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Abstract

One conservation method of reducing species loss is to augment a declin-
ing/threatened wild population with individuals from a captive-bred or stable,
wild population. This method is known as species augmentation. We have
modeled the change in the frequency of a detrimental allele in a threatened pop-
ulation using the continent-island genetic population model. We use optimal
control theory to determine augmentation strategies which minimize the pres-
ence of the detrimental allele in an endangered population in minimum time while
minimizing the cost of augmenting the endangered population. We present the
construction of the optimal control formulation, the necessary conditions for an
optimal control, the characterization of an optimal control, the algorithm for
computing numerical solutions, and some numerical simulations. Additionally,
we discuss some of the challenges of systematically exploring the effects of un-
certain parameters in time minimizing optimal control problems and demonstrate
one method for quantifying the sensitivity of the optimal control strategy with
respect to uncertain parameter values.

Keywords: optimal control theory, sensitivity analysis, species augmentation,
population genetics, continent-island model

1 Introduction

Over the past four decades a significant proportion of ecology research has focused on study-
ing and preserving biodiversity. More recently, there has also been interest in studying and
preserving the genetic diversity within single populations. One conservation method of re-
ducing species loss is to augment a declining/threatened wild population with individuals
from a captive-bred or stable, wild population. This method is known as species augmen-
tation. The term genetic augmentation is applied when the augmentation is specifically
designed to alter the genetic diversity of the threatened population. A variety of population
studies of specific threatened species have recommended the use of augmentation (often in
conjunction with other conservation policies) as a means of preventing extinction and/or
promoting population growth. See [10, 12, 13, 15, 18, 24] for some examples.

An example of an augmentation project that took genetic factors into consideration
is the Florida panther augmentation. In the 1980s and early 1990s the Florida panther
(Puma concolor coryi) population had been reduced to roughly 20–30 individuals (in the
wild) [2, 23] due to a long history of legal hunting of Florida panthers and several decades
of habitat loss [1, 23]. In 1995, eight female Texas panthers (Puma concolor stanleyana) of
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breeding age were introduced into the Florida panther population in an effort to increase
low genetic diversity which was causing genetic defects such as kinked tails, heart defects,
and one or both testicles not descending in mature males [16, 23]. In 1995 Hedrick used the
Continent-Island model and an adaptation of the Continent-Island model which included
the effects of selection to examine the genetic restoration of the endangered Florida panther
by augmenting the dwindling population with female Texas panthers [13].

The standard Continent-Island model in population genetics was originally proposed by
Seawell Wright in the 1930s [26]; it tracks the change in the allele frequency of an isolated
(island) population due to gene flow from a large source (continent) population [14, 26].
Although gene flow may generally occur in both directions between two populations, in the
Continent-Island model it is assumed that any migration from the island to the continent
has a negligible effect on the continent allele frequencies. Additionally, the Continent-Island
model assumes the allele frequencies of the isolated population are not changing due to other
causes like natural selection, genetic drift, non-random mate selection, etc.

Suppose we are interested in a gene with two alleles A1 and A2. Let qt be the frequency
of A2 (which we assume to be the recessive allele) in the isolated population in generation t
after the source population migrates into the isolated population. Let q̂ be the frequency of
A2 in the source population, and we assume this frequency is constant. Then the Continent-
Island model is given by

qt+1 = (1� α)qt + αq̂ = qt � α(qt � q̂)

where α is the proportion of the island population which are migrants from the continent
(thus 0 � α < 1). Note, we assume the genotypes of the migrants in each generation are
in proportion with the genotypes of the entire continent population. Offspring born from
migrant/migrant or migrant/resident matings are both considered island residents.

It can be shown, using induction that

qt = (1� α)tq0 +
�
1� (1� α)t

�
q̂.

Notice, if α = 0, then qt = q0 for all t, and if 0 < α < 1 then qt ! q̂ as t!1.

Hedrick used the Continent-Island model to evaluate specific augmentation policy recom-
mendations for the Florida panther and determine the conditions under which the genetic
restoration would be successful [13]. Since then Bodine et al. have used optimal control
theory to determine optimal species augmentation strategies for threatened and endangered
populations using continuous and discrete models [5, 6]. However, the models used by
Bodine et al. did not simulate population genetics. In each of the models presented by
Bodine et al. it was assumed that at each time step natural resource managers could control
the rate of movement from the source population to the endangered population.

The remainder of the paper explores the use of optimal control theory in generating op-
timal genetic augmentation strategies for a threatened population. In Section 2, an optimal
control formulation using the Continent-Island model is constructed, the existence of an
optimal control solution is proven, the necessary conditions for an optimal control solution
are derived, and the characterization of an optimal control is found. Section 3, describes
the numerical methods used to generate an optimal control and corresponding state given
a single set of parameter values, and proposes a novel method for exploring how the quali-
tative optimal control strategy varies with uncertain parameter values. Then, in Section 4
numerical results for a few illustrative parameter sets are shown, and the sensitivity of the
qualitative optimal augmentation strategy to the parameters values is shown and discussed.
Lastly, in Section 5 we discuss how this optimal control approach to genetic augmentation is
be used to inform augmentation policy and adapted to include more complicated population
dynamics.
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2 Optimal Control Formulation: Controlling One-way
Gene Flow

Consider an isolated and endangered population suffering from the repercussions of a high
frequency of a recessive allele with detrimental effects. In an effort to reduce the nega-
tive effects of the recessive allele and to preserve the endangered population, individuals
from a source population are introduced into the endangered population. Like Hedrick,
we can model the frequency of the recessive allele in the endangered population using the
Continent-Island model where the island population represents the endangered population
and the continent population represents the source population for augmentation. However,
we will assume that the number of source population individuals being introduced into
the endangered population at each time step can be controlled, as it would be a species
augmentation project. The objective in controlling the number of individuals augmenting
the endangered population at each time step is to minimize the time it takes to lower the
frequency of the recessive allele within the endangered population to the frequency of the
recessive allele in the source population while also minimizing the number of individuals
which have to be translocated into the endangered population, thus minimizing the cost of
the augmentation project. We use optimal control theory to analyze this problem.

Define the set

Ω =
�

(α, T ) j α = [α0, α1, α2, . . . , αT�1], 0 � αt � αmax < 1 for all t, and T 2 Z+
	
. (1)

We wish to minimize the objective functional

J(α, T ) = C0(qT � q̂)2 +
T�1X
t=0

�
C1α

2
t + C2αt

�
+ C3(T + 1) (2)

over the set Ω subject to the state equation

qt+1 = (1� αt)qt + αtq̂ (3)

where qt is the frequency of the recessive allele in the endangered population in generation t,
q0 is the (known) initial frequency of the recessive allele in the endangered population,
q̂ is the (constant) frequency of the recessive allele in the source population, αt is the
proportion of the island population at generation t which are translocated from a source
population, C1 and C2 are non-negative cost coefficients (with at least one coefficient being
non-zero), and C0 and C3 are positive coefficients which balance the relative importance
of minimizing the difference between the recessive allele frequency in the endangered and
source populations, minimizing the final time, and minimizing the total cost of translocation.
Since the endangered population has a high frequency of the recessive allele, we assume q0 is
close to 1 and that q0 > q̂. Note, in minimizing the objective functional, we are minimizing
the difference between recessive allele frequencies of the endangered and source populations,
the total time, and the cost of translocating individuals from the source population into the
endangered population.

We assume costs can be both linearly and nonlinearly dependent on the control. Since
each αt corresponds to a proportion of the threatened population at time t, linear costs cor-
respond to costs of augmentation that increase linearly with the proportion of the threatened
population which comes from the source population at each time step. Note costs that would
increase linearly with the number of individuals translocated (at each time step), would also
increase linearly with respect to the proportion of the threatened population which are
translocated individuals (at each time step). An example of such a cost is the average cost
for transporting each individual which may include a medical examination and/or various
vaccinations. An example of a cost which does not increase linearly with respect to the
number of individuals translocated or proportion of the threatened population which are
translocated individuals (at each time step) is the cost of finding suitable individuals for
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translocating. Natural resource manager might choose to only translocate individuals of
breeding age (as was done in the Florida panther augmentation [16] and the North Cascade
grizzly bear augmentation [24]). Since the search time for finding increasing quantities of
suitable individuals for augmentation increases at a faster than linear rate, the correspond-
ing cost also increases at a faster than linear rate. Here for simplicity, we represent the
nonlinear cost as a quadratic cost.

2.1 Existence of an Optimal Control

Theorem 2.1. Given the optimal control formulation in Equations (2)-(3), there exists a
pair (α�, T �) such that J(α�, T �) � J(α, T ) for all (α, T ) 2 Ω where Ω is the set defined
in Equation (1). Furthermore, if T � is the minimizing final time, then T � � J(α1, 1)/C3,
where α1 is an optimal control given final time T = 1.

Proof. Given the optimal control formulation in Equations (2)-(3), suppose (α, T ) 2 Ω where
Ω is the set defined in Equation (1). Then α is a vector of length T � 1 where each element
of α is bounded between 0 and αmax. Note, the state qt is also bounded since q 2 (0, 1),
q̂ 2 [0, 1), and qt+1 is a convex combination of qt and q̂, and thus qt 2 (0, 1). Thus, for each
time T there exists an αT such that J(αT , T ) � J(α, T ) for all α of length T � 1.

Now, suppose we create a sequence of objective functional values fJkg1k=1 where Jk =
J(αk, k), and αk is an optimal control given final time k. Note that each term in the
objective functional shown in Equation (2) is positive, thus Jk > 0 for all k. Additionally,
for any particular k

Jk = J(αk, k) � C3k � C3 (4)

for all k. Thus, the values of the objective functional J(α, T ) are bounded below by C3 for
all (α, T ), and therefore the infimum of J(α, T ) over all pairs (α, T ) exists. Furthermore,
since infα,T J(α, T ) exists, there exists a subsequence Jkn = J(αkn , kn) such that

lim
kn!1

Jkn = inf
α,T

J(α, T ).

Since fJkng
1
n=1 is a convergent subsequence it is a bounded subsequence. Thus, there exists

some M such that C3 � Jkn �M . Note, by Equation (2),

Jkn = C0(qkn � q̂)2 +

kn�1X
t=0

�
C1

�
αknt

�2
+ C2α

kn
t

�
+ C3kn

and since each term in the sum is positive, C3kn � M or kn � M/C3. Therefore, the
subsequence has a finite number of distinct terms. As a result, there exists a value T � �
M/C3 such that JT∗ is the minimum of fJkng. Since the infimum is contained in the
subsequence fJkng it is contained in the sequence fJkg, and thus there exists a pair (α�, T �)
such that α� is an optimal control given final time T � and J(α�, T �) � J(α, T ) for all
(α, T ) 2 Ω.

Furthermore, when k = T �, by Inequality (4), C3T
� � JT∗ . Since JT∗ � Jk for all k,

C3T
� � JT∗ � Jk for all k, and thus

T � � Jk

C3
=
J(ak, k)

C3
, (5)

for all k. Since Inequality (5) holds for all k, it holds for k = 1, and thus

T � � J(a1, 1)

C3
. (6)

�
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Though the uniqueness of optimal solutions was not shown, we point out that it can
easily be shown by the structure of the objective functional that any optimal solution for
which the values αt are not identical for all t = 1, . . . , T �, cannot be unique. For example, if
an optimal solution with T � = 3 is αT

∗
= [a, b, c], then all permutations of [a, b, c] produce

the same value for the objective functional, and are thus also optimal.

2.2 Necessary Conditions

Since the final time T is a variable we derive the necessary conditions in two steps. First,
supposing a given final time T , we determine the necessary conditions on the control α using
a modification of Pontryagin’s Minimum Principle [8, 11, 17, 22, 25] and using the necessary
conditions derive a characterization of the optimal control. At this point, we will have a
characterization of the optimal control for any given final time T . Thus, we can create a
sequence of optimal and controls, and thus a sequence of objective functional values for each
T = 1, 2, . . . . Assuming there exists a T � which minimizes the objective function, we can
determine an upper bound for T �. See [7, Chapter 8] for further details about finding an
upper bound on T �.

For a given final time T we use an adaptation of Pontryagin’s Minimum Principle for
discrete-time difference equations [8, 11, 17, 22, 25].

Theorem 2.2. Given a final time T , suppose α� =
�
α�0, α

�
1, . . . , α

�
T�1

�
is an optimal control

vector containing the optimal control value α�t at each time step t = 0, 1, . . . , T � 1 for the
optimal control formulation in Equations (2)-(3). Let q� = [q�0 , q

�
1 , . . . , q

�
T ] be the correspond-

ing state solution. Then there exists an adjoint variable such that λt = (1 � αt)λt+1 and
λT = 2C0(qT � q̂). Furthermore, the optimal control is represented by

α�t = min

�
max

�
0,
λt+1(qt � q̂)� C2

2C1

�
, αmax

�
for C1 > 0 and C2 � 0,

α�t =

8>><>>:
αmax if C2 < λt+1(qt � q̂)
C2 � λt(qt+1 � q̂)

C2
if C2 = λt+1(qt � q̂)

0 if C2 > λt+1(qt � q̂)

for C1 = 0 and C2 > 0.

Proof. Suppose α� =
�
α�0, α

�
1, . . . , α

�
T�1

�
is a vector of optimal controls with correspond-

ing state q� = [q�0 , q
�
1 , . . . , q

�
T ]. Note that the objective functional in Equation (2) can be

rewritten in the form

J(α, T ) = C0(qT � q̂)2 +

T�1X
t=0

�
C1α

2
t + C2αt

�
+

TX
t=0

C3,

and thus using Pontryagin’s Minimum Principle with discrete time difference equations [8,
11, 17, 22, 25], the Hamiltonian is

Ht = C1α
2
t + C2αt + C3 + λt+1 [(1� αt)qt + αtq̂]

and the adjoint equation is

λt =
∂Ht

∂qt
= λt+1(1� αt) (7)

with transversality condition giving a condition on the adjoint equation at the final time

λT = 2C0(qT � q̂).
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In order to utilize Pontryagin’s Minimum Principle, the Hamiltonian Ht must satisfy the
concavity condition

∂2Ht

∂α2
t

� 0

for all time steps t [7]. Hence

∂Ht

∂αt
= 2C1αt + C2 � λt+1(qt � q̂), (8)

∂2Ht

∂α2
t

= 2C1 � 0

since C1 � 0. Since the concavity condition is satisfied, Pontryagin’s Minimum Principle
tells us that the necessary conditions on αt are8><>:

α�t = αmax if ∂Ht

∂αt
< 0

0 � α�t � αmax if ∂Ht

∂αt
= 0

α�t = 0 if ∂Ht

∂αt
> 0.

In order to use these necessary conditions to derive a characterization of the optimal
control α�, we must consider two cases: (1) C1 > 0 and C2 � 0, and (2) C1 = 0 and C2 > 0.

Case 1: Let C1 > 0 and C2 � 0. When ∂Ht

∂αt
> 0, then α�t = 0. Thus,

C2 � λt+1(qt � q̂) > 0 ) λt+1(qt � q̂)� C2

2C1
< 0. (9)

Note, we can divide by 2C1 without changing the sign of the inequality because C1 > 0.
Lastly, when ∂Ht

∂αt
< 0, then α�t = αmax. Thus,

2C1αmax + C2 � λt+1(qt � q̂) < 0 ) λt+1(qt � q̂)� C2

2C1
> αmax. (10)

When ∂Ht

∂αt
= 0, then

2C1α
�
t = λt+1(qt � q̂)� C2 ) α�t =

λt+1(qt � q̂)� C2

2C1
provided 0 < α�t < αmax. (11)

Combining conditions (9)-(11), we obtain a characterization of the optimal control when
C1 > 0 and C2 � 0,

α�t = min

�
max

�
0,
λt+1(qt � q̂)� C2

2C1

�
, αmax

�
. (12)

Case 2: Let C1 = 0 and C2 > 0, then Equation (8) becomes

∂Ht

∂αt
= C2 � λt+1(qt � q̂). (13)

When ∂Ht

∂αt
> 0, then α�t = 0 and C2�λt+1(qt� q̂) > 0. When ∂Ht

∂αt
< 0, then α�t = αmax and

C2�λt+1(qt� q̂) < 0. Since Equation (13) does not explicitly depend on αt we cannot solve
∂Ht

∂αt
= 0 for α�t as we did in Case 1. Instead, we use the state equation to rewrite the λt+1

term in Equation (13). Note, since 0 < 1� αt < 1 for all t, we can rewrite Equation (7) as

λt+1 =
λt

1� αt
. (14)
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Substituting the right-hand side of Equation (14) into (13) we obtain

∂Ht

∂αt
= C2 �

λt
1� αt

(qt � q̂).

Setting ∂Ht

∂αt
= 0 and solving for α�t we obtain

α�t =
C2 � λt(qt � q̂)

C2
. (15)

We can verify that the a�t in Equation (15) using the properties of the state qt, the
control at and the adjoint λt. Since 0 � αt � αmax < 1, 0 � q̂ < 1, and q0 > q̂, the sequence
fqtg1t=0 is a decreasing sequence and 0 � qt� q̂ � 1. By Equation (7) and the bounds on αt,

λt � λt+1

λt (qt � q̂) � λt+1 (qt � q̂)
C2 � λt (qt � q̂) � C2 � λt+1 (qt � q̂) .

However, the right-hand side of the last inequality is zero when ∂Ht

∂αt
= 0 then C2 = λt+1(qt�

q̂) and the last inequality becomes C2 � λt (qt � q̂) � 0.
Additionally, by Equation (7) and the bounds on αt,

λt � λt+1(1� αmax)

λt (qt � q̂) � λt+1 (qt � q̂) (1� αmax)

C2 � λt (qt � q̂) � C2 � λt+1 (qt � q̂) (1� αmax).

However, when ∂Ht

∂αt
= 0 then C2 = λt+1(qt � q̂), and thus the last inequality becomes

C2 � λt (qt � q̂) � C2 � C2(1� αmax) = C2αmax.

Since C2 > 0, when ∂Ht

∂αt
= 0 then

0 � C2 � λt (qt � q̂)
C2

� αmax.

Thus,

α�t =

8>><>>:
αmax if C2 < λt+1(qt � q̂)
C2 � λt(qt � q̂)

C2
if C2 = λt+1(qt � q̂)

0 if C2 > λt+1(qt � q̂).

�

3 Numerical Methods

Recall the optimal solution to Equations (1)-(3) requires the minimization of the objective
functional, Equation (2), over both the control α, and the final time T . Each numerical
optimization method we discuss in this section was a part of a meta-algorithm to find the
optimal pair (αT

∗
, T �) which minimizes the objective functional J(αT , T ). Using a particular

numerical optimization method, we determined the optimal control vector (αT ) and value
of the objective functional (J(αT , T )) for each final time T = 1, 2, . . . , Tmax, where Tmax is
the upper bound on T � as defined by Inequality (6), i.e.

Tmax =
J(α1, 1)

C3
. (16)
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This creates a sequence of values JT = J(αT , T ). The value of T for which JT is minimized
is the minimizing final time T �, thus yielding the optimal pair (αT

∗
, T �).

The forward-backwards sweep method is typically used to numerically determine solu-
tions to optimal control formulation whose underlying state dynamics are in either continu-
ous or discrete time. For a given final time, the forward-backwards sweep method starts by
making an initial guess for the control vector, then solves the state equations forward in time
using the state equations initial conditions. Then, using the guessed control and the newly
found solution to the state equations, the adjoint equations are solved backwards in time
since the adjoint equations have terminal conditions (the transversality conditions). At this
point, the control vector is updating using the characterization of the optimal control and
the solutions of the state and adjoint variables. This process is repeated until the successive
iterates of control vectors are sufficiently close. The convergence of this iterative method
for optimal control formulations whose underlying state dynamics are continuous in time is
based on the work of Hackbush [9]. However, convergence for optimal control formulations
whose underlying state dynamics are discrete is not guaranteed. In the case the optimal
control formulation presented in Equations (1) - (3), for a given final time different initial
guesses for the control vector led to different (non-optimal) solutions. Thus, we turned to
other methods for numerically determining solutions.

To establish a baseline for comparing the results of any new method, we used a brute
force method to determine the solutions to a small selection of parameter scenarios. For a
given final time T , the brute force method starts by discretizing the range of the control,
[0, αmax], into n subintervals creating n+1 possible values for each component of the control
vector. We refer to n as the mesh size of the discretization. Given the discretization with
mesh size n, we next evaluate the objective functional for all possible permutations of
the components of the control vector. Since the objective function depends not only on the
control, but on the state variable q, the state equation is solved iteratively, given the control.
The permutation of the control vector which minimizes the objective function is taken to
be the optimal control for the given final time.

Though the brute force method is guaranteed to find the minimum value of the objective
functional given a final time T and discretization of mesh size n, the method is computation-
ally intensive and the minimum value of the objective functional depends on the mesh size.
Figure 1 shows the minimum value of the objective functional for a particular parameter set
given a final time of T = 3 over mesh sizes from n = 6 to n = 50. The mesh size at which
the objective function is minimized (given the range of mesh sizes tested) is n = 43.

Given that we cannot rely on the forward-backward sweep method, and the brute force
method is too computationally intensive we must use alternative optimization methods that
directly minimize the objective functional in Equation (2). We use the Global Optimiza-
tion Toolbox from MATLAB R. This toolbox offers multiple methods that search for global
solutions to problems including: global search, multistart, pattern search, and genetic algo-
rithms [19].

Optimization solvers attempt find a local optimal value for the objective functional.
These algorithms locate the optimal solution in the basin of attraction of the starting point
of the search. Global Optimization Toolbox solvers are intended to search in several basins of
attraction, to try to find a global solution. Nevertheless, none of the solvers has an algorithm
that can assure a global solution [19]. We use two different methods. The MultiStart algo-
rithm, that uses a local solver with a broad range of starting points and the Patternsearch
algorithm that searches in several basins at once, using direct search methods [19]. Never-
theless, none of the solvers has an algorithm that can assure a global solution [19].

We chose the MultiStart algorithm because it generates uniformly distributed starting
points, runs all starting points, allows a choice for the local solver, and can run several
starting points in parallel. These characteristics allow this algorithm to search thoroughly
for a global minimum [19]. For local solver we use fmincon. When the gradient or Hessian
are not provided the solver approximates the derivatives numerically. Also fmincon is one of
the best options for a smooth nonlinear objective functional with bounds over the control,
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Figure 1: Value of J(α3, 3) over different mesh sizes. Parameter values for this simulation are
q0 = 0.997, q̂ = 0.12547, αmax = 0.11397, C0 = 35.8732, C1 = 86.6173, C2 = 14.6181, C3 = 0.87387.
The mesh size at which the objective function is minimized is circled.

like our objective functional. Fmincon uses a trust region approach to minimize the objective
functional [20].

Alternative to MultiStart, we used Patternsearch is a direct search scheme that does not
involve any information on the derivatives of the objective functional. Direct search methods
search using nearby points of the current point, looking for one that has a lower value of
the objective functional. This method is commonly used when the objective functional is
not differentiable or not continuous [19].

The algorithm’s stopping criteria limits the number of iterations in the optimization. In
our case, the algorithm ends when the last step is smaller than F or X [20]. The value F is
a bound on the change in the value of the objective functional during each step. If��J(αTi , T �− J(αTi+1, T

��� < F,

where αTi is the control vector in iteration i, then the iteration ends. The bound for the size
of the step is X, therefore the solver also stops if [19, 20],��αTi − αTi+1

�� < X.

For our numerical approximations we provide random starting points. For both algo-
rithms we use F = X = 10−20. Both algorithms have a limit for the number of iterations
and for the maximum number of objective functional evaluations used, and neither of those
was achieved in any of our searches. In our optimal control formulation, for all parameters
combinations both methods arrived to the same control solution.

3.1 Parameter Sensitivity Analysis

The optimal control formulation presented in Equations (1)-(3) contains the state param-
eters q̂ and q0, and the control parameters C0, C1, C2, C3, and αmax. Given a particular
threatened population, a natural resource manager may be able to estimate q̂, q0, and αmax

with some certainty, but the exact values would not be known. Additionally, a natural
resource manager might be interested in experimenting with different cost coefficients (C0,
C1, C2, C3) to explore the impact of changing the relative importance of each objective.
Thus, there is a need for methods of exploring the sensitivity of optimal control strategies
to uncertain parameter values.
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Table 1: Ranges for state and control parameters

Parameter Description Min Max

q0
initial recessive allele frequency of threatened popula-
tion

0.80 1.00

q̂ recessive allele frequency of source population 0.00 0.20

αmax

maximum proportion of threatened recessive alleles
which are from the source population (in each gen-
eration)

0.05 0.20

C0
cost coefficient; relative importance of minimizing
(qT − q̂)2

30 50

C1
cost coefficient; relative importance of minimizing
non-linear costs associated with augmentation

1 100

C2
cost coefficient; relative importance of minimizing lin-
ear costs associated with augmentation

1 20

C3
cost coefficient; relative importance of minimizing the
final time

0.5 1.5

Estimates for ranges of the state and control parameters are given in Table 1. The
ranges of q0 and q̂ were chosen to maintain the assumptions that q0 is close to 1, and q0 > q̂.
The range of αmax was chosen to allow up to 5 - 20% of the threatened population in each
generation to be comprised of translocated individuals. The ranges of the cost coefficients
(C0, C1, C2, C3) were chosen so that the relative magnitudes of the terms C0(qT � q̂)2,PT�1
t=0

�
C1α

2
t + C2αt

�
, and C3(T+1) have the same order of magnitude. Note, if one of these

three terms is orders of magnitude larger than the other two, then the relative importance
of the competing objectives represented by the other two terms becomes effectively zero.

To efficiently explore the parameter space defined by the parameter ranges given in
Table 1, we used Latin hypercube sampling (LHS) to sample each parameter range and
generate 1000 unique parameter sets. For details about generating a Latin hypercube sample
see [4]; for an example of using LHS for the uncertainty and sensitivity analysis of a system of
ordinary differential equations see [3]. The optimal control solution and corresponding state
solution for each of the 1000 unique parameter sets were then determined using the numerical
methods described above. Recall, for the optimal control formulation given in Equations (1)–
(3), the optimal solution is the pair (αT

∗
, T �), where T � is an integer representing the

minimizing final time, and αT
∗

is an optimal control vector of length T �. Since this approach
is more computational intensive, we run our code in parallel, with four workers. For the
Multistart approach we determine the number of starting points base in the length of T �.
Therefore for higher values of T � we use more starting points.

We examined the sensitivity of several different solution outputs to variation in the pa-
rameters. The sensitivity of the objective functional to parameter variation was determined
by calculating the partial rank correlation coefficients (PRCCs) between each of the param-
eters (using uniform probability density functions over the ranges given in Table 1) and the
value of the objective functional at the optimal solution. The magnitude of each PRCC
value indicates the strength of linear correlation between the parameter value and objective
functional value, while the sign of each PRCC value shows whether the correlation is positive
or negative. Table 2 shows the resulting PRCC values.

To determine the sensitivity of the minimizing final time to parameter variation, we
first categorize the optimal solution for each parameter set by its minimizing final time T �.
Then for each parameter, we generate box plots and density plots of each parameter value
over the range of minimizing final times. These plots reveal to which parameter values the
minimizing final time is most sensitive.
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Table 2: Sensitivity of the objective functional to parameter variation using Partial Rank Corre-
lation Coefficients (PRCCs).

Parameter
PRCC
Value

q̂ −0.9308

q0 0.8920

C0 0.8881

C2 0.7050

C3 0.6811

C1 0.2484

αmax −0.1968

To determine the sensitivity of the optimal control vector αT
∗

to parameter variation,
we start by categorizing the optimal control vector based on qualitative traits. In all of
our numerical simulations the optimal augmentation strategy was augment with the same
proportion at each time step, i.e. αt is the same for all t = 1, . . . , T �. Thus, for simplicity
in this analysis, we divide optimal control solutions into two categories: (1) αt = αmax for
all t, and (2) αt < αmax for all t. Note, the first strategy is to apply the maximum amount
of control at every time step, where as the second category is to apply a lesser amount of
control at each time step. As with the minimizing final time, for each parameter we then
generate box plots and density plots of each parameter value over each qualitative optimal
control strategy.

4 Numerical Results

In numerically solving for the optimal solution to Equations (1)–(3), we find the optimal
solution given each final time T = 1, 2, . . . , Tmax, where Tmax is given in Equation (16).
Before we performed the uncertainty and sensitivity analysis, we examined how the final time
changed the value of the objective functional for a few select parameter sets. Figure 2 show
the value of J(αT , T ) for values of T = 1, 2, . . . , Tmax given parameter values q0 = 0.997,
q̂ = 0.12547 (in Figure 2a), αmax = 0.11397, C0 = 35.8732, C1 = 86.6173, C2 = 14.6181,
C3 = 0.87387 (in Figure 2b). In Figure 2a, the value of C3 is varied from 0.5 to 2.0, and in
Figure 2b the value of q̂ is varied from 0.01 to 0.25. In each parameter scenario, we see that
the value of Tmax is much larger than the value of T �, the minimizing final time shown as
the circled point on each curve. Additionally, we see that as the value of C3 is increased,
the value of the objective functional increases, but as the value of q̂ is increased, the value
of the objective functional decreases. Note, all parameters other than C3 in Figure 2a and
q̂ in Figure 2b remained unchanged. Figure 3 shows how the value of Tmax decreases as the
values of C3 and q̂ are increased for the parameter scenarios shown in Figure 2. Note, Tmax

appears to decay linearly with respective to q̂, but nonlinearly with respect to C3. This is
likely due to the fact that Tmax is defined as a fraction whose denominator is C3.

To efficiently examine the sensitivity of the objective functional, minimizing final time,
and optimal control strategy to variation in uncertain parameters, we numerically solved
Equations (1)–(3) for the optimal solution for each of the 1000 unique parameter sets gener-
ated using the LHS method given the parameter ranges defined in Table 1. The sensitivity
of the objective functional to parameter uncertainty is shown in Table 2 by the values of
the PRCCs between each of the parameters and the value of the objective functional at the
optimal solution. Note the correlation between C3 and the objective functional is positive,
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and the correlation between q̂ and the objective functional is negative, as seen in the selec-
tive set of parameter scenarios in Figure 2. Thus, as the relative importance of minimizing
the final time (C3) is increased, the value of the objective functional is increased. However,
as the frequency of the recessive allele in the source population is increased, the value of the
objective functional is decreased.

We define the objective functional as having little sensitivity to parameters with PRCC
values whose magnitudes is less than 0.5, moderate sensitivity to parameters with PRCC
values whose magnitude is between 0.5 and 0.8, and high sensitivity to parameters with
PRCC values whose magnitude is above 0.8. Thus, we see that the objective functional
has high sensitivity to parameters q̂, q0, and C0. This means that small increases in these
parameter values will cause large changes in the value of objective functional (increases if
the sign of the PRCC value is positive, and decreases if the sign of the PRCC value is
negative). The objective functional has low sensitivity to C1 and αmax, which means that
small increases in these parameter values will cause only small scale changes in the value of
the objective functional.

Since the minimizing final time (T �) can only take on discrete integer values, we cannot
use PRCCs to measure the sensitivity of T � to parameter uncertainty. Instead, we graph-
ically display the range of parameter values resulting in each minimizing final time (see
Figure 2). Over the 1000 unique parameter sets used, the distribution of minimizing final
times is heavily skewed to the left, as shown in Figure 4. In fact, minimizing final times
above 7 account for only five of the 1000 simulations. Note, that roughly one-third of the
simulations resulted in a minimizing final time of T � = 1, which means there is only one
time step at which the control (the augmentation strategy) can be applied.

Figures 5a-5e show the sensitivity of T � to uncertainty in various parameters. In each
graph, the value of the parameter in each of the 1000 parameter sets is plotted on the
vertical axis. The horizontal axis shows the corresponding values of T � for each parameter
set. For each T � a density plot shows value of the parameter for each parameter set whose
minimizing final time is T �. The overlayed grey region shows the interquartile range of
parameter values with that minimizing final time, the red line shows the median value, and
the blue diamond shows the mean value. The number above each density plot indicates
the number of parameter sets which resulted in the corresponding T � value, and correlates
to Figure 4. Since so few parameter sets results in T � = 8, 9, 10, or 11, no interquartile
range, median or mean values are shown in these cases. It should be noted that though
each graph is showing the variation in a single parameter, all the parameters are varying

(a) C3 = 0.5 (red), 0.6 (orange), 0.7 (yellow),
0.8 (green), 0.9 (cyan), 1.0 (blue), 1.1 (light pur-
ple), 1.2 (dark purple), 2.0 (black).

(b) q̂ = 0.01 (red), 0.05 (orange), 0.10 (yellow),
0.15 (green), 0.20 (cyan), 0.25 (blue).

Figure 2: Value of J(αT , T ) for values of T = 1, 2, . . . , Tmax. Parameter values for each simulation
are q0 = 0.997, q̂ = 0.12547 (in (a)), αmax = 0.11397, C0 = 35.8732, C1 = 86.6173, C2 = 14.6181,
C3 = 0.87387 (in (b)). The mesh size at which the objective function is minimized for each
parameter value is circled.
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Figure 3: Value of Tmax given varying values of
q̂ and C3. Parameter values for each simulation
are q0 = 0.997, q̂ = 0.12547 (when C3 varies,
dashed), αmax = 0.11397, C0 = 35.8732, C1 =
86.6173, C2 = 14.6181, C3 = 0.87387 (when q̂
varies, solid). The value of Tmax is determined
by Equation (16).

Figure 4: The relative frequency of minimiz-
ing final times over the 1000 unique parameter
sets generated using LHS and uniform probabil-
ity density functions over the parameter ranges
given in Table 1. The number above each bar
indicates the number of simulations resulting in
the corresponding minimizing final time.

simultaneously.

The visual display of the parameter values which correspond particular values of T � make
it easier to see trends. For example, we can see that as the values of C0 (see Figure 5a)
and q0 (see Figure 5a) increase, we would on average expect the minimizing final time to
increase. From Figure 5 we can also see that the as the values of C2 (see Figure 5b), C3 (see
Figure 5c), and q̂ (see Figure 5e) increase, we would on average expect the minimizing final
time to decrease. However, since the interquartile ranges on each of these graphs heavily
overlap, the correlations are not strong. The sensitivities of T � to uncertainty in C1 and
αmax are not shown because virtually no correlation existed (all interquartile ranges, median
and mean values were roughly the same over all values of T �).

Figure 5f shows the sensitivity of the optimal control strategy (αT
∗
) to uncertainty in the

parameter αmax. The structure of the graph is similar to those of Figures 5a–5e. However,
instead of categorizing the optimal solution for each of the 1000 unique parameter sets by
the value of T �, we have divided the solutions into two qualitative control strategies. For
each of the 1000 parameter sets, the optimal augmentation strategies was to augment with
the same proportion at each time step, i.e. αt is the same for all t = 1, . . . , T �. Thus, the
two qualitative strategies we defined where (1) αt = αmax for all t, and (2) αt < αmax for
all t. From Figure 5f we see that smaller values of αmax correspond with the optimal control
strategy being to apply the maximum value of the control at every time step, i.e. maximally
augment the threatened population at each time step. When the value of αmax is larger, we
expect on average the optimal strategy to be to apply some amount of control below the
maximum allowable amount. Notice that in Figure 5f the interquartile ranges do not overlap,
and thus we classify this correlation as stronger than the correlations shown Figures 5a–5e.
The sensitivities of the qualitative control strategies to uncertainty in all other parameters
are not shown because virtually no correlation existed (all interquartile ranges, median and
mean values were roughly the same over both qualitative control strategies).

5 Conclusions

The underlying model for the optimal control formulation, the Continent-Island model was
chosen for its simplicity so that we might demonstrate this novel process of parameter
sensitivity analysis applied to an optimal control problem. Despite the simplicity of the
underlying model for the state variable, the parameter sensitivity analysis revealed trends
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(a) T ∗ sensitivity to C0. (b) T ∗ sensitivity to C2.

(c) T ∗ sensitivity to C3. (d) T ∗ sensitivity to q0.

(e) T ∗ sensitivity to q̂. (f) Qualitative control strategy sensitivity to
αmax.

Figure 5: The sensitivity of T ∗ and qualitative control strategies to uncertainty in various pa-
rameters. In each graph, the value of the parameter in each of the 1000 parameter sets is plotted
on the vertical axis. The density plots show the range of the parameter values for each minimizing
final time (graphs (a)–(e)), and for each qualitative control strategy (graph (f)). The shaded grey
regions show the interquartile ranges of the for each qualitative strategy with the red lines showing
the median values, and the blue diamonds showing the mean values. The numbers above each
density plot indicate the number of parameter sets which resulted in the corresponding minimizing
final time or optimal qualitative control strategy.

– 36 –



Letters in Biomathematics

in the optimal augmentation strategies which would not necessarily be evident by testing a
few select parameter sets. For example, C3 is the cost coefficient representing the relative
importance of minimizing the final time. As one would expect, increasing the value of C3

lowers, on average, the expected minimizing final time (see Figure 5c). However, increas-
ing the value of C3 increases, on average, the expected value of the objective functional.
Since the value of the objective functional at the optimal solution represents the relative
total cost of implementing that optimal strategy, we see that there is a trade-off between
implementing a genetic augmentation quickly and implementing an genetic augmentation
at a lower cost. As another example, q̂ is the (constant) frequency of the recessive allele
in the source population. From the sensitivity analysis we see that both the value of the
objective functional and the minimizing final time are negatively correlated to q̂ (see Table 2
and Figure 5e, respectively). In fact, the value of the objective functional is most sensitive
to changes in q̂. However, the qualitative control strategy is not sensitive to the value of q̂.
Thus, if resource managers are using these types of analyses to inform their augmentation
strategies, it would be important to have a good measurement of q̂ for the gene in which
they are interested if they want to compute realistic values of the minimizing final time and
value of the objective functional (relative cost).

It should be noted that Miller Neilan et al. used parameter sensitivity analysis in [21] to
inform the construction of the optimal control formulation for cholera intervention. How-
ever, this is different from the method of parameter sensitivity analysis we developed which
evaluates the sensitivity of the optimal solution and value of the objective functional.

If this optimal control formulation is to be used to inform the augmentation strategies
of a specific species, the values of the cost coefficients could be modified to reflect actual
dollar amounts so that the value of the objective functional represented a true total cost.
Additionally, note that the value of the control at each times step, αt is the proportion of the
threatened population at generation t which are translocated from the source population.
The for actual implementation, these proportions would need to be converted to numbers
of individuals. One extension of this optimal control formulation would be to change the
underlying state equation to a discrete difference equation system which models the pop-
ulation size or density (as Bodine et al. presented in [6]), but which additionally tracks a
measure of genetic fitness within the population.

Typically, resource managers designing genetic augmentations would have a limited set
of feasible strategies to consider. Ultimately, this optimization approach aims to provide a
means of comparing genetic augmentation strategies given uncertain parameters, and our
method of parameter sensitivity analysis enables resource managers to efficiently test a
wide range of cost coefficients and determine the span of possible “optimal” augmentation
strategies given that range.
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