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ABSTRACT

Ross River Disease is a mosquito-borne viral condition that affects
pockets of theAustralianhumanpopulation, and canbedebilitating in
some instances. The evidence is that the virus reservoirs inmarsupials,
such as kangaroos, and this may account for the unpredictable
outbreaks of the disease in humans. Accordingly, we present here
a newmodel for the dynamics of Ross River Virus (RRV) in populations
of mosquitoes and kangaroos. We calculate steady-state populations
for the sub-groups in each species and demonstrate that naturally-
occurring oscillations in the populations (limit cycles) do not occur.
When seasonal forcing of vector populations and kangaroo birth rates
is taken into account, however, the model may predict multi-annual
outbreaks and chaos, perhaps explaining the unpredictability of some
RRVdisease epidemics, particularly across southernAustralia. Detailed
results in this case are presented.
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1. Introduction

The transmission of many important diseases of humans involves other animals (Jones
et al., 2008). Such zoonotic pathogens commonly reside in non-human hosts and human
disease is a consequence of spillover events. Examples include the spillover of Ebola and
rabies from bats (Hayman, 2016; Streicker et al., 2016), Sin Nombre virus from rodents
(Nichol et al., 1993), and West Nile virus from birds via mosquito vectors (Kilpatrick,
2011). While the mechanisms that underscore spillover events vary dramatically, an
emergent property of spillovers is that they often follow epizootics within the reservoir host
population (Plowright et al., 2015). Owing to the significance of epizootics on spillover,
an appreciation of governing principles of epizootics is critically important, but for many
zoonotic diseases of humans remains largely unknown.

Seasonal forcing represents a pervasive source of environmental variability in nature
(Taylor, White, & Sherratt, 2013), and must be accounted for in models of pathogens
spread by insects or other vector species (Lord, 2004). Seasonality affects the life his-
tory traits of hosts and/or vectors and has profound impacts on disease transmission
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including spillover to other species (Altizer et al., 2006; Tompkins, Dunn, Smith, &
Telfer, 2011). For example, births are a source of vectors and also a source of non-
immune/susceptible hosts, both of which can drive variable disease dynamics (Carver,
Bestall, Jardine, & Ostfeld, 2009; Tompkins et al., 2011). Appropriate inclusion of sea-
sonality is a critical frontier in modelling disease dynamics, such as epizootic dynamics.
Theoretical studies suggest seasonal forcingmay be necessary tomaintain epidemic cycling
where hosts develop immunity (Bolzoni, Dobson, Gatto, & De Leo, 2008). Theoretical
studies have also proposed that the strength of seasonality, alongside non-linear dynamics,
cause divergent disease cycles, such as annual, multi-annual, quasi-periodic and chaotic
(e.g. Altizer et al., 2006; Bolzoni et al., 2008; Ferrari et al., 2008; Stone, Olinky, & Huppert,
2007). Specific drivers of varying cycles may be the strength and phase of seasonality,
birth rates, duration of immunity, and the reproductive rate of pathogens (Aguiar, Balles-
teros, Kooi, and Stollenwerk, 2011; Childs & Boots, 2010; Greenman&Pasour, 2011; Pitzer
et al., 2011; Uziel & Stone, 2012).

Epidemiologically, Ross River Virus (RRV) is Australia’s most important mosquito-
borne disease, causing 4660 (range 1451–9551) human clinical notifications at an estimated
economic cost of $15 million annually (Aaskov, Fokine, & Liu, 2012; Harley, Sleigh, &
Ritchie, 2001), and this cost does not include the substantive investment in mosquito
control – estimated at $9 million for the State of Queensland alone (Tomerini, 2005). RRV
naturally cycles among marsupial hosts and mosquito vectors, spilling over to humans
(Russell, 2002; Harley et al., 2001; Carver et al., 2009; Koolhof & Carver, 2016). The
primary reservoirs for enzootic RRV transmission appear to be marsupials, particularly
grey kangaroos. Annual and multi-annual seasonality is fundamentally characteristic of
RRV epidemics across all areas of Australia (Harley et al., 2001; Russell, 2002). Further, the
transmission ecology of RRV is broadly emblematic to that of other globally distributed
alphaviruses and flaviviruses (Carver et al., 2009), which are significant sources of human
morbidity and mortality, such as chikungunya, Sindbis virus, yellow fever, West Nile and
Japanese encephalitis viruses.

Multiple lines of evidence suggest that seasonality of host and vector life history
traits is important for epizootics and spillover of RRV to humans (Carver et al., 2009).
Vector mosquitoes exhibit seasonal dynamics across all epidemic areas of the continent
(Harley et al., 2001; Russell, 2002). Seasonality in kangaroo life history also appears
important. Potter et al. (2014) showed kangaroos were frequently infected with RRV,
and that seroprevalence of RRV was higher in adults, suggesting seasonal influxes of non-
immune joeys could influence epizootic activity. It was also shown that seroprevalence
to RRV among kangaroos is highly coincident with the timing of human epidemics, and
seroprevalence declines as new non–immune recruits enter the population (Potter, 2011).
Further, it is notable that human epidemics do not always occur following high vector
abundance (even seasonally high abundance) and some epidemics occur when vector
numbers are not unusually high (Lindsay et al., 1997, 2005), suggesting a confluence
between the virus and seasonal vector and kangaroo life histories is needed for epizootics
and spillover.

The governing principles of enzootic RRV dynamics among mosquito vectors and
kangaroos are poorly understood (Carver et al., 2009, 2010; Koolhof & Carver, 2016). Here
we develop amodel for RRVwhich takes into account transmission amongmosquitoes and
kangaroos, and details are presented in Section 2. We explicitly investigate mathematical
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Figure 1. Schematic diagram of the kangaroo–mosquito RRV infection model.

expressions which govern the biology of transmission in this system. The existence of
steady states is investigated for this system, and we question whether it is possible to
generate natural cycles of RRV epizootics in the absence of seasonal forcing through limit
cycle oscillations bifurcating from these steady states. We argue this is not possible, since
the criteria for Hopf bifurcation are not satisfied. We then evaluate how seasonality in the
dynamics of vectors and the birth rate of kangaroos impacts the enzootic dynamics. We
show that models of seasonal forcing of vector and host dynamics can result in complex
outcomes, and demonstrate the development of deterministic chaos in Section 3. At the
end of each Section we provide a simplified ecological interpretation of the results. Some
final remarks conclude the paper in Section 4.

2. Mosquito–Kangaroo RRVmodel

We consider two bulk populations, one consisting of kangaroos (denoted in the math-
ematical model by the subscript k) and the other consisting of mosquitoes (represented
with subscript m). Their populations are each considered to contain the standard three
subgroups of susceptible, infected and recovered individuals, represented respectively by
variables S(t), I(t) and R(t) in themodel, following the ideas of the Kermack–McKendrick
SIR approach (Murray, 1989, Section 19.1) and where t represents time in days. In the
mosquito population, however, we assume that there is no recovered population. We also
chose not to include a latent stage (SEI models, e.g. Beeton & McCallum, 2011; Beeton
& Forbes, 2012) as the latent period is relatively short for RRV and would not have
qualitatively altered the results. Vertical transmission of the virus (between parent and
offspring) is ignored here in both host and vector populations, and it is also assumed that
infection occurs at a frequency-dependent rate βmk from mosquito to kangaroo and βkm
from kangaroo to mosquito.

A schematic diagram of the processes occurring in this model is given in Figure 1.
Here, the birth rates of kangaroos and mosquitoes are bk and bm respectively, and the
species die naturally at rates dk and dm which are independent of their status (susceptible,
infected or recovered). In the kangaroo population, infected individuals recover at a rate
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γk . In this Section, seasonal forcing is so far ignored, so that these rates are all constants.
For simplicity, we assume here that the populations of kangaroos and of mosquitoes are
constant in time, and we denote total populations as

Nk = Sk + Ik + Rk
Nm = Sm + Im. (1)

Now it follows from the schematic diagram in Figure 1 that the kangaroo sub-populations
are governed by the system of three ordinary differential equations

dSk
dt

= bkNk − βmkSk
Im
Nm

− dkSk

dIk
dt

= βmkSk
Im
Nm

− γkIk − dkIk

dRk
dt

= γkIk − dkRk. (2)

Similarly, the governing equations for themosquito population canbe seen from inspection
of Figure 1 to be

dSm
dt

= bmNm − βkmSm
Ik
Nk

− dmSm

dIm
dt

= βkmSm
Ik
Nk

− dmIm. (3)

The quantity βmkIm/Nm in Equation (2) and the corresponding term βkmIk/Nk in (3) are
the frequency-dependent rates of transmission of infection frommosquitoes to kangaroos
and kangaroos to mosquitoes, respectively. When the three equations in (2) are added,
using (1), it is easy to see that

dNk/dt = (
bk − dk

)
Nk,

and so the assumption of constant total kangaroo population Nk necessarily means that
the birth and death rates must be equal: bk = dk. Similarly for the mosquito population,
we have bm = dm.

2.1. Equilibrium populations

In this unforced model (2), (3), the steady-state populations are those that cause all the
time derivatives in these equations to become zero. In addition, it is assumed in this Section
that the total populations of kangaroos and of mosquitoes are constants, and we denote
these as Nk0 and Nm0 respectively. Consequently, the birth rates and death rates are equal.

After somewhat lengthy algebra, it may be shown that the steady-state Equations (2),
(3) have two solutions (the equation for the recovered kangaroo population in (2) may be
ignored for the purposes of this analysis). The first is the trivial steady state

Sk = Nk0 ; Ik = 0
Sm = Nm0 ; Im = 0, (4)
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and represents a situation in which the RRV infection has died out completely, so that the
total population in each species is susceptible. There is also a second equilibrium solution
in which all states are populated; this takes the form

Sk = Nk0
[
bkβkm + bm(γk + bk)

]
βkm

[
βmk + bk

]

Ik = bkNk0
[
βkmβmk − bm(γk + bk)

]
βkm

[
βmk + bk

]
(γk + bk)

Sm = bmNm0(γk + bk)
[
βmk + bk

]
βmk

[
bkβkm + bm(γk + bk)

]

Im = bkNm0
[
βkmβmk − bm(γk + bk)

]
βmk

[
bkβkm + bm(γk + bk)

] . (5)

The steady-state sub-population of recovered kangaroos is obtained from these results
using the formula Rk = Nk0 − Sk − Ik. In this second model case, the RRV infection is
present in both populations, and it may be checked from these steady-state solutions (5)
that the sub-populations do add in the way required by (1).

The stability of these equilibrium solutions (4) or (5) is now determined by linearizing
the governing dynamical Equations (2) and (3) about these equilibria, to give linear systems
involving a 4 × 4 Jacobian matrix of derivatives evaluated at each equilibrium. This
treatment is standard, and further details may be found from Seydel (1994). (Again, the
equation involving dRk/dt in (2) is ignored in this analysis). The eigenvalues λ of these
Jacobian matrices determine the stability of each equilibrium, since the solutions of the
linearized equations near each equilibrium contain terms exp (λt). Consequently, stability
ensues if Re{λ} < 0 for all eigenvalues, but if any eigenvalue has positive real part then the
corresponding equilibrium is unstable.

For the trivial steady-state (4), it is possible to calculate the four eigenvalues of the 4× 4
Jacobian matrix of derivatives exactly. Two eigenvalues turn out to be zero, which reflects
the degeneracy associated with enforcing constant populations of each species, as reflected
in Equation (1). The remaining two eigenvalues are found to be

λ = 1
2

[
−(γk + bk + bm) ±

√
(γk + bk − bm)2 + 4βmkβkm

]
. (6)

The two eigenvalues in (6) are both real, and so stability is determined by whether the
second term is larger than the first; if it is, then one eigenvalue will be positive and the
other negative, meaning that the equilibrium will be an (unstable) saddle. Otherwise, both
eigenvalues will be negative, giving a stable node. Carrying out the algebra thus gives the
result

If bm(γk + bk) − βmkβkm

{
< 0 saddle
> 0 stable node . (7)

If we consider the birth rate bm of the mosquitoes as a bifurcation parameter, then (7)
shows there is a change in stability at the value

bm = βmkβkm/(γk + bk). (8)
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For larger values of birth rate (= death rate), this trivial equilibrium (4) is stable, and thus
represents a ‘wash-out’ situation, in which mosquitoes are born and die with such rapidity
that infection with RRV does not take place.

The stability of the second equilibrium (5) is much more difficult to determine, and nu-
merical methods must ultimately be used. In this case, the Jacobianmatrix that determines
stability takes the form

J =

⎡
⎢⎢⎣

−A bk B C
A −γk − bk −B −C
E F −D bm
−E −F D −bm

⎤
⎥⎥⎦ , (9)

in which for simplicity the intermediate quantities have been written

A = βmkIm/Nm ; D = βkmIk/Nk

B = βmkSkIm/N2
m ; E = βkmSmIk/N2

k

C = B − βmkSk/Nm ; F = E − βkmSm/Nk. (10)

Now the eigenvalues λ of the Jacobian matrix (9) may be shown to satisfy the quartic
equation

λ
[
λ3 + Pλ2 + Qλ + R

] = 0, (11)

where again for convenience we have defined further intermediate terms

P = γk + bk + D + bm + A
Q = A

(
γk + D + bm

) + (
γk + bk

)(
D + bm

) + (B − C)(F − E)

R = γk
[
A(D + bm) − E(B − C)

]
.

Clearly, one eigenvalue of the characteristic Equation (11) is simply λ = 0, reflecting the
degeneracy associatedwith the requirement that populations ofmosquitoes and kangaroos
remain constant. The remaining three eigenvalues are the three roots of the cubic in
parentheses, and these determine the stability of this second equilibrium.

Unfortunately, exact solutions of the cubic in (11) are not simple to obtain, and so the
roots must be obtained numerically; this is donemost easily by using an eigenvalue routine
directly on the matrix J in (9). This second equilibrium (5) is only physically meaningful
for bm smaller than the value in (8), since positive values are required for all the variables
in (5). Our numerical experience is that, for these values of bm, the three eigenvalues that
determine stability all have negative real parts, so that this second equilibrium is stable in
the parameter domain of its validity. In addition, the two equilibria meet at the value (8)
and exchange stability, so that this point is a transcritical bifurcation (Seydel, 1994).

These results concerning the location and stability of the two equilibria are illustrated in
Figure 2.Wehave chosen parametersβmk = βkm = 1/2, γk = 1/6 and bk = .000822, since
these are estimated from data obtained in the field (Carver, Spafford, Storey, &Weinstein,
2009; Mayberry, Maloney, Mawson, & Bencini, 2010). Figure 2(a) shows the equilibrium
value Sk for the susceptible kangaroo population as it varies with birth-rate bm for the
mosquitoes, normalized against the total kangaroo population Nk. The trivial equilibrium
Sk/Nk0 = 1 in (4) has a value that does not vary with birth rate bm for the mosquitoes. It
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Figure 2. The location and stability of the two equilibria. (a) The two equilibria for Sk and (b) Eigenvalues
for second equilibrium only.

is unstable for small bm, as discussed in (7), and is therefore denoted with a dashed line in
Figure 2(a). The second equilibrium (5) is stable for small bm, and is drawnwith a solid line.
The two equilibria intersect at the value of bm in (8) and they exchange stability. Beyond
this transcritical value of bm the trivial equilibrium Sk/Nk0 = 1 becomes stable, and so is
drawn with a solid line; the second equilibrium (5) has no meaning for these larger values
of bm and so has not been drawn in Figure 2(a).

In Figure 2(b), the four eigenvalues λ that solve the characteristic polynomial
Equation (11) are drawn as they vary with the mosquito birth rate bm for the second
equilibrium (5). One eigenvalue is zero, and another is purely real, lying in the plane
Im{λ} = 0 in Figure 2(b) and its real part becomes more strongly negative as bm increases.
The remaining two eigenvalues are complex conjugates lying roughly in a plane with small
negative real part. This indicates the stability of this second steady state, as mentioned
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in regards to Figure 2(a). In addition, these two complex-conjugate eigenvalues become
exactly zero at the value (8) of bm, confirming that this is indeed a transcritical bifurcation.

The cubic in (11) has also been examined for the possibility that it might allow the
generation of a limit cycle through the mechanism of Hopf bifurcation (Seydel, 1994). If
so, this would produce self-sustained oscillations in the unforced model (2), (3), resulting
in periodic fluctuations in disease outbreak. It is possible to generate conditions on the
coefficients of the cubic in (11) which need to be satisfied if a Hopf bifurcation is to
occur. These conditions are presented by Beeton and Forbes (2012), and involve a pair of
eigenvalues crossing the imaginary axis in the complex plane. Further details are not given
here, since we have determined in our numerical tests that such conditions appear not to
be satisfied for sensible values of the parameters. This appears to rule out this self-sustained
periodic behaviour in solutions of this unforced model.

2.1.1. Ecological interpretation
The implication of this modelling is that in the absence of seasonally varying mosquito
populations and kangaroo reproduction, RRV will persist at a constant background level
without periodic epidemic cycles.

3. Results with seasonal forcing

In this Section, the possibility of the two birth rates bk and bm varying with changing
seasons is considered. The other parameters are taken to remain constant, for simplicity,
although a fuller analysis in which more parameters are allowed to vary may also be of
relevance in a future study. It will be assumed that the kangaroos and mosquitoes are both
affected equally by the frequency f of the changing seasons, although this is likewise open
to criticism and future generalization. We therefore assume the birth rates for kangaroos
and mosquitoes are now

bk0
[
1 − δk sin

(
2π ft − θk

)]
bm0

[
1 − δm sin

(
2π ft − θm

)]
, (12)

respectively, and these are used in place of the static birth rates in the governing
Equations (2), (3). For convenience, the two death rates are presumed to remain at the
average values in (12), so that we continue to assume dk = bk0 and dm = bm0. The
dimensionless constants δk and δm are the relative amplitudes of the seasonally-forced
birth rates, and the two further constants θk and θm represent independent time lags of the
effects of seasonal forcing on the two different species.

3.1. Linearized periodic forcing

Here we consider small-amplitude forcing about the fully-populated steady state (5), and
characterize the strength of this seasonal forcing by some small dimensionless parameter
ε. A similar treatment of the simpler equilibrium point (4) is possible, but not of practical
interest as it would involve negative populations. From a mathematical point of view, this
permits analytical progress to be made, in the form of a linearized solution. The variables
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are thus expressed in the form

Sk(t) = Sk + εSkf (t) + O (
ε2

)
Ik(t) = Ik + εIkf (t) + O (

ε2
)

Sm(t) = Sm + εSkm(t) + O (
ε2

)
Im(t) = Im + εIkm(t) + O (

ε2
)

(13)

and these expansions are substituted into the governing equations. Since the recovered
kangaroo sub-population can be obtained from the four variables in (13), we do not
include an explicit term for that variable.

When terms are retained only to the first order in the small parameter ε, a linearized
system of equations is obtained for the forced terms Skf (t) and so on. This takes the form

dVf

dt
= JVf + Ff . (14)

In this system, the constant Jacobian matrix J is exactly as in Equation (9) and the vector

Vf (t) = [
Skf Ikf Skm Ikm

]T

contains the four functions to be determined. The forcing vector Ff in (14) contains the
time-dependent components of the seasonally forced birth-rates in (12), and so becomes

Ff (t) = [−Nkbk0δk sin
(
2π ft − θk

)
0 − Nmbm0δm sin

(
2π ft − θm

)
0
]T

.

To solve the system of Equation (14), it is convenient to express them in the form

dVf

dt
= JVf + F(S)

f sin
(
2π ft

) + F(C)

f cos
(
2π ft

)
, (15)

in which we have defined constant vectors

F(S)
f = [−Nkbk0δk cos θk 0 − Nmbm0δm cos θm 0

]T
F(C)

f = [
Nkbk0δk sin θk 0 Nmbm0δm sin θm 0

]T
. (16)

We are interested here in the long-term forced response of this system (15), and so we seek
a particular integral in the form

Vf (t) = Pf sin
(
2π ft

) + Qf cos
(
2π ft

)
. (17)

This is substituted into (15) and since the sine and cosine terms are linearly independent,
their coefficients may be equated to give matrix equations for the constant vectors Pf and
Qf . A little algebra then enables the first of these to be found by solving

[
J2 + (

2π f
)2I

]
Pf = −JF(S)

f + (
2π f

)
F(C)

f (18)
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Figure 3. The linearized and non-linear forced solutions at two different values of βmk . (a) Comparison
of linearized and non-linear solutions for βkm = 0.12 and (b) Comparison of linearized and non-linear
solutions for βkm = 0.14.
Notes: Results are shown for the susceptible and infected kangaroo sub-populations, using solid lines (linearized solution)
and dashed lines (non-linear). The blue line represents the linearized Sk and the red line Ik .
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and then the second is given by

Qf = − 1(
2π f

)
[
JPf + F(S)

f

]
. (19)

These vector coefficients in (18), (19) may now be substituted into the assumed form (17)
and the final linearized solution is then obtained from (13).

This linearized solution, which is only strictly valid for small forcing amplitudes εδk and
εδm, has been found to give excellent agreement with the results of numerical integration
of the fully non-linear system of Equations (2), (3) with seasonally varying birth-rates
(12). Agreement remains good even for moderate forcing amplitudes, but must eventually
become poorer as the amplitude increases. In order to see significant differences between
the two theories, we consider in Figure 3 the extreme situation in which ε = 1 and
δmk = δkm = .99. Here, we have retained the parameter values γk = 1/6 and bk = .000822
as for Figure 2, but in Figure 3(a) we set the interaction parameters to be βmk = βkm
= .12. The linearized theory (17) is purely the system’s response to the seasonal forcing,
and all transient behaviour is assumed to have died away after sufficient time. So, to
make a comparison with the fully non-linear solution, the full system was started with
initial conditions given by the equilibrium populations (5) and then allowed to evolve
until it became steadily periodic in time. We considered forcing on an annual time scale
representing annual breeding, and so we set f = 1/365 in the forcing terms (12), since
time t is measured in days. This is why initial times are not visible on the horizontal axes
in Figure 3, and instead, the starting value of time shown is ft = 80 (years).

Although the linearized solution in Figure 3(a) is well beyond its expected domain of
validity, there is nevertheless very good agreement between the linearized result (drawn
with continuous lines) and the result of numerical integration of the fully non-linear
equations (drawn with dashed lines). The susceptible kangaroo population Sk is in close
agreement over most of each oscillation period except near the troughs where the non-
linear solution forms shallower, more flattened minima, instead of the deeper sinusoidal
troughs predicted by the linearized theory. This same observation also applies to the
infected kangaroo population Ik . In fact, in this extreme case with forcing amplitudes
εδkm = εδmk = .99, the linearized solution allows the troughs for the population Ik to take
small negative values since it is required to have the purely sinusoidal shape given by (17),
and this is clearly meaningless. The non-linear results, however, avoid this problem since
they ensure that Ik remains positive, even though it is small (as a fraction of the steady total
kangaroo population Nk); this is achieved by the function Ik(t) having very flat troughs
and sharply peaked crests in each period. The corresponding populations of susceptible
and infected mosquitoes, Sm and Im, are not shown here and in fact they also contain non-
physical negative values in the linearized theory, although not in the numerical results for
the fully non-linear computation.

Figure 3(b) involves the same parameters as in Figure 3(a), except that now the inter-
action parameters have been increased slightly to the new values βmk = βkm = .14. Here,
the agreement between the linearized and the non-linear theories is not nearly so good.
Nevertheless, this is an extreme case of very large forcing amplitudes, and the disagreement
between the two theories is therefore not surprising. For smaller amplitudes, however, in
which linearized theory can be expected to be more accurate, much better agreement may
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againbeobserved. For the results inFigure 3(b), there is also evidenceof stronglynon-linear
effects, since period-doubling is clearly present in the non-linear solution, for which there
is no equivalent in the linearized solution (17). Evidently a period-doubling bifurcation
has occurred in the non-linear results, at some value of the interaction parameters βmk,
βkm between the two values in Figure 3(a) and (b). It is necessary, therefore, to focus on
the non-linear behaviour of the seasonally forced system, and this is considered in the next
sub-Section.

3.1.1. Ecological interpretation
When we add a small amount of seasonality into the abundance of mosquitoes and the
reproductive rates of kangaroos, we find that it can drive regular annual outbreaks. As
the transmission rate between mosquitoes and kangaroos is increased, the outbreaks
potentially become multi-annual and less predictable.

3.2. Non-linear forced behaviour

It is evident from Figure 3 that the interaction parameters βmk and βkm are key bifurcation
parameters in this forced RRV disease model, and this is now considered for the fully
non-linear theory. In this case, the equations cannot be solved in closed form, and so they
are integrated forward in time using a Runge-Kutta-Fehlberg numerical scheme from the
MATLAB suite of routines, starting from some initial condition, such as the equilibrium
solution (5) for example. The solution is then run forward in time until transients caused
by the initial conditions have decayed, and the result is a pure non-linear response to the
forcing (12).

Figure 4(a) is a bifurcationmapof thenon-linear solution for Sk, for the sameparameters
as previously, except that the interaction parameters βmk = βkm are set equal and varied
over the interval [0, 1]. This type of diagram is the cumulation of a great many different
numerical solutions; it provides a very succinctway of displaying the effects of non-linearity
on our solution, and forms the core of this Section of the paper.

Figure 4 has been created numerically as follows. We run the model for 1000 years
(i.e. until t = 365, 000) and extract the values for the susceptible kangaroo population Sk
at the set of integer values t = 365 × {100, 101, . . . , 999, 1000}. Where the solution has
period with an integer n number of years and the model has evolved beyond the initial
transients by t = 36, 500, the set will consist of n different distinct values of Sk repeated for
the length of the set, at each particular value of βmk = βkm. Conversely, if the solution is
quasi-periodic or chaotic, each value of Sk will be unique. We then use these sets and vary
βmk = βkm to draw a bifurcation diagram for the forced model.

The non-linear model has a period-one stable state near βmk = 0 and continues until
about βmk = .13, as is evident from just the single value of Sk which is obtained at
each forcing period. A period-doubling bifurcation occurs at about βmk = .13, giving
the period-two solution shown in Figure 3(b) in the non-linear result. As βmk is in-
creased further, additional period-doublings occur, leading to a period-doubling cascade
to produce chaos near βmk = .16. An extended period-three region is then obtained for
βmk ∈ [.17, .37], with a further band of chaos in the approximate interval βmk ∈ [.37, .4].
As βmk is increased further, there is evidently a (reverse) period-doubling exit from chaos,
with a narrow interval of period-four solutions followed by an extended period-two region
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Figure 4. Two views of a bifurcation map of the non-linear solution for the susceptible kangaroo
sub-population Sk , showing period-doubling cascades to chaos, and an embedded three-cycle. (a)
A bifurcation map for Sk versus βmk and (b) Expanded view of the bifurcation map near the first
emergence of chaos.

over about βmk ∈ [.45, 1]. This would presumably return eventually to a period-one forced
solution, but we ceased computing beyond βmk = 1 since this value is already unfeasibly



200 L. DENHOLM ET AL.

(a)

(b)

(c)

Figure 5. The two kangaroo sub-populations susceptible Sk (in blue) and recovered Rk (in red), for a
period-one, two and three solution at three different values of βmk . (a) Kangaroo sub-populations with
time, for a period-one solutions, (b) Kangaroo sub-populations with time, for a period-two solutions,
and (c) Kangaroo sub-populations with time, for a period-three solutions.
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large: in the midst of an epidemic, most of the susceptible population could be converted
on any given day.

An enlarged view of the first entry to chaos is presented in Figure 4(b). Here, the
period-one solution at the very left of the diagram can clearly be seen undergoing a period-
doubling bifurcation near βmk = .13, and then a further doubling to a period-four solution
occurs at about βmk = .147. A cascade of period-doubling bifurcations then occurs in a
narrow interval of βmk values, leading to full deterministic chaos at about βmk = .155. A
very narrow window of period-three solutions may also be visible at about βmk = .161.
Quasi-periodic forced solutions were not encountered in the parameter range studied.

Time sequences are illustrated in Figure 5, for three different types of forced solutions
at three different values of the interaction parameters βmk = βkm encountered in Figure
4. The first result, in Figure 4(a), shows the susceptible Sk and recovered Rk kangaroo
sub-populations for βmk = .12. Some results for this case have already been encountered
in Figure 3(a), and the graph clearly shows a period-one solution, after initial transients
have decayed away, in which the response period is equal to the forcing period 1/f .
The same two kangaroo sub-populations are shown in Figure 5(b), at the larger value
βmk = .14. The period-two behaviour seen for this value of βmk from Figure 4 is clearly
evident in Figure 5(b), since the response now occurs at the double value 2/f of the
forcing period. This case was encountered previously in Figure 3(b), and since it involves a
fundamentally non-linear solution type, the linearized approximation in that diagram was
not able to approximate this behaviour accurately, at least for this large forcing amplitude.
The final diagram presented in Figure 5(c) shows the 3-period solution obtained at the
value βmk = .2. Clearly the solution is responding at three times the forcing period, as is
evident in the diagram.

A chaotic solution is depicted in Figure 6 for the same two kangaroo sub-populations
as in Figure 5. The scale on the horizontal axis is again in years, except that now the
time is shown over the much later (and longer) interval 900 < ft < 1, 000 to ensure that
transients had died out. Here, the populations, although bounded, are nevertheless quite
unpredictable and this apparent randomness in these kangaroo sub-populations affected
by RRV may be an important factor in the spill-over effect of the disease into human
populations.

We have plotted in Figure 7 Poincaré cross-sections based on the variables Sk and Sm.
These were obtained by running the numerical solution for the non-linear model forward
in time for 500 years, after an initial 500–years burn-in period for the system to eliminate
transient effects. In a similar manner to the results in Figure 4, a solution ‘point’ (Sk, Sm) is
plotted at each value of the forcing period, so that a single point would represent a period-
one solution, two points would correspond to a period-two solution, and so on. Figure
7(a) illustrates the results at a value βmk = .155 within the transition to chaos, whereas
Figure 7(b) shows a value βmk = .165 at which chaos is well advanced. In part (a), the
annually sampled points describe parts of a curvilinear region and in part (b), the region is
completely described with some signs of ‘fuzziness’ indicating chaos. The three corners of
the region correspond to the three points of the nascent 3-cycle which appears for larger
βmk.
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Figure 6. The two kangaroo sub-populations susceptible Sk (in blue) and recovered Rk (in red), for a
chaotic solution at βmk = .16.

3.2.1. Ecological interpretation
Assuming seasonality of the abundance of mosquitoes and the reproductive rates of
kangaroos, increasing the rate of RRV transmission between species results in variable
frequencies of RRV outbreaks. These can include annual, every two years, every three
years, or even unpredictable outbreaks (chaos). The relationship between the transmission
rate and the frequency of outbreaks is not necessarily straightforward. This means that the
combination of seasonal abundance and reproduction in mosquitoes and kangaroos can
result in complex epidemic patterns.

4. Conclusions

In this paper, we have formulated a newdynamicmodel that seeks tomodel RRVas it reser-
voirs in a marsupial population, in this case kangaroos, and is transmitted by mosquitoes
acting as the vector. The kangaroos are assumed to divide into the usual Kermack–
McKendrick three sub-populations of susceptible, infected and recovered, whereas the
mosquitoes are modelled as having only susceptible and infected sub-populations. Trans-
mission is taken to occur through a frequency-dependent mechanism, a widely-accepted
formulation for mosquito-borne disease modelling and other systems where outbreaks
are linked to reproductive cycles, such as that involving Tasmanian Devil Facial Tumour
Disease (Beeton & Forbes, 2012; McCallum et al., 2009). We showed that there are two
equilibria in this model; the first is a trivial state in which the birth rate of mosquitoes
is so high (although not biologically unrealistic over short time intervals) that the RRV
disease simply washes through the mosquito population without any complex dynamics.
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(a)

(b)

Figure 7. Two Poincaré cross-sections, illustrated using the susceptible sub-populations for the two
species. (a) Poincaré cross-section for βmk = 0.155 and (b) Poincaré cross-section for βmk = 0.165.

The second, however, is a more complex steady state in which all sub-populations of both
species are affected. These two equilibria undergo a transcritical bifurcation at a particular
value of the mosquito birth rate.
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A linearized solution has beenderived for the seasonally forcedmodel, assuming that the
forced oscillations occur as small perturbations to the second, more complex, equilibrium
population distribution. Following Hadley and Forbes (2009), the solution is sought as
a pure response to the seasonal forcing, so that it applies after transients due to initial
conditions have all died away. It is found to give a reasonably accurate approximation
in cases where the non-linear forced solution behaves as a period-one forced solution,
for small to moderate forcing amplitudes. Linear resonances have been sought in this
approximate solution but do not occur, since the more complex equilibrium point of the
unforced system permits no oscillatory behaviour, either through the formation of a centre
or a Hopf bifurcation (unlike the microbial trophic system studied by Hadley and Forbes
(2009) in which primary resonance occurred as the result of interaction with a centre).

A bifurcation analysis of the fully non-linear system under seasonal forcing has been
undertaken, and confirms that extremely complex behaviour can indeed occur. We have
demonstrated that period-doubling sequences to deterministic chaos are present in the
forced solution, and 3-cycles have also been obtained, as therefore expected. This illustrates
that the dynamics of a disease such as RRV, that is spread by mosquitoes and reservoirs
in another species, can be extremely complex and essentially unpredictable in certain
circumstances. The dynamics of human RRV outbreaks vary across Australia (Russell,
2002). In northern Australia, the dynamics are consistently annual and it is notable
that, while vector dynamics are seasonal, marsupial reproductive dynamics are not. The
dynamics of RRV outbreaks become progressively multi-annual and less predictable as
one moves latitudinally south, where both vector populations and marsupial reproductive
dynamics are seasonal. Thus themechanistic understanding generated by the present study
has an important role in fundamental knowledge for the understanding of RRV outbreaks
in human populations.
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