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ABSTRACT

The Zika arbovirus transmitted by the Aedes aegypti mosquitoes
has been shown to be capable of infecting humans via two routes:
the bites of infected vectors and through sexual contacts involving
infected and non-infected persons. There is no treatment and current
prevention or mitigating efforts rely on the use of the Centers for
Disease Control and Prevention recommendations including the use
of insecticide-treated bednets (ITN) and indoor residual spraying (IRS).
In this work, we investigate via a mathematical model, the role of ITN
and IRS as methods for limiting the impact of Zika transmission. We
introduce a model that builds on classical SEIR epidemiological single
outbreak models. We compute the basic and control reproduction
numbers and the final epidemic size in the presence of control
measures ITN and IRS. We derive a gross estimate for the rate of sexual
transmission, during the initial stages of the outbreak, in terms of
prior estimates of the basic reproduction number from related albeit
not sexually transmitted arboviral diseases.
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1. Introduction

Zika is a vector-borne disease transmitted by infectedmosquitoes, primarilyAedes Aegypti,
an effective agent for the transmission of co-circulating diseases, dengue and chikungunya.
Zika’s growing incidence and geographic reach compelled theWorld Health Organization
(WHO) to declare Zika virus infections a global health threat (Fauci & Morens, 2016;
Kuno, Chang, Tsuchiya, Karabatsos, & Cropp, 1998). The situation seems to be unique
for a virus vector-borne disease since the Zika virus can be sexually transmitted within
humans. Further, the fact that Zika virus infections have been linked to microcephaly,
a neurological disease, in new borns of pregnant Zika infected women as well as to the
Guillain–Barre Syndrome, which in extreme cases may cause paraplegia, have made this
emergent disease amost important public health challenge in the Americas (VanDen Berg
et al., 2014).
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Vector control measures are of fundamental importance in the fight against Zika.
Measures that show considerable promise include the introduction of genetically modified
mosquitoes, which include the engineering of resistant mosquitoes to arbovirus infection.
Mathematical models have been used by several researchers to study the transmission
dynamics (Brauer & Castillo-Chavez, 2001, 2012; Ross, 1911) and control of vector-borne
diseases (Blayneh, Cao, & Kwon, 2009; Gao et al., 2016). These models simulate the
effect of different control strategies including mosquito control, reduction of contact with
mosquitoes, avoidance of sexual contact (for Zika), sound environmental management
practices and community education. These types of models are being used to understand
not only the dynamics of the spread of vector-borne diseases but also to conduct test-
bed experiments for the evaluation of the effectiveness of intervention/control measures
aimed at ameliorating their impact at the population level, or at higher levels of organi-
zation and over multiple temporal and spatial scales. A typical framework for many of
the mathematical models include employing classical compartmental models involving
an ordinary differential equation (ODE) system using a Susceptible-Exposed-Infected-
Recovered (SEIR) compartmental structure for the humans interacting with a Susceptible-
Exposed-Infected (SEI) compartmental model for the vector (Brauer & Castillo-Chavez,
2001; Chowell et al., 2007; Yakob & Clements, 2013). These models have been successful
for understanding diseases such as dengue and chikungunya that are also spread by Aedes
aegypti vector. There is, however, evidence fromWHO and CDC that there is also a direct
human sexual transmission component to the Zika disease (Kindhauser, Allen, Frank,
Santhana, & Dye, 2016), and it is, therefore, important to quantify the role of the Zika
sexual transmission through enhanced SEIR-SEI mathematical models, which is one of
the main contributions of this work. Given what is known about the disease, it is also
important to include multiple infectious stages and preventative measures which are also
considered in this paper for the first time for the Zika virus.

Over the last twodecades, twoprominent approaches for controlling vector populations,
recommended by WHO and CDC, involve the use of Insecticide-Treated Mosquito Nets
(ITN) and Indoor Residual Spraying (IRS). Using ITN can help reduce contacts between
mosquitoes and humans at home. Further, mosquitoes that remain within the boundaries
of sprayed homes after their meals can die as a result of IRS. This paper explores the impact
of using selected preventive measures such as ITN and IRS in controlling or ameliorating
the spreadof theZika virus andmakes an indirect effort to assess the potential contributions
of sexually-transmitted Zika infections.

The outline of the paper is as follows. In Section 2, we present the mathematical
framework used to study the transmission dynamics and control of the Zika virus during
a single outbreak. Section 3 carries out the basic analysis of the model identifying the basic
and control reproduction numbers. Estimates of the rate of Zika sexual transmission are
derived in order to assess the contribution of this mode of transmission. Section 4 focuses
on the study of disease dynamics in the presence of intervention measures. Conclusions
are presented in Section 5.

2. Mathematical model

In this work, a model in the spirit of the Ross’ malaria model Ross (1911), which describes
the flow of dynamics of individuals and vector as a function of their epidemiological
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Figure 1. The flow diagram describing the interaction of human-vector populations.
Note: Dashed lines refer to transmission within each population and dotted lines refer to transmission between human-
vector populations.

status is introduced. Human and vector populations are differentiated by the use of the
subscripts h andm, respectively. Various levels of complexity can be considered including
two classes of infections in humans, asymptomatic and symptomatic, which are assumed
to be equally infectious and of similar duration (period of infectiousness) and two modes
of Zika transmission directly through sexual contact and indirectly via an infected vector
(for humans) or via an infected human (for vectors).

The model is organized around the following flow diagram (see Figure 1). Disease
transmission dynamics within this model that incorporates interventions is given by the
following SEIR/SEI differential equations:

Ṡh = −bmh
(
1 − ITN

)
ShIm − bh

(
Ih,a + Ih,s

)
Sh, (1)

Ėh = bmh
(
1 − ITN

)
ShIm + bh

(
Ih,a + Ih,s

)
Sh − νhEh, (2)

˙Ih,s = (1 − q)νhEh − γh,sIh,s, (3)
˙Ih,a = qνhEh − γh,aIh,a, (4)
Ṙh = γh,sIh,s + γh,aIh,a, (5)
Ṡm = μmNm − μmSm − bhm

(
1 − ITN

)
Sm

(
Ih,s + Ih,a

) − (
h · ITN + j · IRS) Sm, (6)

Ėm = −νmEm − μmEm + bhm
(
1 − ITN

)
Sm

(
Ih,s + Ih,a

) − (
h · ITN + j · IRS)Em, (7)

˙Im = νmEm − μmIm − (
h · ITN + j · IRS) Im. (8)

In a population of Nh = Sh + Eh + Ih,a + Ih,s + Rh humans and Nm = Sm + Em + Im
adult female mosquitoes, the susceptible humans Sh are assumed to be bitten by infectious
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mosquitoes Im. These susceptible individuals Sh move to the exposed class Eh after acquir-
ing the disease via sexual transmission or via an infected vector. This transmission is being
modelled via the addition of terms directly proportional to the respective infected human
classes (asymptomatic Ih,a and symptomatic Ih,s) involved in sexual transmission and an
infection rate proportional to the infectedmosquito population. Specifically, the per-capita
rate of Zika transmission through biting frommosquitoes to humans is modelled in terms

of a product involving the biting rate b and vector transmission, that is, by bmh = bβmh

Nh
with βmh denoting the infectiousness of mosquitoes to humans. Analogously, the rate of
Zika sexual transmission from the infected to susceptible humans is given by the usual
product with bh = ah

Nh
involving ah, the sexual transmission rate of Zika. Note that

the exposed category models the incubation period before a human becomes infectious,
contrasting the asymptomatic Ih,a and symptomatic Ih,s categories.Members of the exposed
class Eh move to become either symptomatic infectious or asymptomatic infectious at a
human incubation rate of νh which is intrinsic human latent period. A fraction q of the
latent becomes asymptomatic infectious. Members from each of the asymptomatic Ih,a(t)
and symptomatic Ih,s infectious classes recover with a rates of γh,a and γh,s, respectively.

The individual vectors in each sub-population are assumed tomove from the susceptible
class Sm to the exposed classEm throughbitingof an infectedhuman.Vectors of the exposed
class Em move to become infectious Im with a vector incubation rate νm. The vector natural
mortality is given by μm and the vector transmission rate from the infected human to the

vector is given by bhm = bβhm

Nh
where βhm is the infectiousness of humans to mosquitoes.

To incorporate preventive measures into the model, the effect of ITN is introduced
in the rates of transmission from the susceptible human class to the exposed human
class through a parameter measured as a per cent (1 − ITN). Note that when ITN = 1,
the only movement from susceptible human class to the exposed class is through sexual
transmission and not through the vector. On the other hand, if ITN = 0, the nets have no
effect and the disease can spread through both vector and sexual transmission. In addition,
the recovered category Rh is included to account for partial immunity to the vector after
recovering from the infection. Note that we do not include movement of these individuals
back to the susceptible class as there is minimal evidence of individuals contracting the
disease once they recover. As in the humanmodel, we also incorporate preventivemeasures
ITN and indoor spraying with residual insecticides IRS into the vector model. The effect
of ITN is included in the rates through the term (1− ITN). We also introduce parameters
for the removal of mosquitoes denoted by h and j associated respectively with ITN and
IRS. To account for a wide range of behaviours, one can let the values of ITN and IRS to
range from 0 to 1.

3. Mathematical analysis

The basic reproduction number denotes the number of secondary infections generated
by an infected vector or human when the population being considered is composed of
primarily susceptible humans and vectors. R0 determines whether there is an outbreak or
not (Aparicio, Capurro, &Castillo-Chavez, 2002; Brauer &Castillo-Chavez, 2001; Chowell
et al., 2007; Smith, O’Nions, Schilling, Unni, & Bender, 1981). And so, if R0 < 1, the
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infection dies out without generating an outbreak with an outbreak taking place whereas
R0 > 1, that is, the number of cases at the start of an outbreak grows exponentially
(Wallinga & Lipsitch, 2007).

In this section, we will present two key theoretical results. First, we derive the basic
reproduction number R0 for our mathematical model (1)–(8) using the Next Generation
Matrix approach.We also derive a gross estimate for the rate of sexual transmission, during
the initial stages of the outbreak, in terms of prior estimates of the basic reproduction
number from related albeit not sexually transmitted arboviral diseases. This estimate for
the initial exponential growth rate provides a measure of relative contribution of sexual
contact to the transmission cycle when mosquitoes are also present. While, the effects
of the sexual transmission cannot be separated from the vector-borne transmission, this
result can help to predict the rate of sexual transmission with some prior knowledge of
the basic reproduction number of other arboviral diseases such as chikungunya or dengue
that are not sexually transmitted.

3.1. Derivation of the basic reproduction number

Let us recall that the proposed mathematical model for human-vector interaction includes
sub-populations with different infectious states. Therefore, we will employ a general
approach called the Next Generation Matrix approach (Castillo-Chavez, Cooke, Huang, &
Levin, 1989; Castillo-Chavez, Velasco-Hernandez, & Fridman, 1994; Diekmann, Heester-
beek, & Metz, 1990) to find the basic reproduction number R0 which is given by the
following theorem.
Theorem 3.1: The basic reproduction number R0 is given by

R0 = ah
2

(
1 − q
γh,s

+ q
γh,a

)
+ 1

2

√
a2h

(
1 − q
γh,s

+ q
γh,a

)2
+ 4

(
R2
0,a + R2

0,s
)

(9)

where

R2
0,a = b2βmhβhmNm

(
1 − ITN

)2
νm(1 − q)

Nhγh,s
(
μm + νm + h · ITN + j · IRS) (

μm + h · ITN + j · IRS)
and

R2
0,s = b2βmhβhmNm

(
1 − ITN

)2
νmq

Nhγh,a
(
μm + νm + h · ITN + j · IRS) (

μm + h · ITN + j · IRS.) .

Proof: Given that the infectious states: Eh,Em, Ih,s, Ih,a, Im in Equations (1)–(8), we can
create a vector F that represents the new infections flowing only into the exposed com-
partments given by

F = {
bmh

(
1 − ITN

)
ImNh + ah

(
Ih,a + Ih,s

)
, bhm

(
1 − ITN

)
Nm

(
Ih,a + Ih,s

)
, 0, 0, 0

}
.

(10)
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Along with F , we will also consider V which denote the outflow from the infectious
compartments in Equations (1)–(8) which is given by

V = {
νhEh,

(
νm + μm + p

)
Em, γh,sIh,s − (

1 − q
)
νhEh, γh,aIh,a − qνhEh,−νmEm

+μmIm + pIm
}

(11)

where p = (
h · ITN + j · IRS). Next, we compute the Jacobian F from F given by

F =

⎛
⎜⎜⎜⎜⎝
0 0 ah ah bmh

(
1 − ITN

)
Nh

0 0 bhm
(
1 − ITN

)
Nm bhm

(
1 − ITN

)
Nm 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

and the Jacobian V from V given by

V =

⎛
⎜⎜⎜⎜⎝

νh 0 0 0 0
0 νm + μm + p 0 0 0

− (
1 − q

)
νh 0 γh,s 0 0

−qνh 0 0 γh,a 0
0 −νm 0 0 μm + p

⎞
⎟⎟⎟⎟⎠ .

Using matrices F and V one can then compute the Next Generation Matrix FV−1. Letting

Q =
(
1 − q
γh,s

+ q
γh,a

)
, t = 1 − ITN,

this matrix can be calculated to be

FV−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q ah
t bmhNhνm(

μm + νm + p
) (

μm + p
) ah

γh,s

ah
γh,a

t bmhNh

μm + p

t Q bhmNm 0
t bhmNm

γh,s

t bhmNm

γh,a
0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that (i, j) entry of the Next Generation Matrix FV−1 is the expected number of
secondary infections in compartment i produced by individuals initially in compartment
j assuming that the environment seen by the individual remains homogeneous for the
duration of its infection. Also, matrix FV−1 is non-negative and therefore, has a non-
negative eigenvalue. The basic reproduction number can then be computed as R0 =
ρ

(
FV−1) which is the spectral radius of the matrix. This non-negative eigenvalue is

associated with a non-negative eigenvector which represents the distribution of infected
individuals that produces the greatest number R0 of secondary infections per generation.
In order to calculate the eigenvalues of FV−1, we consider the characteristic equation

det
(
FV−1 − λI

) = 0,
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where λ denotes the eigenvalues of the matrix and I represents the identity matrix. This
can be simplified to yield

−λ3

∣∣∣∣∣∣
Q ah − λ

bmhNh(1 − ITN)νm(
μm + νm + p

) (
μm + p

)
Q bhm

(
1 − ITN

)
Nm −λ

∣∣∣∣∣∣ = 0.

The characteristic polynomial therefore is the following quadratic equation given by

λ2 − Qahλ − Q
(
1 − ITN

)2 Nm
bhmbmhNhνm(

μm + νm + p
) (

μm + p
) = 0.

The basic reproduction number R0 corresponds to the dominant eigenvalue given by the
root of the quadratic equation

R0 = Qah
2

+ 1
2

√
Q2a2h + 4

(
R2
0,a + R2

0,s
)

where

R2
0,a = b2βmhβhmNm

(
1 − ITN

)2
νm(1 − q)

Nhγh,s
(
μm + νm + h · ITN + j · IRS) (

μm + h · ITN + j · IRS) (12)

R2
0,s = b2βmhβhmNm

(
1 − ITN

)2
νmq

Nhγh,a
(
μm + νm + h · ITN + j · IRS) (

μm + h · ITN + j · IRS) . (13)

Note that Theorem 3.1 yields a general result for the basic reproduction number R0
corresponding to the human-vector model given by Equations (1)–(8) that include both
sexual transmission and vector transmission. In the absence of one of these, the derived
R0 simplifies which is given in the next two corollaries.
Corollary 3.2: In the absence of sexual transmission (ah = 0), the basic reproduction
number is given by

R̄2
0 = R2

0,a + R2
0,s

where R2
0,a represents the average number of secondary cases produced by an infectious

asymptomatic during their infectious period whereas R2
0,s represents the average number of

secondary cases produced by an infectious symptomatic during their infectious period.
Corollary 3.3: In the absence of vector transmission (b = 0), the basic reproduction
number is given by

R̂0 = ah
(
1 − q
γh,s

+ q
γh,a

)
.

A biological interpretation of this basic reproduction number is that an exposed member
introduced into a population of S0 susceptibles becomes infective with probability (1 −
q), in which case they cause

ah
γh,s

infections during an infective period of length
1

γh,s
or
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becomes asymptomatic with probability q, in which case they cause
ah
γh,a

infections during

an asymptomatic period of length
1

γh,a
.

The following two corollaries from Theorem 3.1 presents upper bounds for the sexual
transmission rate ah under various conditions.
Corollary 3.4: In the case of complete intervention using insecticide treated nets (ITN
= 1), the infection dies out (R0 < 1) if the sexual transmission rate ah satisfies the following
relationship:

ah <
γh,sγh,a

γh,a(1 − q) + γh,sq
.

Remark. Note that for q = 0.5 which implies that there is equal probability for exposed
human sub-population to become symptomatic or asymptomatic infectious individuals, this
result yields an interesting fact. If the rate of sexual transmission is less than the harmonic
mean of the symptomatic and asymptomatic infectious recovery rates, then the infection dies
out.
Corollary 3.5: In the absence of any intervention strategies (ITN=0, IRS= 0), the infection
dies out (R0 < 1) if the sexual transmission rate ah and the biting rate of vector b satisfy the
following relationship:

Ab2 + ah <
γh,sγh,a

γh,a(1 − q) + γh,sq

where A = βmhβhmνm(
μm + νm

)
μm

Nm

Nh
.

3.2. Estimating initial rate of sexual transmission

In this section, we will prove a theorem that will help us to estimate the rate of sexual trans-
mission ah during initial growth of the vector-borne disease. For new emerging infections,
such as Zika, the available information about the transmissibility of a new infectious disease
epidemic is likely to be restricted to daily counts of new cases. It is well known that these
counts increase exponentially in the initial phase of an epidemic (Wallinga & Lipsitch,
2007). This knowledge can help us to determine the initial exponential growth rate for
the Zika model represented by Equations (1)–(8) to establish an estimate for the rate of
sexual transmission ah if we have prior knowledge of the basic reproduction number in the
absence of sexual transmission, for example, from other related diseases such as dengue or
chikungunya.
Theorem 3.6: Given R̄0, the basic reproduction number corresponding to the spread of
infectious diseases in the absence of sexual transmission, one can estimate the rate of sexual
transmission ah as

ah =
(
ρ + νh

) (
ρ + γh,s

) (
ρ + γh,a

)
νh

[
(1 − q)

(
ρ + γh,a

) + q
(
ρ + γh,s

)]
− R̄2

0Nhγh,aγh,s
(
μm + νm + p

) (
μm + p

)
(
ρ + νm + μm + p

) (
ρ + μm + p

) [
(1 − q)γh,a + qγh,s

] (14)
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Proof: Let us consider the linearization of the model Equations (1)–(8) about the disease-
free equilibrium:

Sh = Nh,Eh = Ih,a = Ih,s = 0, Sm = Nm,Em = Im = 0.

Letting y = Nh − Sh and z = Nm − Sm, one can obtain the following linearization:

ẏ = bβmhtIm + ah
(
Ih,a + Ih,s

)
Ėh = bβmhtIm + ah

(
Ih,a + Ih,s

) − νhEh
˙Ih,s = (1 − q)νhEh − γh,sIh,s
˙Ih,a = qνhEh − γh,aIh,a

ż = −μmz + bβhmt
Nm

Nh

(
Ih,s + Ih,a

) + pNm

Ėm = −νmEm − μmEm + bβhmt
Nm

Nh

(
Ih,s + Ih,a

) − pEm

˙Im = νmEm − μmIm − pIm.

(15)

The characteristic equation corresponding to this system given by det (J − λI) where J
is the Jacobian matrix associated with the system (15) and I is a 7× 7 identity matrix. The
equation can be computed using
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 ah ah 0 0 bβmhNht
0 − (

νh + λ
)

ah ah 0 0 bβmhNht
0 (1 − q)νh − (

γh,s + λ
)

0 0 0 0
0 qνh 0 − (

γh,a + λ
)

0 0 0
0 0 bβhmt

Nm
Nh

bβhmt
Nm
Nh

− (
μm + λ

)
0 0

0 0 bβhmt
Nm
Nh

bβhmt
Nm
Nh

0 − (
νm + μm + p + λ

)
0

0 0 0 0 0 νm − (
μm + p + λ

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

This reduces to the following equation:

λ
(
μm + λ

)
∣∣∣∣∣∣∣∣∣∣

− (
νh + λ

)
ah ah 0 bβmhNht

(1 − q)νh − (
γh,s + λ

)
0 0 0

qνh 0 − (
γh,a + λ

)
0 0

0 bβhmt
Nm
Nh

bβhmt
Nm
Nh

− (
νm + μm + p + λ

)
0

0 0 0 νm − (
μm + p + λ

)

∣∣∣∣∣∣∣∣∣∣
= 0.

The solutions of the linearized equations are linear combinations of exponential terms
where the exponents are given by the roots of this equation. To find the initial exponential
growth rate, one needs to therefore solve the following fifth degree equation given by

(
λ + νm + μm + p

) (
λ + μm + p

) [
ahνh

(
(1 − q)

(
λ + γh,a

) + q
(
λ + γh,s

)) − (
λ + νh

)
(
λ + γh,s

) (
λ + γh,a

)] + b2βmhβhmNmt2νmνh
(
(1 − q)

(
λ + γh,a

) + q
(
λ + γh,

)) = 0.

Recall that our goal, however, here is not to solve this equation but to find an estimate for
the rate of sexual transmission ah with some prior information on the basic reproduction
number R̄0. For this we also assume that one can obtain an observed value of the
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exponential rise ρ from initial data. The equation that we are interested in then becomes
(
ρ + νm + μm + p

) (
ρ + μm + p

) [
ahνh

(
(1 − q)

(
ρ + γh,a

) + q
(
ρ + γh,s

)) − (
ρ + νh

)
(
ρ + γh,s

) (
ρ + γh,a

)] + b2βmhβhmNmt2νmνh
(
(1 − q)

(
ρ + γh,a

) + q
(
ρ + γh,s

)) = 0.

Solving for ah then yields

ah =
(
ρ + νh

) (
ρ + γh,s

) (
ρ + γh,a

)
νh

(
(1 − q)

(
ρ + γh,a

) + q
(
ρ + γh,s

)) − b2βmhβhmNmt2νm(
ρ + νm + μm + p

) (
ρ + μm + p

) (16)

Recalling Corollary 3.2, we note that that basic reproduction number in the absence of
sexual transmission is given by R̄2

0 = R2
0,a + R2

0,s. Using Equations (12) and (13) we then
have

R̄2
0 = b2βmhβhmNmt2νm

{
(1 − q)γh,a + qγh,s

}
Nhγh,aγh,s

(
μm + νm + p

) (
μm + p

) ,

which can be rewritten as

b2βmhβhmNmt2νm = R̄2
0Nhγh,aγh,s

(
μm + νm + p

) (
μm + p

)
(1 − q)γh,a + qγh,s

. (17)

Substituting (17) into (16) then yields a closed formula for the rate of sexual transmission
ah interms of R̄0 given by

ah =
(
ρ + νh

) (
ρ + γh,s

) (
ρ + γh,a

)
νh

[
(1 − q)

(
ρ + γh,a

) + q
(
ρ + γh,s

)]
− R̄2

0Nhγh,aγh,s
(
μm + νm + p

) (
μm + p

)
(
ρ + νm + μm + p

) (
ρ + μm + p

) [
(1 − q)γh,a + qγh,s

] .

Remark. Note that using the result in Theorem 3.6, one can also solve for the basic
reproduction number R̂0 in the absence of vector transmission in Corollary 3.3.

4. Numerical experiments

In this section we will implement the solution to the governing differential
Equations (1)–(8). The parameters used in the model will be chosen as shown in Table 1.
For this work, we have used parameters from various references as indicated in the table.

4.1. Dynamics of the human and vector populations

We implement the system (1)–(8) in MATLAB using a fourth order Runge–Kutta method
for solving system of ODEs. For our simulations, we choose the initial populations to be

Sh(0) = 300, Eh(0) = 0, Ih,s = 1, Ih,a = 1, Rh = 0, Sm(0) = 300, Em(0) = 0, Im(0) = 0.

The dynamics of all the sub-populations both for the humans and the vector are
first computed for increased values of rate of sexual transmission. For this we consider
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Figure 2. Dynamics of Human sub-populations for increased values of ah for ITN = IRS = 0.
Note: The horizontal axes for Panel A is the values of sexual transmission rate ah and for Panels B–F corresponds to time t.

Figure 3. Dynamics of Human sub-populations for increased values of ah for ITN = IRS = 1.
Note: The horizontal axes for Panel A is the values of sexual transmission rate ah and for Panels B–F corresponds to time t.

increasing values of ah that are denoted by different colours in the graph ah = 0 (blue),
ah = 0.2 (green), ah = 0.4 (red), ah = 0.6 (cyan), ah = 0.8 (magenta) and ah = 1 (yellow).

The dynamics of the human sub-populations are illustrated in Figures 2 and 3 for the
cases with and without control measures. The corresponding dynamics for the vector
sub-populations are illustrated in Figures 4 and 5, respectively.

Figure 2 plots the dynamics of each of the human sub-populations with no preventive
measures (ITN = 0, IRS = 0). This includes the Susceptible (Panel B), Exposed (Panel C),
Symptomatic (Panel D), Asymptomatic (Panel E) and Recovered (Panel F). Here, the basic
reproduction numbers can be computed for the values of ah using (9) to be respectively,
R0 = 2.02, 2.53, 3.13, 3.81, 4.55, 5.33 that is shown in Panel A.
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Table 1. Parameter definitions and references.

Parameters Description Value References Units

b Biting rate of vector .5
Andraud, Hens, Marais, and
Beutels (2012)

day−1

ah Sexual transmission rate of Zika .2
Gao et al. (2016)

day−1

βhm Human to vector infection rate .5
Chikaki & Ishikawa (2009)

day−1

βmh Vector to human infection rate .4
Andraud et al. (2012)

day−1

νh Human incubation rate .2
Bearcroft (1956)

day−1

νm Vector incubation rate .1
Andraud et al. (2012),
Boorman and Porterfield
(1956)

day−1

γh,a Asymptomatic human recovery rate .14
Gao et al. (2016)

day−1

γh,s Symptomatic human recovery rate .25
Gao et al. (2016)

day−1

q Proportion of asymptomatic infections .18
Gao et al. (2016)

Dimensionless

μm Natural death rate of vector .04
Griffin (2012)

day−1

h Parameter for ITN rate 1/365
Griffin (2012)

day−1

j Parameter for IRS rate 1/365
Griffin (2012)

day−1

Figure 4. Dynamics of Vector sub-populations for increased values of ah for ITN = IRS = 0.
Note: The horizontal axes for Panel A is the values of sexual transmission rate ah and for Panels B–D corresponds to time t.

Figure 3 plots the dynamics of each of the human sub-populations with complete
preventive measures (ITN = 1, IRS = 1). This includes the Susceptible (Panel B), Ex-
posed (Panel C), Symptomatic (Panel D), Asymptomatic (Panel E) and Recovered (Panel
F). Here, the basic reproduction number can be computed for the values of ah using
Equation (9) to be respectively, R0 = {0, 0.91, 1.83, 2.74, 3.65, 4.57} that is shown in
Panel A.
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Figure 5. Dynamics of Vector sub-populations for increased values of ah for ITN = IRS = 1.
Note: The horizontal axes for Panel A is the values of sexual transmission rate ah and for Panels B–D corresponds to time t.

Figure 6.R0 as a function of ITN and IRS for b = 0.5 and ah = 0.2.

Figure 4 plots the dynamics of each of the vector sub-populations with no preventive
measures (ITN = 0, IRS = 0). This includes the Susceptible (Panel B), Exposed (Panel C)
and Infected (Panel D) along with the basic reproduction number corresponding to the
increasing values of ah as in Figure 2.

Figure 5 plots the dynamics of each of the vector sub-populations with complete
preventive measures (ITN = 1, IRS = 1). This includes the Susceptible (Panel B), Exposed
(Panel C) and Infected (Panel D) alongwith the basic reproduction number corresponding
to the increasing values of ah as in Figure 3. Note in Figure 5, there are no exposed or
infected vectors because of complete intervention (ITN = 1, IRS = 1). This implies that
the disease can only transmit sexually and will not be vector-borne. As a consequence,
there will be no exposed or infected states for the vector and therefore, Panels C and D in
Figure 5 are empty plots.
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Figure 8.R0 as a function of IRS (ITN=0) for b = 0.5 and ah = 0.2.

In summary, Figure 2 illustrates that without any intervention strategy (ITN = 0, IRS =
0), the increased rate of sexual transmission leads to a faster transition as each population
is also impacted by the vector transmission. Also note the dynamics of infected vector
population that is impacted by the dynamics of the corresponding infected individual
in the human sub-population. However, Figures 3 and 5 illustrates that with a complete
intervention strategy (ITN = 1, IRS = 1), the mosquitoes are completely eliminated (see
Panels B, C and D in Figure 5) and hence the dynamics of the human population is only
dependent on the rate of sexual transmission.

4.2. Influence of preventivemeasures

Next, we considered an experiment that varied the effects of ITN and IRS, ranging from
0 to 1. We considered a total of 121 different combinations by choosing ITN and IRS to
each take values from 0 to 1 in steps of 0.1. For each combination, the basic reproductive
numberR0 was computed using (9). Figure 6 displaysR0 as a function of ITN and IRS. In
general, we see that as the use of preventive measures increases, the reproductive number
gets closer to 1, eventually falling below that critical value. Note that as ITN increases, the
value of R0 decreases eventually below 1. This is more evident in Figure 7 (panel on the
left) which suggests that a high value of ITN is required to cause the disease to go from
endemic to dying out. By graphing R0 for a closer set of ITN values in the interval [0.8, 1],
we notice that the critical value for ITN can be 0.85 (see Figure 7: panel on the right). This
implies that it is possible to bring R0 < 1 and eradicate the disease by only using ITN, but
this requires a moderately large value of ITN.

In Figure 8, we consider the influence of IRS in the absence of effects from ITN. The
figure illustrates that as the value of IRS increases, R0 does decrease, however, at a very
slow rate. This goes to show that the influence of IRS is not enough alone to get R0 < 1
and hence causing the disease to die out.
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4.3. Vector transmission vs sexual tranmission

Finally, we consider the dependence of R0 as a combination of the sexual transmission
rate ah and the vector transmission b parameters. Figure 9 illustrates the case with no
intervention on the left (ITN = IRS = 0) and full intervention on the right (ITN = IRS =
1). From Equations (12) and (13), letting ITN = 0 yields a linear relationship between the
basic reproduction rate and the rate of sexual transmission, namely, R0 = Qah. This is
clearly seen in the graph on the right. For any other value of ITN ∈ (0, 1], this relationship
becomes nonlinear as seen in the panel on the left.

5. Conclusion and future work

In this work, we have considered a new mathematical model for Zika that incorporates
both effects of sexual transmission as well as vector transmission. These effects have been
studied analytically and numerically both with and without inclusion of any preventive
interventions including ITNand IRS.We also derive the basic reproduction numberR0 for
the proposed system of ODEs that accounts for both sexual as well as vector transmission
effects and is a function of the preventive measures ITN and IRS. Through numerical
experiments we have been able to get further insight into thresholds for disease extinction
that can contribute to crucial knowledge of disease control, elimination and mitigation of
the spread of Zika.

We also derive a new estimate for the rate of sexual transmission ah at the onset of
the outbreak of the disease in terms of the basic reproduction number calculated in the
absence of the disease R̄0. Note that the relative contribution of sexual transmission cannot
be determined based on the exponential rise in incidence alone as the effects of the sexual
transmission cannot be separated from the vector-borne transmission (Towers et al., 2016).
However, prior knowledge of other arboviral diseases such as chikungunya or dengue that
are not sexually transmitted, can help provide an useful estimate for the rate of sexual
transmission ah for the initial spread of Zika.

As future work, we plan to consider the influence of key parameters in the model in
particular the biting rate b and the rate of sexual transmission ah in predicting uncertainty
of extinction thresholds using Latin Hypercube Sampling or Partial Rank Correlation
Coefficient.Wealsohope to study the influence of effective education campaigns in limiting
the spread of the disease.

Finally, many of the important ideas of mathematical models for epidemiology build
on the study of malaria (Ross, 1911). This pioneering work predicts the possibility of
controlling malaria by diminishing a population of the mosquitoes below a threshold.
While, this prediction was borne out of practice, controlling mosquito population is a very
challenging problem, especially, if themosquitoes adapt to pesticides. In fact, recent reports
Yakob &Walker (2016) suggest that the Zika virus is becoming more resistant to common
pesticides. We hope that the research findings from this work provide a framework to
help improve our overall understanding for the disease persistence in order to control the
spread of Zika.
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