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ABSTRACT

Ideal gas models are a paradigm used in Biology for the
phenomenological modelling of encounters between individuals
of different types. These models have been used to approximate
encounter rates given densities, velocities and distance within which
an encounter certainly occurs. When using mass action in two-sex
populations, however, it is necessary to recognize the difference
between encounters and mating encounters. While the former refers
in general to the (possibly simultaneous) collisions between particles,
the latter represents pair formation that will produce offspring. The
classical formulation of the law of mass action does not account this
difference. In this short paper, we present an alternative derivation of
the law of mass action that uses dimensional reduction together with
simulated data. This straightforward approach allows to correct the
expression for the rate of mating encounters between individuals in a
two-sex populationwith relative ease. In addition, variability inmating
encounter rates (due to environmental stochasticity) is numerically
explored through random fluctuations on the new mass action
proportionality constant. The simulations show how the conditioned
time to extinction in apopulation subject to a reproductiveAllee effect
is affected.
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1. Introduction

In chemistry, the law of mass action states that the rate of a reaction is proportional to
the product of the concentrations of the reactants. Since Alfred Lotka pioneered its use
in Lotka (1925) to justify the encounter term in his predator–prey system of differential
equations, the law has become ubiquitous in mathematical ecology for modelling the
interactions between individuals of different groups. Lotka’s arguments for the use of mass
action in biological encounters weremotivated by the analogy to the kinetic theory of gases
(ideal gas models) and have been applied to describe a variety of phenomena, including
fertilization kinetics, search theory and mate finding, see Hutchinson and Waser (2007),
Voit, Martens, and Omholt (2015) for thorough reviews. Before Lotka, the chemical law of
mass action was used for the first time by A.G. McKendrick for describing the interactions
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among susceptible and infected individuals in epidemiological contexts (Heesterbeek,
2005; McKendrick, 1912).

In the theory of molecular collisions in gases, the collision frequency among particles
of different types is expressed in terms of the velocities and radiuses of particles. The
quantitative law is deduced directly from geometrical abstractions using the mean of
a Poisson process that models the number of collisions a particle receives from others
and where simultaneous collisions are allowed (Hutchinson & Waser, 2007; Kauzmann,
2012). At relatively low population densities, the same idea is used as a phenomenological
approach to approximate the encounter rates between males and females, with the birth
rate taken proportional to the product of their densities (Bazykin, 1998; Fauvergue, 2013).
We remark that two-sex population models become relevant when sexual dimorphism in
vital rates is present, which has been observed in several species (Caswell, 2001).

While ideal gas models, which assume a heterogeneous population of linearly moving
individuals, are used for modelling encounters of individuals, dispersal and movement of
homogeneous populations in ecology are modelled following diffusion models, i.e. where
individuals move randomly in space (Codling, Plank, & Benhamou, 2008; Turchin, 1998).
However, due to the complexity involved, most of the studies that include encounters in
models of randomlymovingorganisms are basedon computer simulations (see for instance
Bartumeous, Catalan, Viswanathan, Raposo, & da Luz, 2008; Gurarie & Ovaskainen,
2011; James, Plank, and Brown, 2008, 2010, where encounters are defined in general
animal search problems). This paper addresses the modelling of encounters that lead to
reproduction, which requires ruling out simultaneous encounters that occur in the ideal
gas model, i.e. encounters where a single female mates two or more males simultaneously,
otherwise the rate at which new offspring appear would be overestimated. Thus, we
differentiate between counting encounters, possibly simultaneous and counting mating
encounters, which are understood here as the formation of female–male pairs from which
offspring are successfully produced.

Our aim here is to present a correction for the constant used in the mass action term
corresponding to the ideal gas model that accounts for the pair formation. To achieve this
goal, we first build a functional relation among the variables using dimensional reduction
and simulated data of individuals’ movement. This allows us to approximate the value
of the proportionality constant for the mass action with relative precision in comparison
to theoretical results. Then, we generate new data through computer simulations that
only count female–male pairs, and with this we approximate the new value for the
constant. Finally, we use the new constant in the mass action law to explore the effects
of environmental stochasticity on the conditioned time to extinction for a population
model via the variability on encounter rates. The stochastic model is derived from a
deterministic model that uses mass action at low population densities and thus shows a
reproductive Allee effect (Courchamp, Berec, & Gascoigne, 2008). The simulations reveal
the effects that simultaneous random fluctuations around the new constant (and therefore
the mating encounter rate) and demographic stochasticity have on the extinction time.
This elementary example justifies having reasonable approximations for the non-linear
term that models encounters: it demonstrates how variability in the environment could
play an essential role in regulating the time to extinction distribution.
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2. Dimensional reduction for mass action

We consider a two-sex population and assume that individuals’ movement is done in
two spatial dimensions, i.e. we assume that the total variation in the displacement of each
individual on the plane is much larger than changesmade in their altitude.We also assume
that individuals of both sexes are initially homogeneouslymixed and uniformly distributed
in space, and move over a terrain with area A under the following assumptions:

• The velocity, v, is constant and the same for both sexes,
• Individuals move independently from each other,
• Movement is in straight lines,
• The initial direction of movement for each individual is independently chosen at
random from the interval [0, 2π),

• Individuals’ sizes are negligible.

Let nm and nf be the number of males and females, respectively, and c the average number
of encounters that one female has with males during the observation time t. We assume
that c is related to (i) the velocity v, (ii) the density ofmales nm/A and (iii) the size of a small
area surrounding the female wheremales are attracted tomate. This is thought as a circular
area with radius R. We remark that these assumptions are the same used in the theory of
molecular collisions to deduce the law of mass action for gases of two different types, with
just the words ‘particle’ replacing ‘individual’ and ‘type’ instead of ‘sex’ (Hutchinson &
Waser, 2007; Kauzmann, 2012). We write the relation between the system parameters in
terms of some (unknown) function F,

c = F
(nm
A

, v, t,R
)

. (1)

By the �-Theorem, see Barenblatt (2006) or Logan (2006) for instance, Equation (1) is
equivalent to a relation that involves only the dimensionless quantities

�1 = vtRnm
A

and �2 = vt
R
,

that is,

c = f
(
vtRnm
A

,
vt
R

)
, (2)

with f yet to be determined.
Next, we use data generated from agent-based simulations that count the number of

contacts (with males) per female. For the simulations, the individuals were programmed
to follow the rules stated above and, for a single female, we counted a contact when its
distance to a male is less than R. In the computations, the units chosen for length and time
weremeters and hours (1 h = 1 time step).We used fixed values for the time of observation,
t = t∗ = 24 (h), the radius R = R∗ = .05 (m) and the number of males, nm∗ = 100, while
varying area size A and individuals’ velocity v. On the plane v − A, we arbitrarily choose
the strip [25, 4 × 104] × [25, 2 × 103], and within this domain, we fixed 8 values of areas:
(25, 35, 50, 400, 625, 900, 1200, 2000), and 28 values of velocities: (25, 50, 75, 100, 200,
300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 3000, 3200, 5400, 6400,
9000, 11000, 16000, 18000, 22400, 25200, 40000). These values were chosen with the aim
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of capturing the characteristics of the surface at low and high parameter values. Using
periodic boundary conditions, we then produced 10 simulations for each corresponding
pair of parameters and finally computed the contact averages. The simulations were run in
NetLogo1 Railsback &Grimm (2012) and the code is available upon request to K. Snyder.2

It is well known that the average number of contacts observed during a fixed period of time
should increase with larger velocities and decrease with larger areas, therefore suggesting
a relation of the form

c = avp

Aq , (3)

where p, q and a are constants. This expression can then be rewritten in terms of the
dimensionless quantities �1 and �2,

c =
K︷ ︸︸ ︷
a

nqm∗t
p
∗R

2q−p
∗

�
p−q
2 �

q
1 = K

(
vt
R

)p−q (
vtRnm
A

)q
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Using least squares to fit relation (3) to the averages of the data points collected gave
approximate values of p ≈ 1, q ≈ 1 and K = 1.2887. Denoting with nf the number of
females and with C the total averaged number of encounters that females have with males,
i.e. C = cnf , gives

C = K
vtR
A

nmnf = KvtRAxy, (4)

where x and y are the densities of males and females, respectively. The right-hand term
in (4) is traditionally obtained from the theory of molecular collisions, also known as the
ideal gas model. That theory provides a constant value of K = 4/π = 1.2732..., which is
in good agreement with the value obtained through our simulations (the relative error is
less than 2%).

2.1. Mating encounters

We generate different data by repeating the simulations of individual movement with the
same assumptions as above but counting at most one mating encounter per female at each
time step ruling out simultaneous mating. Fitting the model to the new data produces
p ≈ 1, q ≈ 1 and K ≈ .1231, which is less than 10% of the previous K value.

Our interest now is to include changes in movement direction at every step in time,
depending on the previous direction rather than restricting individual movement to
straight lines as in the assumptions. A limitation in the theoretical ideal gas model, as
traditionally conceived, is that it does not capture the effects of varying correlation in
individuals’ movement (i.e. the autocorrelation of the directions of subsequent individual
moves) on contact rates. From the dimensional analysis, however, we conclude that the
degree of correlation should appear as a functional dependence between the value K and
the range of possible directions for individuals’ movement, i.e. K = K(θ), where at each
time step each individual changes to a direction chosen uniformly at random from [−θ , θ],
0 ≤ θ ≤ π , independently of the other individuals. Repeating the numerical experiments
but now allowing individuals to change movement direction with different degrees of
correlation, we compute the average of K for different values of θ . Unsurprisingly, these
values appear almost constant, as first pointed out by Skellam (1958) for the classical
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Figure 1. Top: Averaged values of K obtained from observations where particles change their direction
at each step in an angle chosen randomly from [−θ , θ ]. The averages (stars joined with dash/dot curve)
do not differ significantly from the mean K̄ = .1231. For each angle θ , the circles mark the values of K+
and K−, which are the constants obtained by fitting the relation (3) to the original average data points±
standard deviation, respectively. Bottom: Mating encounter rates (encounters/h) for moving individuals
as function of the population density (individuals/m2) and velocity (m/h). For illustration purposes, the
detection radius R was fixed and chosen equal to .02m and the velocities are in the range from 1 to
40 Km/h, which includes estimates for several insect species, see Table 1. The area A is one square meter.

mass action, see Figure 1 (top). This information can thus be used to approximate average
mating encounter rates for individuals, given estimates of velocities, see Figure 1 (bottom).
We emphasize, however, that the assumptions made on the movement constitute a rough
simplification of reality: males and females do not necessarily move at the same speed and
the details of mating mechanisms have been deliberately left out.

To assess the variability due to movement correlation on the parameter K , we re-fit
Equation (3) for different values of θ to two different data-sets defined by taking the
simulated data at each corresponding point of the v − A plane and then computing
average+standard deviation and average-standard deviation. With these sets of points,
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Table 1. Average velocities for sustained flight in some insects, Nachtigall (1974).

Insect Flight velocity (Km/h)

Mayflies, small field grasshoppers 1.8
Bumblebees, rose chafers 3.0
Anopheles (malaria mosquitoes) 3.2
Stag beetle, damselfly, Ammophila (a fossorial wasp) 5.4
Housefly 6.4
Cockchafer, cabbage white butterfly, garden wasp 9.0
Blowfly 11.0
Desert locust 16.0
Hummingbird hawk moth 18.0
Honeybee, horsefly 22.4
Aeshna (a dragonfly), hornet 25.2
Anax (a dragonfly) 30.0
Deer botfly 40.0

we obtained two new constants (that depend on θ) and denoted by K+ and K−. The data
suggested that for values of θ close to zero, the differences are consistently larger, giving
larger values for K+ and K− (See Figure 1). But with increasing θ , although the movement
is more irregular, large variability in the values of K+ and K− is absent. Our interpretation
of this outcome is that, although individual movement is apparently more convoluted for
larger θ , at each trial the (stochastic) process is the same. On the contrary, for values of θ

close to zero, the initial random directions for each individual define paths that look like
the deterministic trajectories (θ = 0) in the domain (in this case, a torus). Those might
differ completely each time the experiment is repeated because of the randomization of
initial directions. This fact was found to be independent whether the boundary conditions
are periodic or reflective after running additional simulations for the latter.

3. Effects of environmental stochasticity

The rate at which offspring are generated by a two-sex population in real scenarios is
likely to be subject to random fluctuations due to environmental factors, like rainfall
and temperature, but with sensitivity that is species specific. If mass action is chosen to
model mating encounters, variability on the parameter K will appear as consequence of
those fluctuations. This translates directly into variability of birth and death rates. As an
illustration, let us initially consider the simplest deterministic populationmodel ephemeral
mating interactions,

x′ = −μx + 1
2
P(x, y), (5)

y′ = −μy + 1
2
P(x, y), (6)

where x and y are the densities of males and females, respectively, P(x, y) is a (symmetric)
birth rate with even sex ratio for all births and μ is the death rate that is assumed equal
for both sexes. Suppose also that the initial sex ratio is 1:1. It is natural that we would
like to use the law of mass action for P(x, y), i.e. proportional to xy, but as D.G. Kendall
first pointed out, this leads to solutions that blow up in finite time (Kendall, 1949). One
way, this trouble can be fixed by taking into consideration the average refractory time τ of
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Figure 2. Cumulative probability of extinction (conditioned to extinction) obtained from the stochastic
model defined in Section 3. The effect of variability on the number of contacts, K ∼ Normal(K̄ , σ 2), is
shown for different values of σ 2 = 0 (continuous line), and .1 (dash-dots). The initial population is taken
equal to half the Allee threshold. The simulations suggest that an increasing variance in the random
fluctuations corresponding to mating encounters pushes the probability mass to the left, i.e. extinction
is likely to happen sooner than otherwise expected. The parameters for the simulations were chosen
arbitrarily 1/μ = 10 (days), v = 1.33 (Km/h), R = .02 (m) and b = 3, although they resemble the
characteristics in some relatively small insects. The value p = .01, which in practice depends on the
complexity of the mating mechanisms, was also set arbitrarly.

females (Bazykin, 1998), during which a female avoids further sexual encounters just after
successfully mating with a male. Let r denote the rate of mating encounters per female,
r = KvRx = αx, then 1/r is the average time between encounters for one female. If
the population densities are low enough so that 1/r is very much more than τ , then the
population growth will depend on the number of successful mating encounters made. In
this case, the average progeny produced by a female has to saturate when 1/r ↓ τ as the
density ofmales increases. Therefore, the average birth rate per female ismore conveniently
approximated with bp× αx × 1

N+x , where b is the average number of offspring per female
per encounter that survive to adulthood, p is the probability that an encounter produces
offspring andN is the average male population density at which half of the females are able
to reproduce. This can be seen by making x = N , so the average birth rate per female is
bpα/2 or equivalently that half of the females produce offspring at the per capita rate bpα.
For simplicity, we have setN = 1, suggested by the reasonable approximation of the mean
number of pairs formed at low densities (Gordillo, 2015). Given that initially we assumed
a 1:1 sex ratio, the whole population dynamics can be described by the equation

z′ = −μz + P(z/2, z/2) = −μz + bpα
z2

2(2 + z)
= γ z

(
z − 2μ/γ

)
2 + z

, (7)

where z = x + y and γ = (bpα − 2μ)/2 > 0. Thus, if z � 2, the population growth will
approximately correspond to a mass action regime while if z 	 2, it grows exponentially.
More precisely, z′ < 0 when z < 2μ/γ , giving rise to positive density dependence with a
critical population size.
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We construct a stochastic version of the model by seeing the birth and death rates as
stochastic rates (Gillespie, 1977); that is, we integrate demographic random fluctuations
by considering only the two types of events, birth and death of individuals, happening at
exponentially distributed times with the overall rate 	 given by

	 = bpαz2

2(2 + z)
+ μz.

At a given time, a death happenswith probability q = μz/	 , or a birthwith probability 1−
q. In addition, environmental stochasticity is introduced by letting K fluctuate randomly,
with K ∼ Normal(K̄ , σ 2) (K̄ = .1231). The effects of varying σ 2 are displayed in Figure 2,
which shows the cumulative probabilities of extinction up to a fixed time, conditioned on
extinction. The initial population density is taken at half of the Allee threshold value. The
results suggest that an increasing variance in the random fluctuations associated with the
mating encounters would increase the probability of earlier extinction events.

4. Discussion

Mating processes in two-sex insect populations are species specific and generally involve
vast complexity (Bonduriansky, 2001; Choe & Crespi, 1997). This necessitates an ap-
proximated description of the non-linear process for mating encounters. Mass action has
been continuously used for this end, even in cases with convoluted mating mechanisms
(Courchamp et al., 2008). The multiplicative constant for themating encounter ratemight
be difficult to estimate in many real applications. The novelty in this note is that, under
general assumptions, we have approximated the value of that constant with the use
of dimensional reduction and simulated data. Before now, this constant has not been
computed by such analytical arguments.

The dimensional reduction approach also offers a way to examine the effects of correla-
tion in the movement. The simulations suggest that in general, the variances of the values
ofK are small and similar when compared among results obtainedwith different degrees of
correlation. Thus, the value K̄ can be used as the multiplicative constant in the expression
for the encounter rate, K̄vRAxy, independently of movement correlation. Relative larger
variance values observed for highly correlated movement (θ close to zero) are attributed
to the boundary conditions in the simulations. We remark that the programme used
to produce the data only counts ephemeral encounters and does not consider further
association between paired individuals, as well as other complexities involved in mating
mechanisms.

While our analysis assumes at most one mating encounter per female at each time step,
the approach may be generalized to systems where individuals must spend more or less
time between mating encounters. For the purposes of modelling sex role evolution, H.
Kokko and M. Jennions presented in Kokko and Jennions (2008) a scheme that accounts
for time delays following encounters when individuals cannotmate. This framework could
be adopted to modify and extend our work.

Small randomfluctuations in the number ofmating encounters can appear nevertheless,
caused by non-permanent random environmental changes. These effects might alter
substantially the encounter rate (now random). As an illustration, we simulated a basic



LETTERS IN BIOMATHEMATICS 109

stochastic birth and death process to obtain the probability distribution of the time to
extinction, conditioned on extinction. The model has a deterministic analogue for which
extinction due toAllee effects is possible. The simulations suggest that small fluctuations on
the parameter K̄ might induce relatively large increments on the (conditioned) cumulative
probability of extinction, see Figure 2. For conservation or pest control efforts in which it
is critical to assess how rapidly a population might become extinct, the approximation for
K̄ presented here might help shape more accurate quantitative predictions based on the
law of mass action.

We would like to emphasize that, after all, mass action is a highly idealized model
where physical and biological details are overlooked, including those corresponding to
matingmechanisms. For instance, velocities associatedwith aerialmating in insectsmay be
sensitive to the relativemass of flightmuscle (Dudley, 2000), while (the radius of) attraction
may depend on chemical, visual or auditory signals (Resh & Cardé, 2009; Roelofs, 1995).
Trying to introduce these species-specific details into the mass action scheme could be
a challenging task that we have not considered. In the case that velocity and radius of
attraction were both scaled to individual total mass, for example, it would be possible
to insert these relations into the main formulae as long as the assumptions for the mass
action still hold. If the case is that individual mass implies non-negligible (relative) size,
then the simulations cannot be used as we set them, and new computational experiments
together with a re-assessment of the whole model have to be done. In contrast to the
crude assumptions made for mass action, we refer the reader to the interesting papers
(Gurarie &Ovaskainen, 2011, 2013), where the authors present a refined continuous time-
continuous space theoretical framework that shows how encounter rates depend on the
interplay of spatial distributions, scales of movement, individuals densities and inherent
dynamics. However, we believe the simplemodel presented here can inform the theoretical
modelling of ephemeral (short-lived) mating encounters for insects, important in pest
control management (Boukal & Berec, 2008; Fauvergue, 2013; Gordillo, 2015).

Notes

1. https://ccl.northwestern.edu/netlogo/.
2. Katherine.Snyder@usu.edu.

Acknowledgements

The authors are deeply grateful to P. Greenwood, P.M. Waser and J.M.C. Hutchinson and two
anonymous reviewers for the extensive and useful comments, and suggestions on previous versions
of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Barenblatt, G. (2006). Scaling. Cambridge: Cambridge Text in Applied Mathematics, Cambridge
University Press.

https://ccl.northwestern.edu/netlogo/.


110 K. SNYDER ET AL.

Bartumeous, F., Catalan, J., Viswanathan, G., Raposo, E., & da Luz, M. (2008). The influence of
turning angles on the success of non-oriented animal searches. Journal of Theoretical Biology, 252,
43–55.

Bazykin, A. (1998). Nonlinear dynamics of interacting populations. Singapore: World Scientific
Publishing.

Bonduriansky, R. (2001). The evolution of male mate choice in insects: A synthesis of ideas and
evidence. Biological Reviews, 76, 305–339.

Boukal, D., & Berec, L. (2008). Modelling mate-finding Allee effects and population dynamics, with
applications in pest control. Population Ecology, 51, 445–458.

Caswell, H. (2001).Matrix population models. Sutherland, MA: Sinauer Associates.
Choe, J., & Crespi, B. (1997). Mating systems in insects and arachnids. Cambridge: Cambridge
University Press.

Codling, E., Plank, M. J., & Benhamou, S. (2008). Random walk models in biology (review). The
Journal of the Royal Society Interface, 5, 813–834.

Courchamp, F., Berec, L., & Gascoigne, J. (2008).Allee effects in ecology and conservation. New York,
NY: Oxford University Press.

Dudley, R. (2000). The biomechanics of insect flight. Princeton, NJ: Princeton University Press.
Fauvergue, X. (2013). A review of mate-finding allee effects in insects: From individual behavior to
population management. Entomologia Experimentalis et Applicata, 146, 79–92.

Gillespie, D. (1977). Exact simulation of coupled chemical reactions. The Journal of Physical
Chemistry, 81, 2340–2361.

Gordillo, L. (2015). Modeling ephemeral mating encounters in insects: The emergence of mate-
findingAllee effects and applications to theoreticalmodels of sterile release.Theoretical Population
Biology, 104, 10–16.

Gurarie, E., & Ovaskainen, O. (2011). Characteristic spatial and temporal scales unify models of
animal movement. The American Naturalist, 178, 113–123.

Gurarie, E., &Ovaskainen, O. (2013). Towards a general formalization of encounter rates in ecology.
Theoretical Ecology, 6, 189–202.

Heesterbeek, H. (2005). The law of mass-action in epidemiology: A historical perspective. In B. B.
K. Cuddington (Ed.), Ecological paradigms lost, routes of theory change (pp. 81–105). Burlington,
MA: Elsevier Academic Press.

Hutchinson, J., & Waser, P. (2007). Use, misuse and extensions of “ideal gas" models of animal
encounter. Biological Reviews, 82, 335–359.

James, A., Pitchford, J., & Plank, M. (2010). Efficient or innacurate? Analytical and numerical
modelling of random search strategies. Bulletin of Mathematical Biology, 72, 896–913.

James, A., Plank, M., & Brown, R. (2008). Optimizing the encounter rate in biological interactions:
Ballistic vs. lévy vs. brownian strategies. Physical Review E, 78, 51128.

Kauzmann, W. (2012). Kinetic theory of gases. Mineola, NY: Dover Publications.
Kendall, D. (1949). Stochastic processes and population growth. Journal of the Royal Statistical
Society, Series B, 11, 230–282.

Kokko, H., & Jennions, M. (2008). Parental investment, sexual selection and sex ratios. Journal of
Evolutionary Biology, 21, 919–948.

Logan, J. (2006). Applied mathematics (3rd ed.). Hoboken, NJ: Wiley.
Lotka, A. (1925). Elements of physical biology. Baltimore: Williams &Wilkins Company.
McKendrick, A. (1912). The rise and fall of epidemics. Paludism, 1, 54–66.
Nachtigall, W. (1974). Insects in flight. A glimpse behind the scenes in biophysical research. London:
George Allen & Unwin.

Railsback, S., & Grimm, V. (2012). Agent-based and individual-based modeling. Princeton, NJ:
Princeton University Press.

Resh, V., & Cardé, R. (2009). Encyclopedia of insects (2nd ed.). Burlington, MA: Elsevier.
Roelofs, W. (1995). Chemistry of sex attraction. Proceedings of the National Academy Science USA,
92, 44–49.

Skellam, J. (1958). The mathematical foundations underlying the use of line transects in animal
ecology. Biometrics, 14, 385–400.



LETTERS IN BIOMATHEMATICS 111

Turchin, P. (1998). Quantitative analysis of movement: Measuring and modeling population
redistribution in animals and plants. Sunderland: Sinauer.

Voit, E., Martens, H., & Omholt, S. (2015). 150 years of the mass action law. PLoS Computational
Biology, 11, e1004012.


	1. Introduction
	2. Dimensional reduction for mass action
	2.1. Mating encounters

	3. Effects of environmental stochasticity
	4. Discussion
	Notes
	Acknowledgements
	Disclosure statement
	References



