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ABSTRACT

Therapeutic vaccines play a large role in the cast of immunotherapies
that are now an essential component in most cancer treatment
regimes. The complexity of the immune response and the ability
of the tumour to mount a counter-offensive to this response have
made it difficult to predict who will respond to what treatments,
and for clinicians to optimise treatment strategies for individual
patients. In this paper,wepresent amathematicalmodel that captures
the dynamics of the adaptive response to an autologous whole-
cell cancer vaccine, without some of the complexities of previous
models that incorporate delays. Model simulations are compared to
published experimental and clinical data, and used to discuss possible
improvements to vaccine design.
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1. Introduction

Immunotherapy was heralded as the ‘Breakthrough’ of the year in 2013, and laboratory
and clinical trials show a variety of treatments that have great promise (Couzin-Frankel,
2013). Cancer vaccines are a particular type of immunotherapy, where the goal is to boost
the patient’s own immune response to tumour cells. Unlike preventative vaccines which
are developed for a population and target a specific virus, a cancer vaccine is therapeutic:
it is developed for a particular patient for their specific tumour. The complexity of the
immune response, the heterogeneity of themanydiseaseswe call ‘cancer’ and the variability
between patients create challenges in designing an effective cancer vaccine. Mathematical
models can help oncologists meet these challenges by (1) increasing the understanding
of the mechanism underlying the observed immuno-kinetics; (2) identifying predictors
of disease progression and response to therapies; (3) providing an in silico test bed for
treatment scenarios and virtual clinical trials; (4) suggesting combinations of therapies
and dosage timings to improve the effectiveness of the treatments.
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Figure 1. Schematic showing the initiation of the adaptive immune response to cancer by dendritic cells.
The trafficking of the DCs is not shown. The processing of the antigen takes place at the tumour site
(left side of the graphic). The dendritic cell then migrates to the spleen or other lymph organ, where it
activates naive T-cells (right side of the graphic). This activation requires the DC cells and T-cells to bind
together. Once activated, T-cells begin proliferating, move into the blood stream, or become memory
cells. Source: National Cancer Institute (2010).

There are multiple kinds of immunotherapy used in fighting cancer Institute (2015),
which include monoclonal antibodies, adoptive cell transfer and therapeutic vaccines.
The greatest advantage of immunotherapy over chemotherapy and radiotherapy is its low
toxicity and potential long-term benefits. In this paper, we focus onmodelling the adaptive
immune response to a dendritic cell vaccine. Dendritic cells (DCs) are a type of antigen-
presenting cell. The role of these immune cells is to process foreign substances, called
‘antigen’, found in the body, and present the antigen to immune cells that can be activated
to engage in an immune response specific to that antigen. Immature DCs circulate through
the blood stream, or hang out in tissues that are close to the outside of the body, such as the
skin, nose and lungs. Once they encounter antigen and process it, they become ‘activated’,
and they migrate to the lymph organs, such as the spleen, where they present the antigen
to immature T-cells. (See Figure 1).

A dendritic cell vaccine is created from the patient’s own immune cells. Immature DCs
are isolated from the patient’s blood, and allowed tomature and proliferate in contact with
the patient’s tumour cells. Activated DCs are then injected back into the patient, with the
goal of initiating a specific immune response by activating cytotoxic T lymphocytes (CTLs),
a type of effector cell. These activated CTLs then go and fight the tumour, becomememory
cells to be available for a future tumour challenge, or die off (Porfyris & Kalomoiris, 2013).

The first DC vaccine to be approved by the FDA was for prostate cancer, and a large
clinical trial started in 2010. Prostate cancer is generally slow-growing, which may allow
the immune system to mount an effective anti-tumour response after stimulation. While
the vaccine prolonged survival for several months, the results were not as positive as was
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hoped (Small et al., 2006). In this paper, we develop amathematical model to explore some
of the mechanisms behind the body’s ability to mount an effective response.

In §2, we develop a mathematical model of the CTL activation in the spleen. This
model improves on earlier models by explicitly tracking the DC-CTL conjugates during
the activation phase. This avoids the need for delay equations and makes the model more
descriptive of what is actually happening. In §3.1, we calibrate the model to vaccination
experiments with mice and humans. In §3.2, a sensitivity analysis shows which model
parameters most effect outcomes of interest, such as final tumour size, final CTL levels and
memory cell levels. In §4, we apply the model to several situations that have been explored
experimentally, and use model simulations to inform phenomena such as variability in
response and immuno-exhaustion.

2. Themathematical model

Previous mathematical models DePillis, Gallegos, and Radunskaya (2013), Ludewig et al.
(2004), and Radunskaya and Hook (2012) describe the number of dendritic and effector
cells in the spleen, blood and/or tumour. Ludewig, et al. describe mathematical models
for the predator–prey type of interaction between DC and CTLs, and transfer dynamics
of the DC and activated, naive and memory CTLs in the spleen, blood and the liver
with a nonlinear compartmental system (Ludewig et al., 2004). The model includes a
DC-dependent retention of CTLs in the spleen, and a ‘trapping effect’ which controls
the export rate of CTLs into the blood depending on the presence of DCs in the spleen.
The trapping effect has been incorporated in order to comply with the observed CTL
dynamics. DePillis, et al. extend this model by incorporating the tumour compartment,
which in turn introduces the tumour population, and its interactions with the immune
cells. A contribution of this model is the incorporation of the effects of DC-based vaccines
on tumour growth. The tumour growth is modelled by logistic growth, as it was a better
fit to the data, and the elimination of tumour cells by the activated CTLs is described by a
ratio-dependent kill term.

When the activated DCs encounter the CTL cells, they bind together via receptors on
the cell surface. There is a time lapse, the ‘synaptic connection time’, before the CTLs
are completely activated, and can begin proliferating. In DePillis et al. (2013) and Ludewig
et al. (2004) delay differential equations are used to describe the synaptic connection time.
The delay equations account for the time lag, but they introduce unwanted complexities
into the model. In particular, the presence of the delay means that a continuum of states
is required to describe the system at any point in time: the model is infinite dimensional.
In this work, we remove the delay by introducing two new state variables which represent
the DCs bound to CTLs (W) and the rapidly proliferating population (P). In addition
to reducing the model to a finite-dimensional system, we can also directly model this
important part of the immune activation cascade.

We consider three locations for the cells: the blood, spleen and tumour. Within each
location, we model the dynamics of the immune and tumour cells. The events that occur
within each location and the connection between them are described in Figure 2. The blood
primarily serves as the transporter of dendritic and effector cells between the spleen and
tumour. In the spleen, the activation and proliferation of effector T-cells occurs. During the
activation of the effector T-cells, some proportion of DCs enter a new state of bonded cells,
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Figure 2. The three compartments in the model and the type of cells in each compartment.

Figure 3. The spleen diagram showing the different cell populations as compartments.
Notes: The parameters indicate the rate at which a cell moves, dies or changes; see Appendix A for details. The ‘no entry’
symbol denotes a death term. The dotted line indicates an interaction term.

referred to as the synaptic connection state. After the synaptic connection time, effector
cells begin proliferating and produce active effector cells. The effector cells either move to
their target, turn into memory cells that remain in circulation until the next challenge by
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the same antigen, or enter an apoptotic or rapidly dying phase. This proliferation of cells
better equips the immune system to fend off tumour cells.

The spleen is populated by dendritic (Dspleen) and effector cells. The effector cells are
classified as naive, active Easpleen or memory Emspleen. There is an abundance of naive cells
so we do not incorporate these into the model. The DCs bind with up to 10 naive effector
cells to form a conglomerate cellW (Giese &Marx, 2014). When the conglomerate breaks
apart (after the required activation time), the effector cells then enter a proliferating stage P
where new active effector cells Easpleen are created. Memory effector cells can also bind with
DCs and initiate a proliferating stage. Figure 3 shows the different stages and the transfer
rate between those stages. The parameter μ represents the flow rate for each type of cell
in and out of the spleen, a represents the death rates, and λ, β and γ are the conversions
between types of cells (see Appendix A). The DCs of interest are those that recognize
the tumour antigen and move to the tumour. Once a DC has arrived at the tumour, it
has reached its destination thus we do not track it leaving the tumour. The rate at which
effector cells are released into the blood (μSB) is lower when DCs are present in the spleen,
describing the ‘trapping’ effect noted by some experimentalists (Ludewig et al., 2004).

The resulting model for the interaction between the DCs and the effector cells in the
spleen is given in system (1).

dDspleen

dt
= μBSDblood − (aD + γ )Dspleen + λdW (1a)

dEaspleen
dt

= μBSEEablood − ramEaspleen − aEaSE
a
spleen

−
⎛
⎝μ∗

SB + μnormal − μ∗
SB

1 + Dspleen
θshut

⎞
⎠Easpleen + βEP (1b)

dEmspleen
dt

= μBSEEmblood + ramEaspleen − aEmE
m
spleen

−
⎛
⎝μ∗

SB + μnormal − μ∗
SB

1 + Dspleen
θshut

⎞
⎠Emspleen − λmEmspleenDspleen (1c)

dW
dt

= γDspleen − λdW (1d)

dP
dt

= ωλdW + λmEmspleenDspleen − (βE + βd)P (1e)

The blood transports the dendritic and effector cells throughout the body. We assume
there is no proliferation or cell death in the blood compartment, resulting in system (2).
One treatment option for reducing the size of the tumour is to introduce additional DCs
into the blood. This vaccine is composed of immature DCs harvested from the patient,
and activated ex-vivo. The mature DCs are then injected into the bloodstream, described
by vblood(t) in Equation (2a). We investigate the dosage and the frequency of the vaccine
in Section 4. The DCs emigrate from the blood at a rate μB, and enter the blood from the
tumour at a rate of μTB. Both the active and memory effector cells are released from the
spleen dependent on theDCdensity, as in the Equation (1c). The functionμ∗

SB+ μnormal−μ∗
SB

1+Dspleen
θshut
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describes the effect that activated CTLs are retained in the spleen when DCs are present,
this term is called the ‘trapping term’ in DePillis et al. (2013), Ludewig et al. (2004). These
equations modelling the transport of cells in the blood are the same as those presented for
the blood in DePillis et al. (2013).

dDblood

dt
= −μBDblood + μTBDtumor + vblood(t) (2a)

dEablood
dt

=
⎛
⎝μ∗

SB + μnormal − μ∗
SB

1 + Dspleen
θshut

⎞
⎠Easpleen − μBBEablood (2b)

dEmblood
dt

=
⎛
⎝μ∗

SB + μnormal − μ∗
SB

1 + Dspleen
θshut

⎞
⎠Emspleen − μBBEmblood (2c)

The tumour in the model is composed of DCs, active effector cells and tumour cells.
The number of effector cells and DCs travelling to the tumour is dependent on the tumour
size, with maximal rates of μBB and m, respectively. We assume a logistic growth for the
tumour. Every encounter between an effector cell and tumour cell results in the annihilation
or inactivation of the effector cell with probability c. The corresponding elimination rate
for the tumour is more complicated due to the specific immune strength of the patient.We
incorporate a ratio-dependent kill term, in Equation (4), based on agreement with previous
experimental results, (see de Pillis, Radunskaya, & Wiseman, 2005). The effector cells do
not leave the tumour compartment, unlike theDCs. In this work, we investigate the tumour
as an alternative application site for the dendritic cell vaccine, hence the appearance of the
term vtumor(t). We explore the tumour growth for various dosages and frequencies of the
vaccine in Section 4.

The equationsmodelling the interaction of cells within the tumour are the same as those
in DePillis et al. (2013).

dEatumor
dt

= μBB
T

α + T
Eablood − aEaTE

a
tumor − cEatumorT (3a)

dT
dt

= rT
(
1 − T

k

)
− DT (3b)
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dt
= mT

q + T
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where

D = d

(
Eatumor
T

)�

s +
(
Eatumor
T

)�
(4)

We use the non-dimensional version of themodel (1–3) when simulating. Details of the
non-dimensionalization are given in Appendix B.



LETTERS IN BIOMATHEMATICS 45

Table 1.Minimum and maximum values for parameter distribution functions.

Parameter Minimum Maximum

aEaT .29 .63
d .25 1
k 107 109
� .31 .89
μB 5.4 48.6
μBS .56 5.04
m 200 1800
r .24 .40
s .01 3.0

3. Parameters

In this section, we describe the algorithm used to fit the model to data. We also determine
the sensitivity of the model to the parameters. All parameter descriptions can be found in
Appendix A.

3.1. Estimating parameters

The parameters in the model are fit using the Nelder–Mead least squares algorithm by
implementing the MATLAB function fminbdd. The data used are from an experimental
study on mice Lee, Cho, and Lee (2007) who received an injection of PBS (control),
1 × 105, 7 × 105, or 21 × 105 DCs on days 6, 8, and 10. In these experiments, the vaccine
was injected directly into the tumour. In the numerical fitting, we consider experimental
day 6 to be simulation day 0. The initial size of the tumour is 5 × 105 cells, assuming
the average side length of a square tumour cell is .01mm. The resulting values for the
parameters fit are given in Table A1 and the fit is shown in Figure 4. The model is able
to mimic tumour growth under all four sets of experimental conditions with one set of
parameter values. The exception is the tumour size on Day 14 using the highest dose
of vaccine: while both the experimental and simulated tumours continue to grow over
time, the mathematical model predicts a slightly smaller tumour size than that observed
experimentally. We conjecture that this is due to the phenomenon known as ‘immuno-
exhaustion’, where increasing doses of vaccine have a decreasing ability to promote an
effective immune response. This is discussed further in Section 4.4, where we suggest
model refinements that include immuno-exhaustion.

3.2. Sensitivity analysis

In order to examine the sensitivity of the system to the choice of parameters, we implement
the Latin Hypercube Sampling technique described in Blower and Dowlatabadi (1994)
and calculate partially ranked correlation coefficients (PRCC). The parameters that have a
monotonic relationship to the outcomes are aEaT , d, k, �, μB, μBS,m, r, s. We consider the
outcomes on day 15 after receiving three doses of vaccine consisting of 107 DCs on days 1,
3, and 5. Assuming each of the parameters are normally distributed, we randomly generate
1,00,000 sets of parameters selected from a normal distribution truncated at two standard
deviations. The maximum and minimum values for each distribution are given in Table 1.
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Figure 4.Number of tumour cells vs. time using the parameters that best fit the experimental treatments
in Lee et al. (2007).
Note: Parameter values are given in Table A1.

The sensitivity is quantified by calculating the PRCC. The results are shown in
Figure 5. The parameters that have the greatest influence on the tumour size include
d (negative), �, r and s (positive). The parameters with the largest effect on the CTL
and memory levels are μB (negative), μBS and m (positive). The p-value for all of these
parameters is less than .001.

Inorder to further investigate the influenceof these parameters on the size of the tumour,
we vary several parameters that can potentially be regulated by clinical intervention.
The parameters determined when fitting to the data in Lee et al. (2007) are used with
a vaccination dosage of 7 × 105 DCs given on days 1, 2, 4 for 30min. As d, r, s individually
vary, Figure 6 shows the change of the outcome of the tumour. In all cases, there are
parameters that cause the tumour to decrease and eventually disappear. These numerical
experiments indicate bifurcation values for each of these parameter values. The clinical
implication is that treatments need to move the effective parameter values across these
bifurcation values.

We also explore the relationship between the death rate of the tumour cells by the CTLs
(d) and the tumour growth rate (r). Figure 7 shows the needed r value for a given d value
in order for the tumour to be eliminated when the medium dosing schedule (107 DCs
given on days 1, 3, and 5) is implemented. The allowable tumour growth rate increases at
a slower rate than the death rate of the tumour cells. Thus an increase in the growth rate
of the tumour requires a larger increase in the death rate of the tumor cells by CTLs.

We do not further investigate the transfer rates of the DCs to which the memory cells
and CTLs are most sensitive because we do not experience drastically different behaviour
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Figure 5. Partially ranked correlation coefficients (PRCC) for outcomes: final tumour size, final CTL levels,
final memory cell levels.
Notes: Parameters with positive/negative PRCCs indicate a positive/negative correlation with that outcome. Negative
correlations with tumour growth are beneficial to the patient, while positive correlations with CTL and/or memory cells are
beneficial to the patient.

due to the low number of memory cells within the system. One would expect that the
carrying capacity (k) would greatly influence the growth of the tumour. However, at the
early time of 15 days the tumour size is not near carrying capacity which explains k not
being one of the most sensitive parameters.

4. Results

The mathematical model developed in the previous sections gives a simple description
of the kinetics of the adaptive immune response to a dendritic cell vaccine. Its potential
usefulness is twofold: (1) it can be used to explore hypothetical mechanisms governing
the immune response and the effectiveness; (2) it can be used to predict responses to
hypothetical vaccination strategies. We calibrated the model to four different published
experiments in order to test its explanatory and predictive power. These include three
murine experiments, and one study on patients receiving a dendritic cell vaccine for
prostate cancer.We note also that the experiments were done using different tumour lines,
and using a variety of treatment protocols. The results reported in this section illustrate
both the flexibility and the limitations of the current model.

4.1. Experiment 1: amurinemodel of a DC vaccine for ovarian cancer

In Shubina, Donenko, Akhmatova, and Kiselevskii (2014), an experiment was conducted
on 8 − 12 week old male mice. The DC vaccine was created by removing DCs from mice
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Figure 6. Number of tumour cells for varying parameters that affect the immune strength (d), tumour
growth rate (r) and half-saturation level (s). Dosing following the medium dose of Lee et al. (2007).

Figure 7. Bifurcation diagram relating the death rate of the tumour cells by the CTLs (d) and the tumour
growth rate (r) with a medium dosing schedule (107 DCs given on days 1, 3, and 5).
Note: Parameter combinations that lie above the curve result in the tumour growing to carrying capacity while those below
the curve cause the tumour to be eliminated.
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Table 2. Parameters changed from those in Appendix A when simulating the experiment in Shubina et
al. (2014).

Parameter aEaT d k � μTB r s βE

Value 6 × 10−5 .235 4 × 108 .147 2.3 × 10−3 .337 2.44 24.32

Figure 8. Data from Shubina et al. (2014) after converting the data, the number of cells on day 20 were
1.41 ± .1 (control) and .77 ± .09 (vaccine) and on day 30 3.6 ± .3 (control) and 2.09 ± .29 (vaccine).
Note: Model (1–3) using parameters in Appendix A and Table 2.

bone marrow and exposing them to a type of ovarian cancer (CaO-1). The size of the
tumour was converted to number of tumour cells by assuming the cells are circular with
an average diameter of 17.6 microns (LLC, 2003). In the experiment, each mouse has
5, 00, 000 ovarian cancer tumour cells put intraperitoneally into the right side and 106 DCs
into the left side. Due to this change in sides, we introduce the vaccine into the blood on
days 1, 3, 5, 7, and 10.

Figure 8 shows the agreement between the data and the simulation. Notice that the
tumour continues to grow in both groups: the growth rate is slower when a DC vaccine
is administered. On day 20, the tumour is 54% the size of the control and on day 30 the
tumour is 58% the size of the control (Shubina et al., 2014). Using a least-squares fit as
described in Section 3.1, we fit the model to the data above by adjusting the parameters
given in Table 2. The resulting simulations are show in Figure 8.

4.2. Experiment 2: a study of a DC vaccine for patients with prostate cancer

The effects of dendritic cell therapies for humans with prostate cancer were studied in
Profile (2006). We utilise the linear function found in Portz, Kuang, and Nagy (2012) to
convert the given PSA numbers to tumour cells. The value for r, the intrinsic growth rate
of the tumour cells, given in Portz et al. (2012) is .025 − .045 day, so we set r = .031, in
the middle of this range. We fit our model to the results in Profile (2006) by adjusting the
other parameters as given in Table 3.

Figure 9 shows the tumour doubling time for patients receiving the control and patients
receiving the vaccine. The time required for the tumour to double is longer when DC
vaccines are employed. The model successfully captures the growth rate of the tumour.
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Table 3. Parameters changed from those in Appendix Awhen simulating the ADIS RD profile experiment
in Profile (2006).The parameter values were determined byminimizing the squared distance to the data,
using MATLAB fminbdd function.

Parameter d k � r s

Value .029 1 × 107 .25 .031 .047

Figure 9.Data from Profile (2006) shownwith model simulations. In Profile (2006), it is reported that the
doubling time increased from 6.7 months with no vaccine to 12.7 months with vaccine.
Notes: Patients with prostate cancer were administered a 30min IV-infusion of .3− 1.2× 109 cells of the vaccine on weeks
0, 2, and 4. We utilize .8 × 109 cells of DC vaccine injected into the blood over a 30min period.

We further investigated the variable, d, an immune strength parameter that represents
the maximum per-cell kill rate of tumour cells by effector cells. Figure 10 shows that when
d = .03 the tumour grows very slowly; above this value, the tumour grows and below this
value, the tumour dies off. This suggests that this dendritic cell vaccine for prostate cancer
could be made more effective by increasing the maximum per-cell kill rate of the tumour
cells by the effector cells. One possibility in achieving this are the anti-PDL1 antibodies
currently being developed, (e.g. Sagiv-Barfi et al., 2015). See also Section 5 for further
discussion of this type of treatment.

4.3. Experiment 3: amurinemodel of a vaccine for prostate cancer

The sipuleucel-T vaccine modelled in Section 4.2 consisted of mature DCs, as well as some
proteins, or cytokines, to promote the activation of cancer-specific immune cells. These
cytokines were fused with prostatic acid phosphatase (PAP), a good target for vaccines
against prostate-specific disease since it is found in most prostate cancers. In the hopes
of improving the efficacy of the sipuleucel-T vaccine, researchers in Fujio et al. (2015)
added additional cytokines to the treatment. They tested the new vaccine on mice who
were injected with PAP-RM9 cells, i.e. tumour cells that should present a sensitive target
for these PAP-fused cytokines.

The in vivo experiments in Fujio et al. (2015) were designed to test the effect of the
DC vaccine on the very early stages of tumour growth. Therefore, they gave three vaccine
injections, spaced two days apart (on days 0, 2, and 4), before injecting the tumour cells (on
day 7). A control group was also injected with tumour cells, but received no vaccine. All
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Figure 10. The value of d, the immune strength parameter, is varied as indicated. Values of d below
.03 result in an immune response that is able to control the tumour. All other parameters are listed in
Table 3.

mice were analysed and examined for tumour formation and tumour size on the twenty-
first day.

Antitumour effects of the treatment were evidenced in two ways: only 40% of the mice
in the vaccinated group formed tumours at all (2 out of the 5 mice), and the tumours that
did occur in the vaccinated group were 20% of the size of the tumours in the group with
no vaccination.

We tested our model against data from the control group and data from the vaccinated
group. In order to capture the heterogeneity in the experimental groups, we sampled
from a range of prostate tumour growth rates reported in the literature (Portz et al.,
2012). We hypothesised that the additional cytokines, which included human interleukin-
2 (IL2), IL4 and IL7, should increase the lytic efficacy of the effector cells. By adjusting
the corresponding parameter, d, in the model, we were able to fit the model to the
experimental results (see Figure 11). As hypothesised, the value of d increased to .2, an
order-of-magnitude increase from the fit in the previous numerical experiment reported
in Section 4.2.

This numerical experiment underlines another use for mathematical modelling. If a
range of parameter values is known from previous experiments, in silico ‘trials’ can be
performed by sampling from this parameter distribution. Thus, we can use the model to
not only predict average behaviour, but also to show the range of behaviours that might
occur when a new treatment is applied. For a more extensive example of this type of
modelling, (see de Pillis, Radunskaya, & Savage, 2014).

4.4. Amurinemodel of a DC vaccine to study immuno-exhaustion.

When used in isolation, therapeutic vaccines are not a consistently effective treatment.
One obstacle to designing an effective vaccine is that the immune system’s response drops
off after continued treatment. Two causes of this response may be that the DCs cease to
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Figure 11. Tumor Growth With Vaccine (Left Panel) and Without Vaccine (Right Panel).
Notes: Vaccines were given 3, 5 and 7 days prior to the injections of 1.5 × 106 tumour cells. Tumour growth rates were
sampled from r ∈ [.025, .045], as reported in Portz et al. (2012) (The specific r-values used are: .025, .029, .035, .042, .045).
Results are consistent with experimental results reported in Fujio et al. (2015): tumours grew in all mice in the un-vaccinated
group, but only two of the five mice in the vaccinated group showed any tumour growth after fifty days. The size of the
tumours in these two mice was only 40% of the average tumour size in the unvaccinated group.

Table 4. Parameters changed from those in Appendix A when simulating the DC vaccine experiment in
Francesco Pappalardo et al. (2014).

Parameter βd λm μTB μBB ram

Value 50 − (49.72)e−.29t −.0013t + .003 0 0 15

proliferate into active effector cells but instead become ineffective or the memory cells
cease to begin proliferating (see Jacobs et al., 2014 and Ricupito et al., 2013). For example,
a decrease in the total number of effector cells in observed in the experiments performed in
Francesco Pappalardo, Ricupito, Topputo, and Bellone (2014). We adapt the model (1–3)
to incorporate a drop off in active effector cells (Easpleen). The relevant parameters are the
reversion rate of the activated CTL to memory CTL (ram), the rate at which proliferating
cells become ineffective (they do not produce active CTL) (βd), and the rate at which
memory cells begin proliferating (λm). First we dramatically increase ram to get a higher
per cent of memory effector cells (Emspleen). Second we let β

d and λm change with time. We
would like the rate at which proliferating cells become ineffective to dramatically increase
at first and then level off in time (see Figure 12). At the same time, we want the probability
thatmemory cells are activated and begin proliferating to decrease over time.While amore
sudden decrease is more likely to be biologically accurate, we start with a linear decrease
as a simple first model (see Figure 12). Finally, since there is no tumour present, we set the
relevant transfer rates, μTB and μBB, to zero. With these adjustments to the parameters
as seen in Table 4, we are able to mimic the behaviour observed in Francesco Pappalardo
et al. (2014).

In Francesco Pappalardo et al. (2014), the authors test a dendritic vaccine in mice
without the presence of a tumour. They found that after 154 days and four injections, the
number of effector cells decreased, indicating immuno-exhaustion where the vaccine is
becoming less effective over time. Despite the overall decrease, the per cent of the effector
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Figure 12. Left panel: The rate at which proliferating cells become ineffective (βd ) increases dramatically
early in the process and then levels off at. βd(t) = 50 − (49.72)e−.29t . Right panel: The rate at which
memory cells enter the proliferating stage decreases linearly. λm(t) = −.0013t + .003.

Figure 13. Simulation of vaccine given into the blood as 4 doses of 5 × 105 cells given for a half hour at
days 0, 28, 70, and 112.
Notes: Left Panel: The number of all effector cells decreases dramatically after the first vaccine. Right Panel: the ratio of
memory cells to effector cells increases over time, from about 20 to about 40%.

cells which are memory cells increases, from about 20 to about 40% from day 63 to 126.
After adjusting the parameters (see Table 4), we simulate the vaccine schedule in Francesco
Pappalardo et al. (2014) and our model gives similar results as seen in Figure 13. In our
simulation, the vaccine is administered into the blood in 4 doses of 5 × 105 cells given
over a half hour period at days 0, 28, 70, and 112 with the experiment terminating at day
154. There is no tumour present so the initial conditions of all state variables are set to
0. As in Francesco Pappalardo et al. (2014), we see that both memory (Emspleen) and active
effector cells (Easpleen and P) decrease dramatically after the initial dose yet proportionally
the memory cells increase over time. While our modelling of immuno-exhaustion here
is phenomenological (we assume that the parameters βd and λm are fixed functions of
time), we are able to mimic what is observed experimentally. A next step in the modelling
processwould be to develop amore sophisticated, physiologically basedmodel of immuno-
exhaustion.
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5. Conclusions

We have developed a mathematical model of the activation of the adaptive immune
response by adendritic cell vaccine for cancer. By comparing themodel to five experimental
studies, we have shown that the model is flexible, and that it can capture the immune
kinetics in both mice and humans, and for different cancer types.

We have identified several model parameters that most affect tumour size in the initial
stages of the disease. These include the intrinsic growth rate of the tumour and the
maximum lysis rate of tumour cells by effector cells. Some immunological treatments are
under investigation that affect these parameters, and the model can be used to determine
threshold values for these treatments. For example, we see in Figure 6 that there are
critical values of the parameters d and r that determine whether the vaccine is effective
in controlling the tumour and Figure 7 shows the relationship between these parameters
and the tumour behaviour. These threshold values can be determined analytically and
then used to determine patient specific treatment for a patient-specific set of parameters.
The administration of anti-PD1 antibody could increase the parameter d, while a drug
such as ibrutinib, which inhibits the survival signalling pathway could decrease r,
(Sagiv-Barfi et al., 2015). In future work, we plan to present a stability analysis and
a thorough bifurcation analysis of these two parameters that would inform an optimal
prescription of this type of adjuvant immunotherapy.

Treatment scheduling is another important consideration in the design of vaccine
protocols. Results from clinical trials of DC vaccines have been somewhat disappointing:
often, the vaccines delay tumour growth, but do not ultimately control it, as seen in Profile
(2006). Amathematicalmodel can be calibrated to a particular type of patient using in vitro
assays that determine tumour lysis by effector cells, and by estimating the intrinsic growth
rate of the tumour from patient data. This model can then be used to optimize vaccine
doses and timings for that particular patient. Both analytical and heuristic optimization
techniques have been used in the context of cancer treatments (de Pillis, Fister, & Gu,
2008; de Pillis & Radunskaya, 2001, 2003; Ledzewicz, Mosalman, and Schättler, 2013;
Swierniak & Duda, 1994; Schättler & Ledzewicz, 2015; Swierniak, Ledzewicz, & Schattler,
2003; Villasana & Ochoa, 2004); in future work we plan to apply these tools to this model
of DC vaccines in combination with other immunotherapies.

The success of cancer vaccines will depend on developing combination therapies and
vaccination protocols that address immuno-exhaustion and immuno-suppression. In fu-
ture work, we will test proposed mechanisms that contribute to immuno-exhaustion by
incorporating the accumulation of antigen in the lymph organs. Using these more refined
models, we will be able to suggest optimal dosing and delivery protocols. Advances in tar-
geted delivery, triggered release via thermo- or sono-sensitive nanoparticles, and sustained
release vehicles will enable the implementation of sophisticated schedules of combination
therapies. Simulations of these delivery schedules using a validated mathematical model
will significantly speed up the time needed to take these new treatment protocols from
bench to clinic.
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Appendix A. Parameter values

Table A1. Table of model parameter values, with sources, used in the model calibration step.

Parameter name Description Value Units Reference

aD Natural death rate of DCs 0.23 1/day Ludewig et al. (2004)
aEaS Death rate of activated CTLs in spleen 0.12 1/day Ludewig et al. (2004)
aEaT Death rate of activated CTLs in tumor

compartment
0.46 1/ day de Pillis & Radunskaya (2006)

aEm Natural death rate of memory CTLs 0.01 1/day Ludewig et al. (2004)
α Half saturation constant 1 cell DePillis et al. (2013)
βE # offspring cells moving into Ea 13 1/day Fit to Lee et al. (2007)
βd Natural death rate of proliferating

cells
0.29 1/day Ludewig et al. (2004)

c Rate at which activated CTLs are
inactivated by tumor cells

9.42 × 10−12 1/(cell ∗ day) de Pillis & Radunskaya (2006)

d Maximal fractional tumor kill by CTLs 0.32 1/day Fit to Lee et al. (2007)
γ The probability that 1 DC will bind in

unit time
14 1/day Fit to Lee et al. (2007)

k Carrying Capacity of the tumor 1.0 × 108 cells Fit to Lee et al. (2007)
� Immune strength scaling exponent 0.6 unitless Fit to Lee et al. (2007)
λd Average rate at which Ea leavesW for

P per unit time
4/3 1/day Breart & Bousso (2006)

λm Number of memory cells getting
proliferated in unit time

0.15 1/(cell ∗ day) Fit to Lee et al. (2007)

m Maximum recruitment rate of DCs to
tumor cite

1000 cells/day Fit to Lee et al. (2007)

μB Rate of DC emigration from blood 27 1/day Fit to Lee et al. (2007)
μBB Scaled and shifted elimination rate of

CTL from blood
6.3 1/day Fit to Lee et al. (2007)

μBS Transfer rates of DCs from blood to
spleen

2.8 1/day Fit to Lee et al. (2007)

μBSE Scaled transfer rate of activated CTLs
from blood to spleen

.0014 1/day Fit to Lee et al. (2007)

μnormal Normal DC transfer rate from spleen
to blood

.040 1/day Fit to Lee et al. (2007)

μ∗
SB Transfer rates of DCs from spleen to

blood
11 1/day Fit to Lee et al. (2007)

μTB Rate of transfer of DC from tumor to
blood

.13 1/day Fit to Lee et al. (2007)

ω Average number of Enaive cells that a
DC binds to

13 unitless Fit to Lee et al. (2007)

q Value of T necessary for half-maximal
DC recruitment

200 Cells Fit to Lee et al. (2007)

r Tumor growth rate .32 1/day Fit to Lee et al. (2007)
ram Reversion rate of activated CTLs to

memory CTLs
.01 1/day Ludewig et al. (2004)

s Value of (Eatumor/T)� necessary for
half-maximal activated CTL toxicity

2.3 unitless DePillis et al. (2013)

θshut Scaled threshold in DC density in the
spleen for half-maximal transfer rate
from spleen to blood

.12 Cells Fit to Lee et al. (2007)

Appendix B. Non-dimensional equations
We non-dimensionalize the system (1–3) by introducing the scalings t = τ t̂,D = δD̂,T =
σ T̂ ,W = δŴ , P = εP̂,E = εÊ, v = Vv̂ where the ˆ variable represents the non-dimensional
variable. Substituting this change of variables into the system (1–3), we obtain the following non-
dimensional system.We take the scaling values to be τ = 1

μBSE
, = 104 cells, ε = 106 cells, σ = 109
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cells, and V = 1
48

cells
day .

dÊatumor

dt̂
= μBBτ T̂

α
σ

+ T̂
Êablood − τaEaT Ê

a
tumor − τ cσ ÊatumorT̂ (B1)

dT̂
dt̂

= τ rT̂

(
1 − σ T̂

k

)
− τD∗T̂ (B2)

dD̂tumor

dt̂
= mτ

δ

T̂
q
σ

+ T̂
− τ(μTB + aD)D̂tumor + τ

δ
v̂tumor(t) (B3)

dD̂spleen

dt̂
= τμBSD̂blood − τ(aD + γ )D̂spleen + τλdŴ (B4)

dÊaspleen
dt̂

= τμBSEÊablood − τ
(
ram + aEaS

)
Êaspleen (B5)

− τ

⎛
⎝μ∗

SB + μnormal − μ∗
SB

1 + δD̂spleen
θshut

⎞
⎠ Êaspleen + τβEP̂ (B6)

dÊmspleen
dt̂

= τμBSEÊmblood + τ ramÊaspleen − τaEmÊ
m
spleen (B7)

− τ

⎛
⎝μ∗

SB + μnormal − μ∗
SB

1 + δD̂spleen
θshut

⎞
⎠ Êmspleen − τλmδÊmspleenD̂spleen (B8)

dŴ
dt̂

= τγ D̂spleen − τλdŴ (B9)

dP̂
dt̂

= τωλdδ

ε
Ŵ + τλmδÊmspleenD̂spleen − τβP̂ (B10)

dD̂blood

dt̂
= −τμBD̂blood + τμTBD̂tumor + τ

δ
v̂blood(t) (B11)

dÊablood
dt̂

= τ

⎛
⎝μ∗

SB + μnormal − μ∗
SB

1 + δD̂spleen
θshut

⎞
⎠ Êaspleen − τμBBÊablood (B12)

dÊmblood
dt̂

= τ

⎛
⎝μ∗

SB + μnormal − μ∗
SB

1 + δD̂spleen
θshut

⎞
⎠ Êmspleen − τμBBÊmblood (B13)

(B14)

where

D∗ = d

(
Êatumor
T̂

)�

s
( ε

σ
)�

+
(
Êatumor
T̂

)�
.
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