi-
tions.

• The average value of Ḟ(t) is Ḟ0 = 210mgmin−1/Vf corresponds to a total daily
carbohydrate intake equal to the Recommended Daily Allowance of 300 g .

The above assumes that the rate per volume of insulin-dependent glucose consumption
consists of two components: the conversion rate per volume of glucose to hepatic glycogen,
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βLBI , and the use rate per volume of glucose by themuscles (and other tissues) of the body,
βMBI . To keep the model simple, the liver insulin concentration is assumed to be the same
as the insulin concentration in the rest of the body. Thus, both effects are modeled using
a single term, βBI where β = βL + βM . Unfortunately, the decomposition of the insulin-
dependent glucose consumption into two components adds an additional parameter to
the system. At this level of modelling, choosing an accurate relationship between βL and
βM is not possible since the apportionment of glucose between the compartments changes
continuously and is dependent upon the state of glycogen storage in the liver and muscle.
For simplicity, the relationship βM = 2βL is chosen to hold throughout this analysis.Many
of the other parameter values in the model are chosen in the next section where the basal
conditions are examined in detail.

6. Basal conditions and other steady states

To assess the health of an individual, the fasting blood glucose concentration is measured.
In a typical scenario, an individual experiences a 10–12 h overnight fast with blood drawn
in the morning. The measured values are often (perhaps erroneously) referred to as the
basal state. Here, we define the basal state as a fasting and resting state with energy used
solely for cellular activity, respiration, and circulation. The basal values are nearly constant
in the short term and represent a balance between the hepatic glucose production and the
combination of the insulin-dependent and the insulin-independent glucose utilization.
The fasting blood glucose concentration does not measure the basal state if the metabolism
of prior food input takes longer than the 10–12 h overnight fast, especially when combined
with the additional hepatic glucose production that usually occurs early in the morning.
In all cases where the fasting level does not measure the basal level, the measured fasting
level exceeds the intrinsic basal level. Thus, this measured quantity appropriately indicates
the health of the individual and is suitable for diagnostic purposes, but substituting the
fasting level for the basal level within a mathematical model leads to erroneous results
when applied to individuals with poor glucose control.

The basal values, designated with an asterisk, are found from Equations (1) to (3) by
setting the derivatives, Ḟ(t) and Ė(t) equal to zero. The values of G∗ and I∗ in terms of B∗
are

I∗ = (Qmax
I /δI)

{
1
2

+ 1
2
tanh

(
B∗ − BI

rI

)}
(10)

and

G∗ = (Qmax
G /δG)

{
1
2

+ 1
2
tanh

(
BG − B∗

rG

)}
, (11)

and when inserted into the steady-state version of Equation (4), 0 = −Ṁ0+αG∗ −βB∗I∗,
yields

(αQmax
G /δG)

{
1
2

+ 1
2
tanh

(
BG − B∗

rG

)}
= Ṁ0

+ (βB∗Qmax
I /δI)

{
1
2

+ 1
2
tanh

(
B∗ − BI

rI

)}
. (12)
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The model predicts that if the initial blood glucose concentration, the insulin concen-
tration, and the glucagon concentration are exactly the above constant values then this
constant state continues forever. The ability of an organism to perpetually maintain a
constant state in the absence of an external energy source exposes one of the model’s
approximations: the model considers the liver to be a non-depletable source of glucose.
Therefore, this model is inappropriate for studying metabolism under conditions where
the body’s store of excess glucose is depleted, for example, during periods of prolonged
fasting or during periods of excessive exercise such as running a marathon. Accounting
for the storage (and depletion) of glycogen in the liver and muscle requires an extension of
the current model in which a steady-state solution under fasting conditions does not exist.

Equation (12) depends on all eleven model parameters related to the internal workings
of the body. However, we may consider the grouping αQmax

G /δG as a single parameter and
the grouping βQmax

I /δI as another parameter. Taking this approach reduces the number
of free parameters that determine the basal level to seven. Upon normalizing Equation
(12), the number of free parameters is reduced to six. The normalization is not unique, and
making a certain choice affects the ease of interpretation of the solutions. Since a disease
state related to the under-secretion or ineffectiveness of the glucagon hormone is rare, we
assume that, for each individual, the quantity αQmax

G /δG remains constant. Normalization
is achieved by dividing each term of Equation (12) by αQmax

G /δG to get

1
2

+ 1
2
tanh

(
BG − B∗

rG

)
= Ṁ0 + Q̇I

B∗

B∗
0

{
1
2

+ 1
2
tanh

(
B∗ − BI

rI

)}
, (13)

where
Ṁ0 = Ṁ0/(αQmax

G /δG) and Q̇I = (βB∗
0Q

max
I /δI)/(αQmax

G /δG)

are dimensionless parameters. The choice of B∗
0 = 90 as the basal value of a healthy

individual completes the normalization. The scaled rate of hepatic glucose production
(left-hand side of Equation (13)) as a function of B is plotted in Figure 2 using the values
rG = 30 and BG = 65, 80, 95, 110, and 125 on the same graph as the sum of the scaled
insulin-independent usage rate and the scaled rate ofwhole-bodyglucoseusage (right-hand
side of Equation (13)) using various values of Q̇I . The basal blood glucose concentration,
B∗, is determined as the value of B at the intersection point of a glucose production
curve (decreasing functions) and a glucose consumption curve (increasing functions). As
illustrated in Figure 2, variations of the basal blood glucose concentration value exist as
the values BG and Q̇I vary when the values of BI and rI are held constant.

For discussion, making the additional choice of BG = 80 (the solid decreasing curve
in Figure 2 to the specifications of a baseline individual, the parameter Ṁ0 has the
approximate value Ṁ0 = .1655. The value of Ṁ0 remains constant throughout the
following analysis. Figure 3 is the zoomed view of the intersections points of select glucose
production and glucose consumption curves near B∗ = 90. Each subgraph demonstrates
the variation of possible values of the parameters BG and Q̇I which may lead to a basal
glucose concentration of B∗ = 90.

Without further information, choosing values of BG, rG, BI , and rI describing a single
baseline healthy individual is impossible. The additional information is to be found by
analysing the response of the individual to glucose input. Until this analysis is performed,
we introduce four baseline individuals to aid the discussion:
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Figure 2. A closer examination of Equation (13).
Notes: Graphed is the basal glucose concentration defined by intersection of hepatic glucose production rate, the left-hand
side of Equation (13) (illustrated by the decreasing curves BG = 65, 80, 95, 110, 125, from left to right respectively), and
glucose-usage rate, the right-hand side of Equation (13) (illustrated by the increasing curves with Q̇I = .1, .5, 5.0, 10, 20,
from left to right, respectively). Solid glucose-usage curve (Q̇I = 5) intersects solid hepatic-production curve (BG =
80, rG = 30) at glucose concentration near B∗ = 90.

Figure 3. Zoomed-in views of Figure 2.
Notes: Hepatic glucose-production rate (decreasing curves) vs. glucose-usage rate (dash-dot curves) at glucose
concentration near B∗ = 90.

• Baseline individual #1: rI = 15, BI = 105, and Q̇I = 1.5;
• Baseline individual #2: rI = 15, BI = 115, and Q̇I = 5.0;
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Figure 4. Basal glucose concentration defined by intersection of hepatic glucose-production
rate (decreasing curves BG = 65, 80, 95) and glucose-usage rate (increasing curves). Parameter
values: (a) Q̇I = .1, .5, 1.0, 1.5∗, 2.0, 2.5; (b) Q̇I = .5, 1.0, 2.0, 3.0, 5.0∗, 7.0; (c) Q̇I =
1.0, 2.0, 4.0, 9.0, 14.0, 19.0∗, 24.0; and (d) Q̇I = .3, 1.0, 2.0, 3.0∗, 4.0, 6.0. Solid glucose-usage
curves (starred values of Q̇I ) intersect solid hepatic-production curve (BG = 80, rG = 30) at glucose
concentration near B∗ = 90.

• Baseline individual #3: rI = 15, BI = 125, and Q̇I = 19.0;
• Baseline individual #4: rI = 25, BI = 125, and Q̇I = 3.0;

where the (rounded) parameter values are chosen such that the glucose consumption curve
intersects the baseline glucose production curve at approximately B∗ = 90 (see Figure 4).

Upon declaring a base state for each individual, the close-up view of Figure 2 pro-
vided in Figure 3 demonstrates the changes in basal conditions owing to three defects
in the metabolism system: (a) insufficient suppression of glucagon secretion, (b) insulin
resistance, and (c) insufficient insulin secretion.

The mechanism of glucagon secretion is typically one of suppression and not one of
stimulation. For example, after large increases in the blood glucose concentration, the
glucagon level drops to near zero as its secretion is almost completely suppressed. A defect
in this suppressionmechanismmight be expressed as an increase in the value ofBG causing
secretion of glucagon to continue at larger values of the blood glucose concentration than
normal. According to Figure 4, the basal blood glucose concentration increasesmoderately
(about a 5–10% increase) as a result of this defect. The insulin response follows the
hyperbolic tangent function, and the basal insulin concentration increases 50–100% over
normal levels as a result of the slightly larger basal blood glucose concentration.

The second defect in the metabolism system demonstrated in Figures 2 and 3 is that
of insulin resistance. In this model, insulin effectiveness is measured by the parameter β ,
and insulin resistance is expressed as a lowering of the β value while holding all other
parameters constant. In any individual, the ratio βeff = β/βhealthy is used to measure
the degree of insulin resistance. For example, lowering the β value by a factor of ten to
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twenty (βeff = .1 or .05) represents the decrease in insulin effectiveness needed to increase
the basal-glucose concentration from B∗ = 90 to B∗ = 100. Surprisingly, for constant
BG = 80, the basal blood glucose concentration increases insignificantly, even as the
effectiveness of the insulin approaches zero, βeff → 0. Although the increase in basal blood
glucose concentration to B∗ = 100 is relatively minor, the decrease in insulin effectiveness
results in a significant increase in the basal insulin concentration – three to four times
base-state levels.When the insulin-resistance defect combines with the glucagon-secretion
defect basal blood glucose concentration only increases between 10 and 20%while the basal
insulin concentration increases over six times the base-state concentration.

It is surprising that the basal level of blood glucose is only slightly increased by a
significant decrease in the effectiveness of insulin. This contradiction is resolvable by
considering that, in this model, the basal values are steady-state values which implies the
situation has existed for a long time and continues indefinitely if the conditions remain the
same. Thus, the basal values represent the body adjusting to the decrease in effectiveness
of insulin by decreasing the glucagon concentration (i.e. lowering the hepatic production)
and increasing the basal insulin level. In thismodel, even if the insulin effectiveness is zero, a
steady state exists when the hepatic production ratematches the insulin-independent usage
rate. Even though the basal glucose concentration is only mildly affected by a decrease in
insulin effectiveness, the decrease in insulin effectiveness changes the transient response
to an external glucose source.

The third defect, an insufficient secretion of insulin, is expressed in this model as a
decrease in themaximum secretion rateQmax

I and/or an increase in the threshold value BI .
Decreasing Qmax

I by a factor of ten has the same effect on the blood glucose concentration
as decreasing the insulin effectiveness by a factor of ten; however, the basal insulin level
declines as a result of the under-secretion of insulin. Likewise, increasing BI while holding
all other parameters constant (see dotted curves in subfigures of Figure 3(a)–(c)) slightly
increases the basal glucose concentration, decreases the basal insulin level and decreases
the basal glucagon level.

The steady-state solutions corresponding to basal conditions are unsustainable since the
body cannot constantly use energy (a non-zero value of Ṁ0) without an external energy
source. Steady states under basal conditions exist for thismodel because themodel contains
the assumption that the liver is an infinite source of glucose. Although the assumption
is obviously false for long-time solutions without additional energy inputs, the model
reasonably predicts the variation of blood glucose concentration during short-term fasts.
If a constant glucose input rate in excess of or equal to the resting energy usage rate is
prescribed, then a sustainable steady-state solution in the resting individual exists. The
term βBI represents the removal of glucose from the blood with energy stored as fat
in addition to energy stored as glycogen in the liver and muscle. The model does not
account for the saturation of the storage sites, but the model should reasonably predict the
variation of blood glucose concentration for time periods when saturation does not occur.
Two special steady states are investigated below.

A set point exists for each individual where the input rate exactly matches the resting
usage rate,

F0 − Ṁ0 − βMB#I# = 0;
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Figure 5. Energy-balanced set point: (a) healthy individuals, (b) insulin-resistant individuals (βeff = .25).

and under these conditions, the net hepatic output is zero, i.e. αG# − βLB#I# = 0. The
scaled version of this last statement is

{
1
2

+ 1
2
tanh

(
BG − B#

rG

)}
= Q̇#

I
B#

B∗
0

{
1
2

+ 1
2
tanh

(
B# − BI

rI

)}
, (14)

where Q̇#
I = (βLQmax

I B∗
0/δI)/(αQ

max
G /δG). Both sides of the equation are plotted in

Figure 5(a) for the four baseline individuals.
In baseline individuals #1–#3, the energy-balanced set point is given by B# ≈ 100

and in baseline individual #4, B# ≈ 105. Even with a defect in the glucagon suppression
(larger values of BG) the energy-balanced set point only modestly increases for these
individuals.Much is learned about the parameter space by examining the result of reducing
the insulin effectiveness by a factor of four (βeff = .25) in the baseline individuals (see
Figure 5(b)). Baseline individuals #2 and #3 (larger values of BI along with a smaller value
of rI ) demonstrate control of the value of B# even when significant insulin resistance
is combined with a glucagon-suppression defect. Baseline individuals #1 and #4 show a
large increase in B# with significant insulin resistance which is exacerbated by a glucagon-
secretion defect.

The second special sustainable steady-state solution is the excess-energy set point, B@,
which we define as the blood glucose concentration corresponding to the constant input
rate Ḟ@ leading to an insulin level 99% of maximum steady-state insulin level, I@ =
.99 Imax = .99Qmax

I/δI . For this model, the excess-energy set point is B@ ≈ BI + 2.3 rI
leading to G@ ≈ 0 and

Ḟ@ − Ṁ0 − βB@Imax ≈ 0 or Ḟ@ − Ṁ0 − Q̇I
B@

B∗
0

≈ 0, (15)
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Figure 6. Excess energy input-rate for healthy individuals.

where scaling the former equation by αQmax
G /δG produces the latter equation. The value of

Ḟ@ relates to basal conditions through Equation (13) and relates to the energy-balanced
set point through Equation (14). The former relation is

Ḟ@ = Ṁ0 + B@

B∗

{
1
2 + 1

2 tanh
(
BG−B∗

rG

)}
− Ṁ0{

1
2 + 1

2 tanh
(
B∗−BI

rI

)} . (16)

Upon applying baseline conditions (B∗ = 90, BG = 80, and rG = 30), Ḟ@ is a function
of BI for constant rI (see Figure 6). Parameter values corresponding to the four baseline
individuals are indicated on the graph. Baseline individuals #2 and #3 have larger values
of Ḟ@ and more control over their blood glucose level. Although theoretically possible to
have infinite glucose control by prescribing a very large value to BI , this situation is not
found in nature. Choosing a parameter pair, BI and rI , for fixed values of B∗, BG, and rG
is equivalent to choosing the ratio Imax/I∗. Under the assumption Imax is achieved when
B � B∗, it is reasonable to expect the ratio Imax/I∗ to be large in healthy individuals. The
region with 10 < Imax/I∗ < 40 and 10 < rI < 20 is highlighted in Figure 6 and corresponds
to our choice of approximate parameter values that would simulate a healthy individual.
The restriction on rI also results from observations as to how the secretion rate depends
on the blood glucose level.

Only baseline individual #2 falls within the region that would simulate a healthy
individual. Both individuals #1 and #4 are plausible; however, they both may exhibit
difficulties in maintaining glucose control as their values of Imax/I∗ are too low (based
upon range determined in Figure 6). Individual #3 also may additionally represent a
functional individual, but the value of Imax/I∗ is in excess of the ‘healthy’ range. Therefore,
the parameter values associated with individual #2 represent choices appropriate for a
healthy individual and will be used as the baseline values for future analysis.
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7. Conclusion

The goal at the start of this investigation was to explore the usefulness of a simple
model of the glucose-insulin-glucagon system as a base model for further exploration.
For such a simple model to be useful, the solution must mimic the body’s maintenance
of near-constant concentrations during the postabsorptive period. This has clearly been
demonstrated through the existence of a basal state which equates the hepatic glucose-
production rate with the glucose usage rate. Although not presented, a stability analysis
shows that all steady states discussed are indeed stable. In fact, the continuous rein control
of the counter-regulatory naturally defines stable steady states. In this model, the basal
state is determined as a derivable quantity based on the health of the individual without
the restrictive assumptions of Saunders et al. (1998).

As emphasized, the results presented here are preliminary in nature, and every claim
should be preceded with the words ‘in this model’. The biggest flaw in the model, as
in many other models, is the existence of a steady state solution which implies that the
body maintains a constant blood glucose concentration even in the absence of external
energy input. In reality, the body cannot survive without additional energy inputs. The
contradiction is resolved if one realizes that the model predicts the liver to be an infinite
source of energy which approximates the actual situation of the liver supplying energy at
a near constant rate until an external energy source replenishes the store of glycogen in
the liver. The next step in modelling and the topic of the next manuscript in this series
will show that modelling the storage of glycogen in the liver allows for maintenance of
nearly constant basal levels in the absence of a true steady state and that the model mimics
the body’s ability to process additional glucose in a timely manner while at the same time
properly models the response to a long-term fast.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Caleb L. Adams http://orcid.org/0000-0002-8741-9239

References

Ackerman, E., Gatewood, L., Rosevear, J., & Molnar, G. (1965). Model studies of blood glucose
regulation. Bulletin of Mathematical Biophysics, 27, 21–24.

Ajmera, I., Swat, M., Laibe, C., Le Novère, N., & Chelliah, V. (2013). The impact of mathematical
modeling on the understanding of diabetes and related complications. CPT: Pharmaconmetrics &
Systems, Pharmacology, 2(54), 1–14.

Bergman, R., Ider, Y., Bowden, C., &Cobelli, C. (1979). Quantitative estimation of insulin sensitivity.
American Journal of Physiology – Endocrinology and Metabolism, 236(6), E667–E677.

Bergman, R., Phillips, L., & Cobelli, C. (1981). Physiologic evaluation of factors controlling glucose
tolerance in man: Measurement of insulin sensitivity and β-cell glucose sensitivity from the
response to intravenous glucose. Journal of Clinical Investigation, 68, 1456–1467.

Bergman, R., Finegood, D., & Ader, M. (1985). Assessment of Insulin Sensitivity in Vivo. Endicrine
Reviews, 6(1), 45–86.

http://orcid.org
http://orcid.org/0000-0002-8741-9239


LETTERS IN BIOMATHEMATICS 89

Bergman, R. (2002). Pathogenesis and prediction of diabetes mellitus: Lessons from integrative
physiology. The Mount Sinai Journal of Medicine, 69(5), 280–290.

Berzins, R., Tam, Y., Molnar, G., Rajotte, R., Wieczorek, K., McGregor, J., & Fawcett, D. (1986).
Pharmacokinetic approach to the estimation of hepatic removal of insulin. Pancreas, 1, 544–549.

Bolie, V. (1961). Coefficients of normal blood glucose regulation. Applied Physiology, 16, 783–788.
Borghouts, L., & Keizer, H. (2000). Exercise and insulin sensitivity: A review. International Journal
of Sports Medicine, 21(1), 1–12.

Brand-Miller, J. (2003). Gylcemic load and chronic Disease. Nutrition Reviews, 61(5), S49–S55.
Boutayeb, A., & Chetouani, A. (2006). A critical review of mathematical models and data used in
diabetology. BioMedical Engineering OnLine, 5(43). doi: 10.1186/1475-925X-5-43

Clark, D. (1997). Physical activity efficacy and effectiveness among older adults and minorities.
Diabetes Care, 20(7), 1176–1182.

Cobelli, C., Pacini, G., & Salvan, A. (1980). On a simple model of insulin secretion. Medical &
Biological Engineering & Computing, 18, 457–463.

Cobelli, C., & Pacini, G. (1988). Insulin secretion and hepatic extraction in humans by minimal
modeling of C-peptide and insulin kinetics. Diabetes, 37, 223–231.

Della, C., Romano, M., Voehhelin, M., & Seriam, E. (1970). On a mathematical model for the
anallysis of the glucose tolerance curve. Diabetes, 19, 145–148.

Derouich, M., & Boutayeb, A. (2002). The effect of physical exercise on the dynamics of glucose and
insulin. Journal of Biomechanics, 35, 911–917.

Goldhaber-Fiebert, J., Goldhaber-Fiebert, S., Tristán, M., & Nathan, D. (2003). Randomized
controlled community-based nutrition and exercise intervention improves glycemia and
cardiovascular risk factors in type 2 diabetic patients in rural Costa Rica. Diabetes Care, 26(1),
24–29.

Goodyear, L., & Kahn, B. (1998). Exercise, glucose transport, and insulin sensitivity. Annual Review
of Medicine, 49, 235–261.

Horton, E. (1988). Role and management of exercise in diabetes mellitus. Diabetes Care, 11(2),
201–211.

Leahy, J. (1990). Natural history of β-cell dysfunction in NIDDM. Diabetes Care, 42, 22–27.
Matthews, D., Hosker, J., Rudenski, A., Naylor, B., Treacher, D., & Turner, R. (1985). Homeostasis
model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin
concentrations in man. Diabetologia, 28, 412–419.

Roy, A., & Parker, R. (2007). Dynamic modeling of exercise effects on plasma glucose and insulin
levels. Journal of Diabetes Science and Technology, 1(3), 338–347.

Rudenski, A., Matthews, D., Levy, J., & Turner, R. (1991). Understanding ‘insulin resistance’: Both
glucose resistance ain insulin resistance are required to model human diabetes. Metabolism, 40,
908–917.

Saunders, P., Koeslag, J., & Wessels, J. (1998). Integral rein control in physiology. Journal of
Theoretical Biology, 194(2), 163–173.

Serge, G., Turcogl, M., & Varcellone, G. (1973). Modelling blood glucose and insulin kinetics in
normal diabetic and obese subjects. Diabetes, 22, 94–97.

Sheard, N., Clark, N., Brand-Miller, J., Franz, M., Pi-Sunyer, F., Mayer-Davis, E., ... Geil, P. (2004).
Dietary carbohydrate (Amount and Type) in the prevention and management of diabetes a
statement by the American diabetes association. Diabetes Care, 27(9), 2266–2271.

Srinivasan, R., Kadish, A., & Sridhar, R. (1970). A mathematical model for the control mechanism
of free-fatty acid and glucose metabolism in normal humans. Computational Biometical Research,
3, 146–149.

Sturis, J., Polonsky, K., Mosekilde, E., & Van Cauter, E. (1991). Computer model for mechanisms
underlying ultradian oscillations of insulin and glucose. American Journal of Physiology –
Endocrinology and Metabolism, 260(5), E801–E809.

Švitra, D., Basov, I., & Vilkyte, R. (2010). Modelling of glycaemia dynamics: Impact of physical
exercises. Nonlinear Analysis: Modelling and Control, 15(2), 213–232.

https://doi.org/10.1186/1475-925X-5-43


90 C. L. ADAMS AND D. G. LASSEIGNE

Sylvetsky, A., Edelstein, S., Delahanty, L., Walford, G., Boyko, E., Horton, E., ... Rother, K. (2016).
Associations of dietary carbohydrates and carbohydrate subtypes with diabetes risk factors in the
diabetes prevention program. Advances in Nutrition: An International Review Journal, 7(1), 14A.

Tirosh, A., Shai, I., Tekes-Manova, D., Israeli, E., Pereg, D., Shochat, T., ... Rudich, A. (2005). Normal
fasting plasma glucose levels and type 2 diabetes in young men.New England Journal of Medicine,
353(14), 1454–1462.

Toffolo, G., Bergman, R., Finegood, D., Bowden, C., & Cobelli, C. (1980). Quantitative estimation
of of beta cell of beta cell sensitivity to glucose in the intact organism: A minimal model of insulin
kinetics in the dog. Diabetes, 29, 979–990.

Topp, B., Promislow, K., DeVries, G., Miura, R., & Finegood, D. (2000). A model of β-cell mass,
insulin, and glucose kinetics: Pathways to diabetes. Journal of Theoretical Biology, 206, 605–619.


	1. Introduction
	2. Model motivation
	3. Model fundamentals
	4. Model construction
	5. The basic model
	6. Basal conditions and other steady states
	7. Conclusion
	Disclosure statement
	ORCID
	References



