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ABSTRACT

We present a mathematical model of the transmission dynamics of
two species of malaria with time lags. The model is equally applicable
to two strains of a malaria species. The reproduction numbers of
the two species are obtained and used as threshold parameters to
study the stability and bifurcations of the equilibria of the model. We
find that the model has a disease free equilibrium, which is a global
attractor when the reproduction number of each species is less than
one. Further, we observe that the non-disease free equilibrium of the
model contains stability switches and Hopf bifurcations take place
when the delays exceed the critical values.
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1. Introduction

Malaria is a mosquito-borne disease that resulted in about 438, 000 deaths globally in
2015 (WHO, 2016). It is caused by different species of the Plasmodium parasite; the
most common being Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and
Plasmodium malariae. The life cycle begins when an infected female Anopheles mosquito
bites a human host and injects themalaria parasites in the form of sporozites into the blood
stream. The sporozites travel to the human liver where they grow,multiply and re-enter the
blood stream as merozoites. A proportion of the merozoites replicates asexually within red
blood cells, in the process destroying them and causing sickness while others develop into
gametocytes. The incubation period within the human host is about 7–90 days depending
on the species. The life cycle continues when some of the gametocytes are picked up
by a female mosquito during a blood meal. The parasites grow and multiply within the
mosquito. After 10–21 days, depending on the species, the parasites now in the form of
sporozoites are ready for transmission to another human at the next bite, thus continuing
the cycle.

Models for the transmissiondynamics of themalaria parasite continue to evolve (Teboh-
Ewungkem, Ngwa, & Ngonghala, 2013). Malaria models that incorporate time lags to
account for the incubation periods within humans or mosquitoes have been considered
in the literature but do pale in comparison to models that assume instantaneous effects.
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These models, which are mostly restricted to a single malaria species, have been used for
describing time delays in vectors only (Elsheikh, Patidar, & Ouifki, 2014; Ngwa, Niger,
& Gumel, 2010), humans only (Chiyaka, Mukandavire, & Das, 2011), and both humans
and vectors (Krstic, 2011; Saker, 2010; Zhang, Jia, & Song, 2014). Delays focusing on the
host-pathogen immune system response to malaria have also been considered (Blyuss
& Kyrychko, 2014; Ncube, 2013). A multi-species model possessing delays in both host
and vectors that is applicable to malaria and demonstrates competitive exclusion was
considered in Cai, Martcheva, and Li (2013).

Recently, Agyingi, Ngwa, andWiandt (2016) proposed amodel for studying the dynam-
ics ofmultiple species and strains ofmalaria. The susceptible-infectious (SI)model for then
species/strainswas developedusing 2(n+1)ordinarydifferential equations. The immediate
limitation of the model is that it does not account for the incubation periods within the
host and vector. While this can be remedied by simply including latent compartments, the
resulting system suffers from the downfall of containing many parameters which cannot
be determined experimentally. In this paper we upgrade the SI model in Agyingi et al.
(2016) to incorporate time lags which serve as the incubation periods, for two species
of the parasite. We remark here that the derived model can also be used to study two
strains of a single species. The introduction of time lags are known to excite instabilities in
dynamicalmodels (MacDonald, 1989).We analytically determine the critical values for the
onset of bifurcations and affirm them with numerical computations. Further, we deduce
competitive exclusion for the model as a consequence of determining the equilibria of the
system and also confirm it numerically.

2. Mathematical model

Maintaining all the assumptions made in the model by Agyingi et al. (2016), we add delay
parameters to both host and vectors and obtain the governing equations of the model for
two species as follows:

Ṡh = θNh −
2∑

j=1

aρj
Sh(t − τj)

Nh(t − τj)
Imj(t − τj) +

2∑
j=1

γjIhj − θSh

İhk = aρk
Sh(t − τk)

Nh(t − τk)
Imk(t − τk) − γkIhk − βkIhk − θIhk

Ṡm = νNm −
2∑

j=1

aσj
Ihj(t − τ ∗

j )

Nh(t − τ ∗
j )

Sm(t − τ ∗
j ) − νSm (1)

İmk = aσk
Ihk(t − τ ∗

k )

Nh(t − τ ∗
k )

Sm(t − τ ∗
k ) − νImk for k = 1, 2;

where all the parameters are assumed to be positive. The variables in the above equation are
defined as follows: Sh is the susceptible human population; Sm is the susceptible mosquito
population; and Ihk are the infectious humanpopulations for k = 1, 2; Imk are the infectious
mosquito populations for k = 1, 2. Nh is the total human population and Nm is the total
mosquitoes population. We define the parameters as: θ is the birth/death rate for humans;
ν is the natural birth/death rate for mosquitoes; γk and βk are the human recovery and
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death rates for species k; a is the average biting rate of the mosquitoes; ρj is the probability
that a mosquito bite will lead to an infection in a human; and σj is the probability that
mosquitoes will be infected as a result of taking blood meals from infectious humans. For
k = 1, 2, τk and τ ∗

k are the delay terms within host and vectors, respectively.
All analysis from this point forward will dwell on the infective equations only. To get rid

of other variables, we assume the total population sizes for humans (Nh) and mosquitoes
(Nm) are constant, normalize each of them to one and define new variables: uh = Sh/Nh,
um = Sm/Nm, xk = Ihk/Nh, and yk = Imk/Nm, for k = 1, 2. The infective equations of the
system are now given by

ẋk = ck[αkuh(t−τk)yk(t−τk)−xk] and ẏk = ν[δkum(t−τ ∗
k )xk(t−τ ∗

k )−yk], k = 1, 2,
(2)

where ck = γk + βk + θ , αk = (aρkNm)/(ckNh) and δk = aσk/ν.
The reproduction number for species (or strain) k, denoted byRk

0, is the average number
of secondary infections that we expect to be produced by introducing a single infected
human of species (or strain) k into a naive population. The introduction of an infected
human will lead to the infection of αk cases in mosquitos, each of which will lead to σk
cases in humans. Rk

0 is computed as the product of the quantities αk and δk (see Agyingi et
al., 2016), that is,

Rk
0 = αkδk = a2ρkσkNm

ν(γk + βk + θ)Nh
, for k = 1, 2.

We set the basic reproduction number, R0, of the model to be that of the dominant species,
that is, R0 = max{R1

0,R
2
0}.

3. Stability analysis

In this sectionwe compute and study the behavior of the equilibriumpoints of the proposed
model. For purpose of simplicity and clarity in subsequent analysis, we let the delays within
humans to be equal for all species and the delays in the vector to be identical for all species,
that is, τ1 = τ2 = τ and τ ∗

1 = τ ∗
2 = τ ∗. Further, to eliminate the susceptible variables

from (2), we let uh = 1− x1 − x2 and um = 1− y1 − y2 . System (2) for k = 1, 2 becomes

ẋk = ck[αk(1 − x1(t − τ) − x2(t − τ))yk(t − τ) − xk] and
ẏk = ν[δk(1 − y1(t − τ ∗) − y2(t − τ ∗))xk(t − τ ∗) − yk], (3)

or equivalently,

ẋ1 = c1[α1(1 − x1(t − τ) − x2(t − τ))y1(t − τ) − x1]
ẋ2 = c2[α2(1 − x1(t − τ) − x2(t − τ))y2(t − τ) − x2]
ẏ1 = ν[δ1(1 − y1(t − τ ∗) − y2(t − τ ∗))x1(t − τ ∗) − y1] (4)
ẏ2 = ν[δ2(1 − y1(t − τ ∗) − y2(t − τ ∗))x2(t − τ ∗) − y2]
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Remark 1: It is obvious from system (4) that the origin is an equilibrium point of the
model. This equilibrium indicates the absence of malaria, and is designated as the disease
free equilibrium (DFE).

In addition to the DFE, system (4) has two more equilibrium points as stated in the
result below (Agyingi et al., 2016).
Lemma 1: If Rk

0 > 1 for k = 1, 2, then system (4) possesses two non-DFEs given by

(x∗
1 , x

∗
2 , y

∗
1 , y

∗
2 ) =

(
0,

α2δ2 − 1
(1 + α2)δ2

, 0,
α2δ2 − 1

(1 + δ2)α2

)
and

(x∗∗
1 , x∗∗

2 , y∗∗
1 , y∗∗

2 ) =
(

α1δ1 − 1
(1 + α1)δ1

, 0,
α1δ1 − 1

(1 + δ1)α1
, 0
)

.

We remark here that the non-DFEs stated above are positive and therefore biologically
relevant only if Rk

0 = αkδk > 1, otherwise the equilibria are negative.
In order to study the behavior of the equilibria, we compute the characteristic equation

of the delay system (4) as

det (J0 + e−λτ Jτ + e−λτ∗
Jτ∗ − λI ) = 0, (5)

where the Jacobian matrices J0, Jτ , and Jτ∗ are defined, respectively as

J0 =

⎛
⎜⎜⎝

−c1 0 0 0
0 −c2 0 0
0 0 −ν 0
0 0 0 −ν

⎞
⎟⎟⎠ ,

Jτ =

⎛
⎜⎜⎝

−c1α1y1 −c1α1y1 c1α1(1 − x1 − x2) 0
−c2α2y2 −c2α2y2 0 c2α2(1 − x1 − x2)

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and

Jτ∗ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

νδ1(1 − y1 − y2) 0 −νδ1x1 −νδ1x1
0 νδ2(1 − y1 − y2) −νδ2x2 −νδ2x2

⎞
⎟⎟⎠ .

Theorem 1: The disease-free equilibrium of system (4) is locally asymptotically stable if
Rk
0 < 1 for k = 1, 2 and unstable if there exists an Rk

0 > 1 for some k.

Proof: At the DFE, the characteristic Equation (5) becomes

det

⎛
⎜⎜⎝
⎡
⎢⎢⎣

−c1 − λ 0 e−λτ c1α1 0
0 −c2 − λ 0 e−λτ c2α2

e−λτ∗
νδ1 0 −ν − λ 0

0 e−λτ∗
νδ2 0 −ν − λ

⎤
⎥⎥⎦
⎞
⎟⎟⎠ = 0,
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which upon evaluation leads to the equation f (λ; τ , τ ∗)g(λ; τ , τ ∗) = 0, where

f (λ; τ , τ ∗) = (λ2 + (c1 + ν)λ + c1ν − e−λ(τ+τ∗)c1α1νδ1 and

g(λ; τ , τ ∗) = λ2 + (c2 + ν)λ + c2ν − e−λ(τ+τ∗)c2α2νδ2.

In case of τ = τ ∗ = 0, we know (Agyingi et al., 2016) that the disease-free equilibrium
is locally asymptotically stable when R1

0 < 1 and R2
0 < 1. The functions f (λ; τ , τ ∗) and

g(λ; τ , τ ∗) are both continuous in λ, τ , and τ ∗, thus by the implicit function theorem their
roots λf (τ , τ ∗) and λg (τ , τ ∗) are continuous functions of τ and τ ∗. For τ = τ ∗ = 0 the
roots are on the left side Re(z) < 0 of the complex plane (whenever R1

0 < 1 and R2
0 < 1),

thus if for some τ > 0, τ ∗ > 0 values any of the roots have positive real part, there exist
some τ > 0 and τ ∗ > 0 values where λf (τ , τ ∗) = iω or λg (τ , τ ∗) = iω. First, we consider
the factor f (λ; τ , τ ∗) = 0 and assume that for τ > 0 and τ ∗ > 0, we have λf (τ , τ ∗) = iω.
This means that

−ω2 + (c1 + ν)iω + c1ν − e−iω(τ+τ∗)c1α1νδ1 = 0.

The real and imaginary parts of the above equation are, respectively, given by

−ω2 + c1ν − cos (ω(τ + τ ∗))c1α1νδ1 = 0 and (c1 + ν)ω + sinω(τ + τ ∗)c1α1νδ1 = 0.

These are the same as

cos (ω(τ + τ ∗))c1α1νδ1 = −ω2 + c1ν and sinω(τ + τ ∗)c1α1νδ1 = −(c1 + ν)ω,

thus, by adding the squares of the left and right sides of the equations, we obtain that

c21α
2
1ν

2δ21 = ( − ω2 + c1ν)2 + ( − (c1 + ν)ω)2 = ω4 + ω2(c21 + ν2) + c21ν
2.

This implies that

ω4 + ω2(c21 + ν2) = c21ν
2(α2

1δ
2
1 − 1);

thus if α1δ1 = R1
0 < 1, no ω can satisfy this equation, as the left side is nonnegative and the

right side is negative. The computation for g(λ; τ , τ ∗) is analogous. In case any of the Rk
0 is

larger than 1, then there exist roots with positive real part and the disease-free equilibrium
is unstable.

In the case when the reproduction number of each species is less than 1, we have the
following stronger result.
Theorem 2: The disease-free equilibrium of system (4) is globally asymptotically stable if
Rk
0 < 1 for k = 1, 2.

Proof: Recall that (4) is derived from (2), thus it is sufficient to prove global asymptotic
stability of the DFE for (2). Since Sh ≤ Nh and Sm ≤ Nm, we obtain uh ≤ 1 and um ≤ 1 in
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(2); thus we have the differential inequality

ẋk ≤ ck[αkyk(t − τk) − xk] (6)
ẏk ≤ ν[δkxk(t − τ ∗

k ) − yk], k = 1, 2. (7)

This is the same as

ẋk + ckxk ≤ ckαkyk(t − τk) (8)
ẏk + νyk ≤ νδkxk(t − τ ∗

k ), k = 1, 2. (9)

Multiplying (8) by eckt , we obtain that

ẋkeckt + ckxkeckt = d
dt

(xk(t)eckt) ≤ ckαkecktyk(t − τk),

for k = 1, 2. Integrating the above inequality on (0, t), we obtain

xk(t)eckt − xk(0) ≤
∫ t

0
ckαkecksyk(s − τk) ds,

for k = 1, 2.
Rearranging this equation, we have that for k = 1, 2

xk(t) ≤ e−cktxk(0) + e−ckt
∫ t

0
ckαkecksyk(s − τk) ds.

Now this implies that

xk(t) ≤ e−cktxk(0) + e−ckt sup yk(t)
∫ t

0
ckαkecks ds = e−cktxk(0) + sup yk(t)(αk − αke−ckt).

Thus we get that

lim sup
t

xk(t) ≤ αk lim sup
t

yk(t),

for k = 1, 2. The analogous computation for (9) gives that lim sup
t

yk(t) ≤ δk lim sup
t

xk(t),

thus combining these two inequalities we obtain that for k = 1, 2

lim sup
t

xk(t) ≤ αk lim sup
t

yk(t) ≤ αkδk lim sup
t

xk(t) = Rk
0 lim sup

t
xk(t),

and sinceRk
0 < 1, we get that lim sup

t
xk(t) = 0; similarly, lim sup

t
yk(t) = 0. This concludes

the proof.
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Remark 2: Recalling the non-DFEs as

(x∗
1 , x

∗
2 , y

∗
1 , y

∗
2 ) =

(
0,

α2δ2 − 1
(1 + α2)δ2

, 0,
α2δ2 − 1

(1 + δ2)α2

)
and

(x∗∗
1 , x∗∗

2 , y∗∗
1 , y∗∗

2 ) =
(

α1δ1 − 1
(1 + α1)δ1

, 0,
α1δ1 − 1

(1 + δ1)α1
, 0
)
,

we see that the model immediately exhibits competitive exclusion, since only one species
is represented in each of the equilibria.

The analysis for the behaviors of the non-DFEs (x∗
1 , x

∗
2 , y

∗
1 , y

∗
2 ) and (x∗∗

1 , x∗∗
2 , y∗∗

1 , y∗∗
2 )

are similar and therefore we will treat just the former.
Lemma 2: The characteristic equation of the non-DFE (x∗

1 , x
∗
2 , y

∗
1 , y

∗
2 ) is given as

f (λ; τ , τ ∗)g(λ; τ , τ ∗) = 0, where

f (λ; τ , τ ∗) = (c1 + λ)(ν + λ) − e−λ(τ+τ∗)c1ν
α1δ1

α2δ2
and

g(λ; τ , τ ∗) =
(
c2 + λ + c2e−λτ α2δ2 − 1

1 + δ2

)(
ν + λ + νe−λτ∗ α2δ2 − 1

1 + α2

)
− c2νe−λ(τ+τ∗).

Proof: Substituting (x∗
1 , x

∗
2 , y

∗
1 , y

∗
2 ) into the characteristic Equation (5), we get

det

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

−c1 − λ 0 e−λτ c1α1 δ2+1
δ2(1+α2)

0
−e−λτ c2 α2δ2−1

1+δ2
−c2 − λ − e−λτ c2 α2δ2−1

1+δ2
0 e−λτ c2α2 δ2+1

δ2(1+α2)

e−λτ∗
νδ1

1+α2
α2(1+δ2)

0 −ν − λ 0
0 e−λτ∗

νδ2
1+α2

α2(1+δ2)
−e−λτ∗

ν α2δ2−1
1+α2

−ν − λ − e−λτ∗
ν α2δ2−1

1+α2

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

= 0

and the proof follows directly.

Theorem 3: If R1
0 < R2

0, then the non-DFE (x∗
1 , x

∗
2 , y

∗
1 , y

∗
2 ) of system (4) can lose stability

only if an eigenvalue of the second factor, g(λ; τ , τ ∗), in the characteristic equation crosses
over to the right side of the complex plane.

Proof: Employing the technique demonstrated in Theorem 1, we show that all the eigen-
values of the first factor f (λ; τ , τ ∗) as stated in Lemma 2, lie on the left hand side of the
complex plane. Suppose that for τ > 0 and τ ∗ > 0, we have λf (τ , τ ∗) = iω; then the factor
f (λ; τ , τ ∗) = 0 gives us

(c1 + iω)(ν + iω) − e−iω(τ+τ∗)c1ν
α1δ1

α2δ2
= 0.

The real and imaginary parts of the above equation are

−ω2 + c1ν − cos (ω(τ + τ ∗))c1ν
α1δ1

α2δ2
= 0 and (c1 + ν)ω + sin (ω(τ + τ ∗))c1ν

α1δ1

α2δ2
=0.
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Similarly to earlier computations, consider the square sum of the left and right side of the
appropriate equations for the cosine and sine; we obtain

c21ν
2α2

1δ
2
1

α2
2δ

2
2

= (c1ν − ω2)2 + ( − (c1 + ν)ω)2 = ω4 + (c21 + ν2)ω2 + c21ν
2.

This gives us that

ω4 + (c21 + ν2)ω2 = c21ν
2

(
α2
1δ

2
1

α2
2δ

2
2

− 1

)
;

thus if R2
0 = α2δ2 > α1δ1 = R1

0, then the roots of the factor f (λ; τ , τ ∗) do not cross over
the imaginary axis since no ω satisfies the above equation. Therefore the loss of stability
for the non-DFE (x∗

1 , x
∗
2 , y

∗
1 , y

∗
2 ) has to come from the second factor, g(λ; τ , τ ∗).

To further study the stability of the non disease-free equilibrium (x∗
1 , y

∗
1 , x

∗
2 , y

∗
2 ), we

rewrite the second factor in the product of the characteristic equation stated in Lemma 2
as

g(λ; τ , τ ∗) = (c2 + λ + Ae−λτ )(ν + λ + A1e−λτ∗
) − c2νe−λ(τ+τ∗) (10)

where

A = c2
α2δ2 − 1
1 + δ2

and A1 = ν
α2δ2 − 1
1 + α2

.

To get a better insight into the structure of g(λ; τ , τ ∗), we consider five different cases for
the values of the delays τ and τ ∗.

Case 1: If τ = 0 and τ ∗ = 0 in g(λ; τ , τ ∗), we obtain the no delay system and the
equilibrium (x∗

1 , y
∗
1 , x

∗
2 , y

∗
2 ) is asymptotically stable (Agyingi et al., 2016).

Case 2: If τ > 0 and τ ∗ = 0 in g(λ; τ , τ ∗), then we get

λ2 + F1λ + F2 + (Aλ + Aν + AA1 − c2ν)e−λτ = 0 (11)

where F1 = c2 + ν + A1 and F2 = c2(ν + A1). Let λ = iω be a root of the characteristic
Equation (11). We obtain the following real and imaginary equations, respectively:

ωA sinωτ + B cosωτ = ω2 − F2 (12)

and
ωA cosωτ − B sinωτ = −ωF1, (13)

where B = A(ν + A1) − c2ν. Squaring and adding the Equations (12) and (13), we get

ω4 + (F21 − 2F2 − A2)ω2 + F22 − B2 = 0. (14)

If F2 − B < 0, then Equation (14) has a single positive root given as

ω̂ =
⎛
⎝−(F21 − 2F2 − A2) +

√
(F21 − 2F2 − A2)2 − 4(F22 − B2)

2

⎞
⎠

1
2

.
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Substituting ω̂ in (12) and (13), we get the critical values of the delay τ as

τ̂j = 1
ω̂
arccos

(
B(ω̂2 − F2) − Aω̂2F1

B2 + ω̂2A2

)
+ 2π j

ω̂
, for j = 0, 1, 2, . . . .

When τ = τ̂j, the characteristic Equation (11) has a pair of purely imaginary roots ±iω̂.
Next we investigate whether the root crosses over into the positive half of the complex

plane. Differentiating the characteristic Equation (11) with respect to τ , we get

[
dλ
dτ

]−1
= − (2λ + F1)

λ(λ2 + F1λ + F3)
+ A

λ(A(λ + ν + A1) − c2ν)
− τ

λ
.

At the root λ = iω̂, the real part of the above equation is given as

Re
[
dλ
dτ

]−1
= 2ω̂2 + F21 − 2F2 − A2

ω̂2A2 + B2
.

Thus

Re
[
dλ
dτ

]−1

τ=τ̂0

=
√

(F21 − 2F2 − A2)2 − 4(F22 − B2)

ω̂2A2 + B2
.

It is evident from the preceding equation that if F2 − B < 0 then Re[dλ/dτ ]−1 > 0 at
τ = τ̂0. Therefore the root crosses the imaginary axis into the positive half of the complex
plane. We summarize this case with the following result.
Lemma 3: If τ ∗ = 0and the conditionF2−B < 0holds, then the equilibrium (x∗

1 , y
∗
1 , x

∗
2 , y

∗
2 )

is, (i) asymptotically stable for τ ∈ [0, τ̂0), (ii) unstable when τ > τ̂0 and (iii) undergoes a
Hopf bifurcation when τ = τ̂0.

Case 3: If τ ∗ > 0 and τ = 0 in g(λ; τ , τ ∗), then we get

λ2 + F̃1λ + F̃2 + (A1λ + A1ν + A1A − c2ν)e−λτ∗ = 0 (15)

where F̃1 = c2 + ν + A and F̃2 = ν(c2 + A). Let λ = iω be a root of the characteristic
Equation (15). We obtain the following real and imaginary equations, respectively:

ωA1 sinωτ + B̃ cosωτ = ω2 − F̃2 (16)

and

ωA1 cosωτ − B̃ sinωτ = −ωF̃1, (17)

where B̃ = A1(c2 + A) − c2ν. Squaring and adding the Equations (16) and (17), we get

ω4 + (F̃21 − 2F̃2 − A2
1)ω

2 + F̃22 − B̃2 = 0. (18)
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If F̃2 − B̃ < 0, then Equation (18) has a single positive root given as

ω̃ =
⎛
⎝−(F̃21 − 2F̃2 − A2

1) +
√

(F̃21 − 2F̃2 − A2
1)

2 − 4(F̃22 − B̃2)

2

⎞
⎠

1
2

.

The corresponding critical values of the delay τ ∗ is

τ̃j = 1
ω̃
arccos

(
B̃(ω̃2 − F̃2) − A1ω̃

2F̃1
B̃2 + ω̃2A2

1

)
+ 2π j

ω̃
, for j = 0, 1, 2, . . .

When τ = τ̃j, the characteristic Equation (15) has a pair of purely imaginary roots ±iω̃.
A similar result on differentiating (15) with respect to τ ∗ for the root λ = iω̃, and at

τ ∗ = τ̃0 is given by

Re
[
dλ
dτ ∗

]−1

τ∗=τ̃0

=
√

(F̃21 − 2F̃2 − A2
1)

2 − 4(F̃22 − B̃2)

ω̃2A2
1 + B̃2

.

We also see from the above equation that if F̃2 − B̃ < 0 then Re[dλ/dτ ∗]−1 > 0 at τ ∗ = τ̃0.
Therefore the root crosses the imaginary axis into the positive half of the complex plane.
We summarize the above analysis with the following result.
Lemma 4: If τ = 0 and the condition F̃2−B̃ < 0 holds, then the equilibrium (x∗

1 , y
∗
1 , x

∗
2 , y

∗
2 )

is, (i) asymptotically stable for τ ∗ ∈ [0, τ̃0), (ii) unstable when τ ∗ > τ̃0 and (iii) undergoes a
Hopf bifurcation when τ ∗ = τ̃0.

Case 4: If τ = τ ∗ > 0 in g(λ; τ , τ ∗), then we get

λ2 + (c2 + ν)λ + c2ν + (
(A + A1)λ + Aν + A1c2

)
e−λτ + (AA1 − c2ν)e−2λτ = 0 (19)

Multiplying Equation (19) through by eλτ we get

D1λ + D2 + (λ2 + (c2 + ν)λ + c2ν)eλτ + D3e−λτ = 0, (20)

where D1 = A + A1, D2 = Aν + A1c2 and D3 = AA1 − c2ν. Suppose that λ = iω is a
root of Equation (20), then we obtain the corresponding real and imaginary parts of the
resulting complex equation as

K1 cosωτ − K sinωτ = −D2 and K2 sinωτ + K cosωτ = −ωD1, (21)

where K1 = c2ν − ω2 +D3, K2 = c2ν − ω2 −D3, and K = ω(c2 + ν). Solving for cosωτ

and sinωτ from the Equation (21), we get

cosωτ = −K2D2 − ωKD1

K1K2 + K2 and sinωτ = KD2 − ωK1D1

K1K2 + K2 . (22)

Upon squaring and adding the terms in (20), we obtain

(K1K2 + K2)2 = (K2D2 + ωKD1)
2 + (KD2 − ωK1D1)

2. (23)
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The preceding equation is a polynomial of degree 8 in the variable ω:

h(ω) =ω8 + (
2c22 − D2

1 + 2ν2
)
ω6

+ (
c42 − c22D

2
1 + 4c22ν

2 + 2D2
1D3 − D2

1ν
2 − D2

2 − 2D2
3 + ν4

)
ω4

+
(
2c42ν

2 − c22D
2
1ν

2 − c22D
2
2 − 2c22D

2
3 + 2c22ν

4 − 2c2D2
1D3ν

+ 4c2D1D2D3 − D2
1D

2
3 + 4D1D2D3ν

− 2D2
2D3 − D2

2ν
2 − 2D2

3ν
2
)
ω2 + (D3 − c2ν)2

(
(c2ν + D3)

2 − D2
2

)
= 0.

If c2ν + D3 − D2 < 0 in the above equation then h(0) < 0 and also as ω → ∞, h → ∞,
thus there exists at least one positive root. For each positive root ω we can compute the
value of the delay using (22),

τ j = 1
ω
arccos

(−K2D2 − ωKD1

K1K2 + K2

)
+ 2π j

ω
, for j = 0, 1, 2, . . . ,

and choose the minimum as the critical delay value. Similarly to the previous cases, we
can establish that the root crosses the imaginary axis into the positive half of the complex
plane and therefore we obtain the following result.
Lemma 5: If τ = τ ∗ > 0 and the condition c2ν +D3 −D2 < 0 holds, then the equilibrium
(x∗

1 , y
∗
1 , x

∗
2 , y

∗
2 ) is, (i) asymptotically stable for τ ∈ [0, τ 0), (ii) unstable when τ > τ 0 and (iii)

undergoes a Hopf bifurcation when τ = τ 0.
Case 5: If τ > 0 and τ ∗ > 0 in g(λ; τ , τ ∗). To study this case, we keep one of the

delays, for example τ ∗, fixed in its stable interval, assume that τ > 0, and follow the same
approach illustrated in Cases 2–4. Due to the complexity of the algebra involved, we skip
all the details and propose the following result.
Proposition 1: For some fixed value of τ ∗ �= 0 and under appropriate conditions, there
exists a critical value τ = τ̄ > 0 such that the equilibrium (x∗

1 , y
∗
1 , x

∗
2 , y

∗
2 ) is, (i) asymptotically

stable for τ ∈ [0, τ̄ ), (ii) unstable when τ > τ̄ and (iii) undergoes a Hopf bifurcation when
τ = τ̄ .

4. Results and discussion

Wepresent in this section numerical computations that demonstrate the analysis provided
in the previous section for two species and two strains of the disease. We simulate P.
falciparum and P. vivax for the species, and for the strains we consider resistant and non-
resistant P. falciparum. The values of the parameters used in our simulations were taken
from Agyingi et al. (2016), Pongsumpun and Tang (2009), Esteva, Gumel, and de Leon
(2009) and Aron and May (1982). A concise table of these values is given in Agyingi et al.
(2016). In all our simulations, we assumed that there were no disease induced deaths. All
simulations were made for the same initial conditions, x1(0) = .1 and x2(0) = .1, as small
perturbations did not alter the behavior of the equilibria presented below.

We begin by simulating P. falciparum and P. vivax, for delay values of 7 and 10 days in
humans and mosquitoes, respectively. The results are given in Figure 1. In Figure 1(a), the
computed reproduction number for each species was less than one and as expected we see
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that the DFE is globally asymptotically stable since both species go extinct with time. In
Figure 1(b), we double the biting rate of mosquitoes while retaining every other parameter,
and observed that the computed reproduction numbers were both bigger than one. This
case demonstrate the asymptotic stability of a non-DFE. It also demonstrates competitive
exclusion, a direct consequence of the nature of the non-DFEs as stated in Remark 2. The
surviving species P. falciparum had the larger reproduction number.

In the next set of results, we investigate the behavior of the non-DFE analysed in
Theorem 3–Proposition 1. We omit the case where τ = τ ∗ = 0 as it has been discussed in
Agyingi et al. (2016).

The results in In Figure 2 are for the case where τ ∗ = 0 and the value of τ > 0 is varied.
For this simulation, we investigated P. vivax and a resistant form of P. falciparum. We
deduce from Figure 2(a) and (b) that the critical value of the delay τ = τ̂0 that excites
instability is between 28 and 29 days, that is, 28 < τ̂0 < 29. Initial oscillations that appear
before the critical value τ̂0 is reached, converge to the non-DFE rendering the equilibrium
asymptotically stable as seen in Figure 2(a). Oscillations that start after τ̂0 only increase
in amplitude making the non-DFE unstable as portrayed in Figure 2(b). Therefore the
non-DFE undergoes a Hopf bifurcation at the critical delay value τ̂0.

On investigating the case τ = 0 and the value of τ ∗ > 0 varied, we did not see any
instability. This does not contradict the result stated in Lemma 4 because the realistic
incubation period of the parasite within the mosquito is at most 21 days. Thus, the
maximum value of τ ∗ = 21 was not sufficient to cause instability in the model.

The next result investigates the case in which τ = τ ∗ �= 0. We see a transition from
stable to unstable as indicated in Figure 3. The instability occurs when the delay value
is very close to the maximum value of the parasite’s incubation period in mosquitoes.
From Figure 3(a) and (b), we see that the critical delay value τ 0 lies within the interval
20 < τ 0 < 21.

Finally, we consider the case summarized in Proposition 1, that is, keeping the delay τ ∗
fixed at some non-zero value, and we vary the value of the delay τ . The results for this case
are given in Figure 4. The simulations are for two strains of P. falciparum; one resistant
and the other non-resistant. The value of the delay τ ∗ was fixed at τ ∗ = 10. On varying
the value of the delay τ , we straddled a critical value τ = τ̄0 on the interval 38 < τ̄0 < 39
as depicted in Figure 4(a) and (b). This result confirms the existence of a Hopf bifurcation.
Illustrated in Figure 5 is a phase plane portrait for the behavior of the resistant strain. We
see the onset of oscillations in Figure 5(a) which eventually converge to the equilibrium
point. However, in Figure 5(b) the oscillations grow in amplitude rendering the system
unstable. We remark here that resistant strain survives while the non-resistant strain dies
out, affirming competitive exclusion.

5. Conclusion

In this paper we have presented a deterministic model for malaria transmission possessing
time delays that account for the incubation period of the parasite within humans and
mosquitoes. The model is formulated so that it can be used to study two species or two
strains of a single species of malaria. Three equilibrium points are computed for themodel,
one being the DFE. We show both analytically and numerically that the DFE is globally
stable when each species has a reproduction number smaller than one. We investigated
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the non-disease free equilibria theoretically and confirmed numerically that there exist
critical delay values delineating stability and instability. Further, Hopf bifurcations occur
at these critical delay values. The theoretical structure of the non-disease free equilibria
suggests competitive exclusion in favor of the species or strainwith the higher reproduction
number.
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