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ABSTRACT

Models of exponential growth, logistic growth and epidemics are
common applications in undergraduate differential equation courses.
The corresponding stochastic models are not part of these courses,
although when population sizes are small their behaviour is often
more realistic and distinctly different from deterministic models. For
example, the randomness associated with births and deaths may
lead to population extinction even in an exponentially growing
population. Some background in continuous-timeMarkov chains and
applications to populations, epidemics and cancer are presented with
a goal to introduce this topic into the undergraduate mathematics
curriculum that will encourage further investigation into problems
on conservation, infectious diseases and cancer therapy. MATLAB
programs for graphing sample paths of stochastic models are
provided in the Appendix.
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1. Introduction

Deterministic and stochastic models of populations and epidemics have a long history.
Malthusian or exponential growth, named for Thomas Robert Malthus, was first discussed
in An Essay on the Principle of Population (under the pseudonym Joseph Johnson) pub-
lished in 1798 (Johnson, 1798). Malthus edited and published five more versions of this
original essay. These essays were very influential at the time, impacting, for example,
the work of Charles Darwin on the theory of natural selection and the work of Pierre-
Francois Verhulst on logistic growth. In 1838, Verhulst mentioned Malthus’ principle of
geometric growth but argued for a constraint on the rate of growth which he modelled as
proportional to the square of the population size (Verhulst, 1838). In epidemic models,
William Ogilvy Kermack and Anderson Gray McKendrick were the first to introduce the
three-compartment SIR epidemic model (Susceptible-Infectious-Recovered). Their first
paper in 1927 entitled ‘A contribution to the mathematical theory of epidemics’ defined
the concept of an epidemic threshold for disease outbreaks, now known as the basic
reproduction number (Kermack & McKendrick, 1927). Some of the earliest stochastic
models for population growth and extinction were published in the mid-1800s. Seemingly
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simple questions about the survival of family names led to some new mathematical
approaches in probability theory. These new approaches in turn led to the birth of a
new field of mathematics, now known as branching processes. It was Bienaymé (1845)
and Watson and Galton (1875) who first posed these questions. Other early contributors
to stochastic population and epidemic theory on simple birth and death processes and
probability of disease outbreaks include Feller (1939), Kendall (1949, 1956), Bartholomay
(1958) and Whittle (1955). Kendall (1949, p. 230) stated:

The classical theory of population growth treats the size of the population as a continuous
variable, …. It is clear that a more refined analysis must take into account the role of chance
effects in the development of the population, and starting with W. Feller in 1939 a good deal
of attention has recently been paid to this question.

Despite the longhistory and themany advances in stochastic population theory, this the-
ory has not been included in many undergraduate courses. The accessibility of computers
makes it an easy task to demonstrate the differences between deterministic and stochastic
modelling approaches in the classroom.The drawback, however,may be the required back-
ground in continuous-time Markov chain theory. Although discrete-time Markov chains
are introduced in courses on Discrete Mathematics, the closely related continuous-time
theory requires calculus and differential equations.With some background in continuous-
time Markov chains, stochastic applications to populations, epidemics and cancer can
be easily introduced into the undergraduate mathematics curriculum. Stochastic models
are especially relevant when population sizes are small and subject to extinction, whereas
deterministic models, differential equations or difference equations, are a good approx-
imation to the overall dynamics when population sizes are large. These latter topics are
covered in the traditional mathematics undergraduate courses.

Our goals are to provide a few well-known applications to populations and epidemics,
and to a more recent application to cancer therapy based on continuous-time Markov
chain theory. These applications can be incorporated into undergraduate mathematics
courses such as Calculus, Differential Equations or Mathematical Modelling. Specifically,
our goals are (1) to give a brief introduction to continuous-time Markov chain theory and
the simple birth and death process, (2) to provide MATLAB algorithms to numerically
simulate continuous-time Markov chain models and (3) to demonstrate how probability
of extinction from the simple birth and death process can be used to predict extinction
in problems associated with population growth or infectious diseases, when population
sizes or number of infectious individuals are small or to predict time of extinction when
treatment is designed to eliminate disease. In advanced courses, the theory and application
of Markov chains can be studied in some depth whereas in introductory courses, a short
presentation on Markov chains accompanied by MATLAB simulations can be used for
illustration purposes.

2. Simple birth and death process

Formally, a stochastic process is a collection of randomvariables,X(ω, t). CapitalX denotes
a random variable that depends on ω and t. The value of ω is an element in the sample
space � and t is time, t ∈ [0,∞). Therefore, a stochastic process is a collection

{X(ω, t)|ω ∈ �, t ∈ [0,∞)}.
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The sample space � is the same for all random variables in the collection. Since we are
interested in the size of a population, an element ω in the sample space is a subset of the
nonnegative integers. For a fixedω,X(ω, t) is a discrete random variable that changes with
time, and is referred to as a sample path or a stochastic realization of the process. Each
ω ∈ �, yields a new sample path.

For simplicity, theω is often omitted andwewriteX(t) instead ofX(ω, t).Weemphasize
that each of the random variables, X(t), is discrete-valued, taking values in the set of
nonnegative integers,

X(t) ∈ {0, 1, 2, . . .} or X(t) ∈ {0, 1, . . . ,N}.

We use the term state of a random variable to mean the value of the random variable. For
example, if X(t) = 2, then 2 is the state of the random variable X at time t.

A stochastic process is generally defined by relating the random variable X(t + �t) to
the random variable X(t), when �t is small (Karlin & Taylor, 1975). These relations are
defined by the infinitesimal transition probabilities. Here, we refer to them as transition
probabilities. A transition probability for a birth is the probability associated with the
change X(t + �t) = X(t) + 1. A transition probability for a death is the probability
associated with the change X(t + �t) = X(t) − 1.

Denote the transition probability for a change in state from i to state j in a short time
�t as the following conditional probability:

pi,j(�t) = P(X(t + �t) = j|X(t) = i). (1)

When the transition probabilities depend only on the length of time �t between the
transitions and not on the particular time t at which these transitions occur, as in (1), then
the stochastic process is referred to as a time-homogeneous process. Let b be the per capita
birth rate and d be the per capita death rate of the process. Then the transition probabilities
for a small interval of time �t,

pi,j(�t) =

⎧⎪⎨
⎪⎩
bi�t, if j = i + 1
di�t, if j = i − 1
1 − (b + d)i�t, if j = i.

(2)

Definition (2) states that when �t is small and X(t) = i, the probability of a birth during
the time interval �t is approximately bi�t, the probability of a death is approximately
di�t, the probability of no change is approximately 1 − (b + d)i�t and all other changes
are negligible. The sum of all the probabilities must equal one. Definition (2) also states
that jumps occur in the population size when there is a birth or a death. The time that
elapses between jumps (a birth or a death) is referred to as the interevent time.

This simple birth and death process is an example of a continuous-time Markov chain.
The term chain implies the random variable X(t) is discrete-valued and the termMarkov
(named after Andrey Andreyevich Markov) implies the future state at t + �t, given the
present state at time t, is independent of the past. That is, for time �t > 0,

P(X(t + �t)|X(t)) = P(X(t + �t)|X(t),X(s)) for any s < t.
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This is referred to as thememoryless property. The only continuous probability distribution
with the memoryless property is the exponential distribution. The interevent time in a
Markov chain is a continuous random variable with an exponential distribution. This
property is demonstrated in the birth and death process in Equation (4). It is important to
note that if the initial state X(0) = i is known, then the transition probabilities are actually
the probabilities pj(t) associated with the random variables X(t):

pj(t) = pi,j(t) = P(X(t) = j|X(0) = i), j = 0, 1, 2, 3, . . . . (3)

2.1. Sample paths

Because the values of the random variables are discrete, any sample path X(t) of a
continuous-time Markov chain is not a continuous function of time. For example, if the
process is in state i and there is a birth, then the process jumps to state i + 1 or if there is
a death, the process jumps to state i − 1. From Definition (2), if X(0) = i ≥ 1 and if the
interevent time is τ > 0, then a change of state occurs at τ . It follows that the left-hand
limit of the process at τ is i and the right-hand limit is either i − 1 or i + 1. The stochastic
process is continuous from the right but not from the left (see Figure 1). That is,

X(τ−) = lim
�t→0− X(τ + �t) = i

and
X(τ+) = lim

�t→0+ X(τ + �t) = i − 1 or i + 1.

The probability of a birth, X(τ+) = i + 1, is

b
b + d

= lim
�t→0+

bi�t
(b + d)i�t

and the probability of a death, X(τ+) = i − 1, is d/(b + d).
To numerically simulate a birth or a death the uniform distribution U on [0, 1] is

applied. In general, for k different events, each representing a jump in the process and each
with a given positive probability qj, j = 1, . . . , k, the unit interval [0, 1] is divided into k
subintervals of length qj,

∑k
j=1 qj = 1. Then, if a uniform random number u ∈ U lies in

the subinterval qj, event j occurs. In the birth and death process there are only two events,
q1 = b/(b + d) and q2 = d/(b + d). If u < b/(b + d), there is a birth but if not, there
is a death. For example, given X(0) = 2, b = 2, d = 1.5 and u ∈ U , the MATLAB code
is given below. Notice in MATLAB that the initial state is written as X(1) = 2 and initial
time as t(1) = 0, since array indices in MATLAB start at one.
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Figure 1. A sample path is continuous from the right but not from the left. In this example, the jump
times are 1, 1.75, 2.25 and 3.25 and the interevent times are τ1 = 1, τ2 = .75, τ3 = .5 and τ4 = 1.
Notes: Beginning at X(0) = 2, a birth occurs, X(1) = 3, then death X(1.75) = 2, followed by another death X(2.25) = 1
and finally a birth X(3.25) = 2.

In addition to the birth and death probabilities, numerical simulation of a sample path
requires computation of the values for the interevent times. The interevent time Ti is a
continuous random variable with values τ ∈ (0,∞). As noted earlier, for Markov chains,
the interevent time is exponentially distributed. Given that the process is in state i at time
t, X(t) = i, the interevent time is exponentially distributed with parameter (b + d)i (the
sum of the rates corresponding to all possible events). In particular, the probability density
function of Ti is fi(τ ) = (b + d)i exp (− (b + d)iτ) and the cumulative distribution is
Fi(τ ) = 1 − exp (− (b + d)iτ). The mean and standard deviation of the exponential
distribution are equal to [(b + d)i]−1. Therefore, as the population size i increases, the
mean interevent time decreases. The Markov property of the interevent time can be easily
demonstrated. The interevent timeTi does not depend on the length of time t to reach state
i but only on the current state i of the process (independent of past history or memoryless
property):

P(Ti ≥ t + τ |Ti ≥ t) = exp (−(b + d)i(t + τ))

exp (−(b + d)it)
= exp ( −(b+ d)iτ) = P(Ti ≥ τ). (4)

The uniform distribution U and the cumulative distribution Fi are used to compute the
interevent time of a sample path. We derive an identity for Ti in terms of U that depends
on the following properties of U :

a = P(U ≤ a) = P(1 − U ≤ a), a ∈ [0, 1].

Applying the first property toFi(τ ) leads toFi(τ ) = P(U ≤ Fi(τ )). ButP(U ≤ Fi(τ )) =
P(F−1

i (U) ≤ τ). The definition Fi(τ ) = P(Ti ≤ τ) and the preceding identity show that
Ti and F−1

i (U) have the same cumulative distribution, namely, Fi(τ ). Computation of the
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Figure 2. The exponential solution (black dashed curve) and five sample paths of the simple birth and
death process (black, red, blue, green and magenta curves) are plotted for parameter values b = 2,
d = 1.5 and initial value X(0) = 2 = x(0).
Note: Although the sample paths are discontinuous, when graphed with MATLAB the discrete jumps are connected.

inverse F−1
i (U) yields a formula for the interevent time in terms of the uniform random

variable U :

Ti = F−1
i (U) = − ln (1 − U)

(b + d)i
= − ln (U)

(b + d)i
,

where we have used the second property of U . The preceding calculation is part of an
algorithm for the interevent time which is often referred to as the Gillespie algorithm
(Gillespie, 1977). A uniform randomnumberu ∈ U generates a value τ = ln (u)/((b+d)i)
for the interevent time. For example, in MATLAB code, the time of the first jump, given
X(0) = 2, b = 2 and d = 1.5 is computed as follows:

The deterministic analogue of the simple birth and death process is the well-known
Malthusian exponential growth model. Expressed as a differential equation, the model is

dx(t)
dt

= (b − d)x(t), x(0) = x0 > 0 (5)

with solution x(t) = x0 exp ((b − d)t). If b > d, there is exponential growth, solutions
approach infinity, but if b < d, there is exponential decay; solutions approach zero. In fact,
the exponential growth model (5) is the mean of the simple birth and death process.

We use MATLAB to generate five sample paths of the simple birth and death process
and plot them against the corresponding deterministic solution in Figure 2 (the MATLAB
code is in Appendix 2). To compare the dynamics of the exponential growth model to the
simple birth and death process, we assume both models have the same initial size and the
same birth and death rates. In the example in Figure 2, X(0) = 2 = x(0), and b = 2 and
d = 1.5.
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In the simple birth and death process, the zero state is an absorbing state, corresponding
to population extinction. That is, if X(t) = 0, then X(t + τ) = 0 for τ ∈ [0,∞).
Absorption into the zero state is illustrated in two of the five sample paths in Figure 2.
Although extinction cannot occur in the deterministic model when b > d, the probability
of extinction in the stochastic model is always positive. In the next section, we give an
analytical expression for the probability of extinction p0(t).

2.2. Probability of extinction

The probability of extinction can be derived from differential equations that follow from
the transition probabilities, Definition (2) and techniques from probability generating
functions (e.g. Allen, 2010; Bailey, 1990). The differential equations are known as the
Kolmogorov differential equations to honour the contributions of the mathematician An-
drey Nikolaevich Kolmogorov. The derivation is relegated to Appendix 1. The derivation
for the probability of extinction can also be found in the classic textbook by Feller (1968).

The derivation in Appendix 1 yields an expression for the probability generating
function,

P(s, t) =
∞∑
j=0

pj(t)sj, s ∈ [0, 1].

The probability generating function is useful for generating the probabilities pj(t) and the
moments E([X(t)m]. Evaluating P at s = 0 gives p0(t) and differentiating P with respect
to s and evaluating at s = 0 gives p1(t). The expectation E(X(t)) = ∑∞

j=1 jpj(t) is found
by differentiating P with respect to s and evaluating at s = 1.

The closed form expression forP(s, t), derived inAppendix 1, is well-known (e.g. Allen,
2010; Bailey, 1990). An underlying assumption in this derivation is that each individual in
the simple birth and death process acts independently, so that the probability generating
function forX(0) = i is just the product of i probability generating functions forX(0) = 1.
In particular,

P(s, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
e(d−b)t(bs − d) − d(s − 1)
e(d−b)t(bs − d) − b(s − 1)

)i

, if b �= d(
1 − (bt − 1)(s − 1)

1 − bt(s − 1)

)i
, if b = d.

(6)

Differentiation of P with respect to s leads to

E(X(t)) = ∂P(s, t)
∂s

∣∣∣∣
s=1

= ie(b−d)t , X(0) = i.

Evaluating P at s = 0 leads to a formula for the probability of extinction by time t:

p0(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
d − de(d−b)t

b − de(d−b)t

)i

, if b �= d(
bt

1 + bt

)i
, if b = d.

(7)
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In the limit, the probability of extinction is

lim
t→∞ p0(t) =

⎧⎪⎨
⎪⎩
(
d
b

)i
, if b > d

1, if b ≤ d.

(8)

If the difference b − d is large, then the limit in (8) is reached more rapidly than if the
difference b − d is small (see Figure 3). In the case that the birth rate is less than the
death rate, the probability of extinction approaches one. That is, the limiting stationary
distribution of X(t) as t → ∞ is concentrated at zero.

For the example in Figure 2, the value of p0(10) is very close to the asymptotic limit.
Applying the limiting formula in (8) to the simple birth and death process illustrated in
Figure 2, the probability of population extinction is

(
d
b

)2
=
(
1.5
2.0

)2
= .5625.

Recall that two out of five sample paths reached extinction in the computations.
The extinction results of the simple birth and death process are applicable to a wide

range of population and epidemic processes. The limiting formula in (8), where b > d,
approximates the initial dynamics of population and epidemic processes when there is
exponential growth away from an absorbing state, demonstrated in Examples 1 and 2. In
Example 3, we illustrate an application of the simple birth and death process to cancer
therapy, when the birth rate is less than the death rate. In this example, the probability of
extinction p0(t) approximates the time until cancer cells are eliminated.

3. Logistic growth

The well-known Verhulst logistic model (Verhulst, 1838) is given by the following non-
linear differential equation

dx(t)
dt

= rx(t)
(
1 − x(t)

K

)
, x(0) = x0 > 0, (9)

where r > 0 is the intrinsic growth rate andK > 0 is the carrying capacity of the population.
The growth declines at a rate proportional to the square of the population size. Notice that
the birth and death rates in (9) are not explicitly defined. The solution of (9) can be written
in terms of the parameters and the initial population size x0 as

x(t) = x0K
x0 + (K − x0)e−rt , t > 0.

It follows that limt→∞ x(t) = K so there is no possibility of extinction. However, if
the population size is small, close to zero, the logistic Equation (9) is approximately an
exponential growth model,

dx(t)
dt

≈ rx(t), r > 0.
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To account for randomness in births and in death, we formulate a logisticMarkov chain,
{X(t), t ∈ [0,∞)}, a continuous-time general birth and death process. The state space is
a subset of the nonnegative integers and may be finite X(t) ∈ {0, 1, . . . ,N} or infinite
X(t) ∈ {0, 1, 2, . . .}. We assume that in a small time interval �t, only a birth, a death or no
change may occur.

Let λi and μi be the birth and death rates given X(t) = i. The infinitesimal transition
probabilities, P(X(t + �t) = j|X(t) = i) = pi,j(t) are similar to (2) but are not linear,

pi,j(�t) =

⎧⎪⎨
⎪⎩

λi�t, if j = i + 1
μi�t, if j = i − 1
1 − (λi + μi)�t, if j = i.

(10)

In the logistic model dx/dt = λx − μx , where

λx − μx = rx − r
K
x2, λ0 = μ0 = 0. (11)

In addition, the birth rate equals the death rate at x = K since K is a steady-state solution,

λK = μK . (12)

The preceding assumptions (11) and (12) are satisfied for many choices of the birth and
death rates (Allen, 2010). A reasonable assumption is that the birth and death rates are
quadratic functions,

λx = b1x + b2x2 ≥ 0, μx = d1x + d2x2 ≥ 0. (13)

Parameters b1 > 0, d1 ≥ 0 and d2 > 0 but b2 may be positive, negative or zero to ensure

r = b1 − d1 > 0 and K = b1 − d1
d2 − b2

> 0.

There are four parameters b1, b2, d1 and d2 in the stochastic logistic model but only two
parameters r and K in the deterministic model. Therefore, there are infinitely many
stochastic logistic models with birth and death rates explicitly defined that correspond
to the same deterministic logistic model. For example, b1 = r + c, d1 = c, b2 = 0
and d2 = r/K , then λx is linear in x but μx is quadratic and both are nonnegative for
x ∈ {0, 1, 2, . . .}. Another example, is b1 = r, d1 = 0, b2 = −r/(2K) and d2 = r/(2K),
where both λx and μx are quadratic and nonnegative for x ∈ {0, . . . , 2K}. In this latter
example, births and deaths are density-dependent.

Of course, growth in the stochastic logistic process differs significantly from the simple
birth and death process when population sizes are large, but their behaviour is similar near
the origin. In fact, when population sizes are small, the asymptotic limit in (8) is a good
approximation to the probability of extinction.

Near the origin, the linear approximation of the logistic model has birth and death
rates b = b1 and d = d1. The formula in (8), given X(0) = x0, yields an estimate for
the probability of population extinction for the stochastic logistic model. The estimate
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Figure 3. The probability of extinction, p0(t), is plottedwhen the initial population size X(0) = i is either
i = 1, 2 for two sets of values for d and b; d = 1.5, b = 2 and d = .1875, b = .25.
Notes: The limiting value for the probability of extinction is (d/b)i . For the figure on the left X(0) = 1, the limit is d/b = .75
and for the figure on the right X(0) = 2, the limit is (d/b)2 = .5625.When d = 1.5, b = 2, then b− d = .5 and the limit is
reached quickly. When birth and death rates are decreased by a factor of 1/8, d = .1875, b = .25, then b − d = .0625 and
the time until extinction is increased by a factor of 8.

depends on the initial population size x0. The limit is denoted as P0(x0):

P0(x0) =

⎧⎪⎨
⎪⎩
(
d1
b1

)x0
, if b1 > d1

1, if b1 ≤ d1.

The case b1 ≤ d1 never occurs in the logistic model since r > 0. The probability of
extinction is always less than one but greater than zero for the stochastic logistic model.

3.1. Example 1: population extinction

Suppose the birth rate is linear and the death rate is a quadratic function,

λx = b1x and μx = d1x + r
x2

K
, x = 0, 1, · · · ,

where the two conditions (11) and (12) are satisfied, b1, d1 > 0 and

λx − μx = rx
(
1 − x

K

)
, x = 0, 1, . . . .

Three sample paths of the non-linear Markov chain model are graphed along with
the deterministic logistic solution in Figure 4 when K = 250, b1 = 1, d1 = .5 and
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Figure 4. The deterministic solution (black dashed curve) along with three sample paths (red, blue and
green curves) of the logistic model are plotted for b1 = 1, d1 = .5, K = 250 and X(0) = 2.
Notes: The figure on the left shows two of the sample paths that reach the carrying capacity K and the figure on the right
shows a close-up of the same sample paths on the interval [0, 10] with one hitting zero before t = 5. The probability of
population extinction is P0(2) = .25.

X(0) = x0 = 2. One of the three sample paths hits zero. The analytical approximation of
the probability of extinction for this example is

P0(x0) =
(
d1
b1

)x0
=
(

.5
1.0

)2
= .25. (14)

Extinction occurs rapidly in this example.
To check the analytical estimate given in (14), we numerically simulated ten thousand

sample paths of the stochastic logistic model using theMATLAB code in Appendix 2, until
either the population size hits zero or the population reaches a size of 50. Values other than
50 can be chosen but 50 is reasonable since it is a sufficiently large value with exponential
growth prior to 50 (< K/2). It is highly unlikely for the population to hit zero after reaching
a size of 50. The simulations continue until the population size enters one of two subsets,
either�0 = {X|X(t) = 0 for the first time t ∈ (0,∞)} or�50 = {X|X(t) = 50 for the first
time t ∈ (0,∞)}. Then we count the number of sample paths in each of these sets. The
union of these sets contains all ten thousand sample paths, |�0∪�50| = 104. For example,
in one particular example, the numerical estimate |�0|/104 = .2547 which compares well
with the analytical estimate given in (14).

This example illustrates the importance of a sufficiently large population size to prevent
extinction. However, with only two parameters, the obvious conclusion is that extinction
can be prevented by increasing births or by decreasing deaths. In practice, models for
threatened or endangered species require much more complex models that depend on
the particular species, the spatial environment, and the available options. Developing
more comprehensive models to accurately portray the species dynamics in their natu-
ral environment pose significant mathematical, statistical and computational challenges
(Green et al., 2005).
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4. SIR epidemic model

The Kermack–McKendrick SIR epidemic model is a system of differential equations for
the spread of an infectious disease in a population (Kermack & McKendrick, 1927). In
the SIR model, an infected individual recovers and develops immunity which protects
against reinfection. The model applies to diseases such as measles, mumps, rubella and
chickenpox, where immunity occurs after infection. The total populationN of individuals
is divided into three groups: (S) susceptible, (I) infected and infectious, and (R) recovered.
In the simplest case the population size is constant N = S(t) + I(t) + R(t). There are no
births or deaths, only infection and recovery. The system of differential equations for the
SIR epidemic model is as follows:

dS(t)
dt

= − β

N
S(t)I(t),

dI(t)
dt

= β

N
S(t)I(t) − γ I(t),

dR(t)
dt

= γ I(t),

(15)

where the initial conditions satisfy S(0) > 0, I(0) > 0,R(0) ≥ 0 and S(0)+I(0)+R(0) = N .
The parameter β is the transmission rate, the number of contacts per unit time that result
in an infection of a susceptible individual, γ is the recovery rate, and 1/γ is the average
length of the infectious period.

The dynamics of this model are well known and we summarize them here. Eventually,
the disease dies out: limt→∞ I(t) = 0, limt→∞ S(t) = S(∞), and limt→∞ R(t) = R(∞).
The effective reproduction number R and the basic reproduction number R0 are defined
as

R = S(0)
N

· β

γ
and R0 = β

γ
.

If R ≤ 1, then there is no epidemic; solution I(t) decreases monotonically to zero.
If R > 1, then I(t) increases first before decreasing to zero; an epidemic occurs. The
basic reproduction number R0 (introduced in 1927 by Kermack and McKendrick) is the
number of secondary infections caused by introduction of one infectious individual into
an entirely susceptible population.

Since R(t) = N − S(t) − I(t), the system (15) can be reduced to a system of two
differential equations:

dS(t)
dt

= − β

N
S(t)I(t),

dI(t)
dt

= β

N
S(t)I(t) − γ I(t).

(16)

Near the disease-free equilibrium (S, I) = (N , 0), the infectious differential equation,
dI/dt, in (16) is approximately

dI(t)
dt

≈ (β − γ )I(t).

Therefore, near the disease-free equilibrium, the stochastic model for the infectious pop-
ulation will behave similarly to a birth and death process with birth rate b = β and death
rate d = γ.
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Now, we construct a stochastic SIR model. The same notation S(t) and I(t) are used for
the random variables. The SIRMarkov chainmodel is amultivariate process, {(S(t), I(t))|t
∈ [0,∞)}, where S(t) and I(t) are discrete random variables for the number of susceptible
and infectious individuals at time t. The values of the random variables satisfy

S(t), I(t) ∈ {0, 1, 2, . . . ,N} and S(t) + I(t) ≤ N .

LetP((S(t+�t), I(t+�t)) = (k, j)|(S(t), I(t)) = (s, i)) = p(s,i),(k,j)(�t). The infinitesimal
transition probabilities, given (S(t), I(t)) = (s, i), are

p(s,i),(k,j)(�t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β

N
si�t, if (k, j) = (s − 1, i + 1),

γ i�t, if (k, j) = (s, i − 1),

1 −
(

β

N
si + γ i

)
�t, if (k, j) = (s, i).

(17)

The process is time-homogeneous.
Near the disease-free equilibrium, the Markov chain model can be approximated by

a simple birth and death process (similar to the exponential growth model). Death of an
infected individual corresponds to a recovery, d = γ , and birth of an infected individual
corresponds to a new infection, b = β . Then

d
b

= γ

β
= 1

R0
.

The probability of disease extinction follows from (8) and the simple birth and death
process. Given an initial infective population size of I(0) = i0, the probability of no
epidemic outbreak is approximately

P0(i0) =

⎧⎪⎨
⎪⎩
(

1
R0

)i0
, if R0 > 1,

1, if R0 ≤ 1.
(18)

The preceding formula is equivalent to the expression originally derived byWhittle (1955).
An estimate for the probability of an outbreak is approximately 1 − P0(i0).

4.1. Example 2: disease outbreaks

Suppose the infectious period on the average is 5 days (γ = 1/5), the total population
size is N = 800 and the basic reproduction number is R0 = 2 (β = 2/5). Three sample
paths of the SIR Markov chain model along with the deterministic solution are plotted in
Figure 5 when I(0) = i0 = 2 (The MATLAB program is given in Appendix 2). Applying
(18), an estimate for the probability of no outbreak is

P0(i0) =
(

1
R0

)i0
=
(
1
2

)2
= .25. (19)

An estimate for the probability of a disease outbreak is 1 − P0(2) = .75.
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Figure 5. The deterministic solution (black dashed curve) along with three sample paths (red, blue and
green curves) of the infectives in the SIR model are plotted for parameter values β = 2/5, γ = 1/5 and
N = 800 so thatR0 = 2. The initial values are S(0) = 798, I(0) = 2 and R(0) = 0.
Notes: The figure on the left illustrates two sample paths with an epidemic outbreak and the figure on the right is a close-up
of the same sample paths on the interval [0, 20] with one sample path hitting zero before t = 10. The probability of a
disease outbreak is 1 − P0(2) = .75.

In the deterministicmodel, the total number of cumulative cases is 639with amaximum
total number of cases at any time reaching about 125. To check the analytical estimate in
(19), ten thousand sample paths are numerically simulated until either the infectious
population hits zero or reaches a size of 25 (MATLAB program in Appendix 2). Values
other than 25 can be chosen but 25 is reasonable since there is exponential growth prior to
25, before the peak value is reached in the deterministicmodel. In realistic outbreaks, when
the number of cases reaches 25, this would be considered a major outbreak. We count the
number of sample paths that lie in one of two subsets: �0 = {I|I(t) = 0 for the first time
t ∈ (0,∞)} or �25 = {I|I(t) = 25 for the first time t ∈ (0,∞)}. The numerical estimate
for probability of disease extinction is |�0|/104 = .2531 for one set of ten thousand sample
paths which is in good agreement with the analytical estimate in Equation (19).

Prevention of an outbreak is a major public health concern. Methods for prevention
include prophylactic interventions (antibiotic and antiviral drugs), vaccination, quarantine
and isolation. Studies on the emergence of new diseases such as SARS and Ebola and the
re-emergence of old diseases such as drug resistant tuberculosis requiremore sophisticated
models and the expertise of public health and medical professionals, statisticians and
mathematicians. Mathematical models play an important role in testing the feasibility and
the outcomes of various disease prevention and intervention strategies (e.g. Anderson &
May, 1992; Brauer & Castillo-Chavez, 2010).

5. Cell populations

A cell divides and reproduces two daughter cells. During the cell cycle, mutations may
occur, so that the daughter cells are not identical to the parent cell. The mutation can be
neutral meaning the genetic sequences passed on to a daughter cell are neither beneficial
nor detrimental to survival or reproduction. However, if the mutation impacts survival
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or reproduction then ‘fitness’ has been altered. In an advantageous mutation, fitness is
increased and either the reproduction cycle is shortened or the survival time is length-
ened. On the other hand, in a deleterious mutation, fitness is decreased and the cell line
does not survive. Most acquired mutations that occur in somatic stem cells (not egg or
sperm) are neutral or deleterious. However, mutations that lead to cancer or tumour
cells are generally advantageous, reproducing more rapidly than healthy cells. Cancer
cells have the ability to renew and regenerate, a property typical of normal stem cells
(Hardavella, George, & Sethi, 2016). These features of cancer cells have led to what is
known as the cancer stem cell hypothesis: the existence of cancer stem cells that may be
‘responsible for cancer initiation, progression, metastasis, recurrence and drug resistance’
(Hardavella et al., 2016).

The simple birth and death process is directly applicable to cellular reproduction, where
birth is cell division; two cells are reproduced from one via cell division, pi,i+1(�t) = bi�t.
Cell death is the transition pi,i−1(�t) = di�t (Equation (2)). Additional reasons that the
birth and death process is a good approximation for cellular reproduction are that cell lines
reproduce independently and the fitness of individual cell lines is constant, not frequency-
dependent or density-dependent (Iwasa, Michor, & Nowak, 2004). Here, we consider the
simple birth and death process as a model for two distinct cell lines, that is, normal healthy
cells and cancer cells under chemotherapy treatment. The birth and death rates differ
between the two cell lines when chemotherapy treatment targets the cancer cells (Sehl,
Zhou, Sinsheimer, & Lange, 2011).

5.1. Example 3: cancer therapy

Suppose there are two cell lines: a normal healthy cell population H and a cancer cell
population C. Healthy cells divide into two daughter cells at rate bh or die at a rate dh,
whereas cancer cells divide at rate bc or die at rate dc . With chemotherapy treatment, both
healthy cells and cancer cells are affected, but the treatment is designed to target the cancer
cells. Therefore, we consider the case that with targeted treatment, the death rate for cancer
cells is greater than for normal healthy cells.

In a recent model for cancer stem cell therapy, Sehl et al. (2011), apply a simple birth
and death process to study the effects of treatment on cancer stem cells. The following
birth and death rates were assumed in two examples for treatment of chronic leukaemia,
bh = .02/week, bc = bh, dh = .08/week, with twodifferent death rates for cancer stem cells:
dc = .31/week and dc = .59/week (Sehl et al., 2011). In the absence of treatment, the death
rate of healthy stem cells is about .002/day (Sehl et al., 2011). At the beginning of therapy,
the number of cancer cells in the population is large, Xh(0) = 4, 400 and Xc(0) = 17, 600
(Sehl et al., 2011). Because bh < dh and bc < dc , the probability of extinction approaches
one (Equation (8)),

lim
t→∞ p0(t) = 1,

for both healthy and cancer stem cells. The rate of convergence depends on e(b−d)t . During
treatment, an important question is the time to stop treatment. If chemotherapy treatment
is prolonged, both healthy and cancer stem cells will be eliminated. Chemotherapy must
be continued until most of the cancer stem cells are eliminated, but should cease before
the healthy cell population has decreased to dangerously low levels. With cessation of
treatment, the hope is that the healthy cells will resume normal growth with bh > dh.
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Figure 6. The cumulative distribution for the time to extinction for healthy cells H and cancer stem cells
C under chemotherapy treatment.
Notes: Parameters for the birth and death rates (per week) are bh = .02 = bc , dh = .08 and two different cancer cell
death rates dc = .31 and dc = .59. The initial number of cells for each population is Xh(0) = 4, 400 and Xc(0) = 17, 600
(Sehl et al., 2011).

In a simple birth and death process, when the death rate exceeds the birth rate, d > b,
the expression for the probability of extinction p0(t) in (7) is the cumulative distribution
for the time to extinction. For the particular parameter values in the preceding examples,
Figure 6 is a plot of p0(t) for healthy cells and for two cancer cell lines with different
death rates. There is a distinct difference in time to extinction. Since dc 
 dh, most of the
cancer stem cells are eliminated before the healthy cells are damaged (while p0(t) for the
healthy cells is still small). The timing of treatment is a crucial part of chemotherapy. A
higher death rate dh of cancer cells shortens the time of treatment and reduces the damage
to healthy cells. Increased understanding of these processes and the effects of treatment
have been obtained by applyingmore complex stochasticmodels along withmethods from
multitype branching processes (see, e.g. Durrett, 2015; Kimmel & Axelrod, 2002).

6. Additional resources

Population extinction, disease outbreaks and cancer therapy represent three applications
where the theory of birth and death processes provides greater insight into the extinction
process. More complex models with several random variables representing multiple age
classes, multiple disease stages or multiple types of cancer cells have been studied via
methods from branching processes (e.g. Allen & van den Driessche, 2013; Athreya &
Ney, 1972; Dorman, Sinsheimer, & Lang, 2004; Durrett, 2015; Haccou, Jager, & Vatutin,
2005; Jagers, 1975; Kimmel & Axelrod, 2002; Michor, Nowak, & Iwasa, 2006; Novozhilov,
Karev, & Koonin, 2006). Interesting historical accounts about model development and
applications to population dynamics and branching processes can be found in the book by
Bacaër (2011) and in the Lecture Notes by Jagers (2009).
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Appendix 1. Derivation of probability of extinction
We derive the forward Kolmogorov differential equations, often referred to as themaster equations.
Consider the changes that occur during time intervals [0, t] and [t, t + �t]. In the time interval
[0, t], we assume the process has already made a transition to either states j − 1, j or j + 1 with
probabilities pi,j−1(t), pi,j(t) or pi,j+1(t), respectively. Thus, we only consider a birth, death or no
change in the time interval [t, t + �t]. The probability of a transition in a small interval of time
�t comes directly from the probabilities defined in (2). For example, it follows from the Markov
property (independence of past history) that the probability of transitioning from i to j − 1 in time
t and from j − 1 to j in the time interval �t is the product of pi,j−1(t) and b(j − 1)�t. Considering
all possible cases, j − 1, j and j + 1 we obtain the following equation for the probability pi,j(t + �t):

pi,j(t + �t) = pi,j−1(t)b(j − 1)�t + pi,j(t)[1 − (bj + dj)�t] + pi,j+1(t)d(j + 1)�t

for i, j = 0, 1, 2, 3, . . . . Subtracting pi,j(t) from both sides of the preceding expression, dividing by
�t, and letting �t → 0 lead to the forward Kolmogorov differential equations for j = 0, 1, 2, . . .,
i = 1, 2, . . . (Allen, 2010; Karlin and Taylor, 1975):

dpi,j(t)
dt

= b(j − 1)pi,j−1(t) − (b + d)jpi,j(t) + d(j + 1)pi,j+1(t), (A1)

where pi,j(t) = 0 if i or j are negative integers. If X(0) = i ≥ 1, then we drop the dependence on i
because of the identity (3) to obtain a differential equation for pj(t), j = 0, 1, 2, . . ..

dpj(t)
dt

= b(j − 1)pj−1(t) − (b + d)jpj(t) + d(j + 1)pj+1(t). (A2)

where p−1(t) = 0.
The forward Kolmogorov differential equations are easier to solve if they are expressed in terms

of generating functions. The probability generating function (pgf) of X(t) is formally defined in
terms of the probabilities in (3) as the expectation of sX(t). Therefore, a new variable s is introduced.
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In particular,

P(s, t) = E(sX(t)) =
∞∑
j=0

pj(t)sj, s ∈ [0, 1].

The pgf ‘generates’ the probabilities pj(t) as well as the mean and variance associated with the
random variable X(t). For example, the first two probabilities are

P(0, t) = p0(t) and
∂P(s, t)

∂s

∣∣∣∣
s=0

= p1(t)

and the mean of X(t) is

∂P(s, t)
∂s

∣∣∣∣
s=1

=
∞∑
j=1

jpj(t).

If we multiply Equation (A2) by sj and sum from 0 to ∞, then the infinite system of forward
Kolmogorov differential equations reduces to a single differential equation,

∂P(s, t)
∂t

= (b + d)

[
d + bs2

b + d
− s
]

∂P(s, t)
∂s

. (A3)

Boundary conditions associated with this partial differential equation areP(1, t) = 1 andP(s, 0) =
s, i.e. X(0) = 1. The simplification given in (A3) requires two facts, summation and differentiation
can be interchanged and

∂P(s, t)
∂s

=
∞∑
j=1

jpj(t)sj−1

(the summation converges absolutely on s ∈ [0, 1]). The first-order partial differential equation in
(A3) can be solved by the method of characteristics. Details of the method of characteristics applied
to (A3) can be found in Allen (2010). A major assumption in the simple birth and death process is
that each individual behaves independently. Thus, if X(0) = i, then P(s, 0) = E(si) = (E(s))i , the
expectation of the product is the product of expectations. Thus, the solution of (A3) for the simple
birth and death process for X(0) = i is

P(s, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
e(d−b)t(bs − d) − d(s − 1)
e(d−b)t(bs − d) − b(s − 1)

)i

, if b �= d(
1 − (bt − 1)(s − 1)

1 − bt(s − 1)

)i
, if b = d.

The simple birth and death process has one of two asymptotic outcomes as t → ∞, either the
process approaches zero (absorption) or the process approaches infinity. The time until extinction
depends on the value of exp ((d − b)t). This can be seen by computing the probability of extinction.
Evaluating P(s, t) at s = 0 leads to a formula for p0(t):

p0(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
d − de(d−b)t

b − de(d−b)t

)i

, if b �= d(
bt

1 + bt

)i
, if b = d.
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Appendix 2. MATLAB programs
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