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ABSTRACT

The study of the Allee effect on the stability of equilibria of predator-
prey systems is of recent interest to mathematicians, ecologists, and
conservationists.Many theoreticalmodels that include theAllee effect
result in an unstable coexistence equilibrium. However, empirical
evidence suggests that predator–prey systems exhibiting density-
dependent growth at small population densities still can achieve
coexistence in the long term. We review an often cited model that
incorporates an Allee effect in the predator population resulting
in an unstable coexistence equilibrium, and then present a novel
extension to this model which includes a term modeling intraspecific
competition within the predator population. The additional term
penalizes predator population growth for large predator to prey
density ratios. We use equilibrium analysis to define the regions in
the parameter space where the coexistence equilibrium is stable, and
show that there exist biologically reasonable parameter sets which
produce a stable coexistence equilibrium for our model.
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1. Introduction

In the 1920s, Lotka (1925) and Volterra (1926) independently proposed what are now
referred to as the Lotka–Volterra equations,

dN
dt

= r1N − δNP, (1a)

dP
dt

= −r2P + θNP, (1b)

where N(t) and P(t) are the populations sizes or densities of the prey and predator
populations, respectively. The prey population exhibits exponential growth (with intrinsic
growth rate of r1 > 0) in the absence of the predator, but the growth rate of the prey
population is reduced by interactionwith predators as governed by the functional response
term δNP. The predator population exhibits exponential decay (with intrinsic decay rate
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of r2 > 0) in the absence of a prey source, and the growth rate of the predator population is
increased by interaction with prey as governed by the numerical response term θNP. The
interaction parameters δ and θ are both assumed to be positive constants.

The Lotka–Volterra system can be described more generally as

dN
dt

= g(N)N − f1(N , P), (2a)

dP
dt

= m(P)P + f2(N , P), (2b)

where g(N) is the per capita growth rate of the prey population in the absence of the
predator population, m(P) is the per capita growth rate of the predator population (or
mortality rate ifm(P) < 0) in the absence of the prey population and f1(N , P) and f2(N , P)

are the functional response and numerical response terms, respectively, to interaction with
the other population. For System (1), g(N) = r1, m(P) = −r2, f1(N , P) = δNP, and
f2(N , P) = θNP. Note, when m(P) < 0, any growth in the predator population is a result
of its numerical response to its prey.

Many adaptations of the Lotka–Volterramodel have been studied since it was originally
proposed in the 1920s. One adaptation has been to include an Allee effect in either the
predator or prey population (Aulisa & Jang, 2014; Flores & González-Olivares, 2014;
Zhou, Liu, & Wang, 2005 for some examples). The Allee effect is defined as a positive
relationship between population density and fitness (Allee, 1941; Boukal & Berec, 2009;
Courchamp, Berec, & Gascoigne, 2009). The Allee effect is thought to be present in many
populations and can be caused by a variety of factors. Populations with small densities can
experience magnified threats to their fitness and survival, which can cause a reduction in a
population’s per capita growth rate. The effect is described as either being weak or strong,
but only the strong Allee effect exhibits a negative per capita growth rate for sufficiently
low population densities.

There are many ways that an Allee effect can be present in a predator–prey system.
For example, predators can drive an Allee effect in prey by affecting individual probability
of survival (Gascoigne & Lipcius, 2004). Alternatively, predator density can affect the per
capita benefit of prey to the predator population (Zhou et al., 2005). In the first instance,
the Allee effect is acting upon the prey population by reducing the prey per capita growth
rate, g(N). In the latter case, the Allee effect is acting upon the predator population by
reducing the numerical response of the predator population to its prey source, f2(N , P).
This effect could occur in systems where multiple predators are required in order to make
a kill. For instance, African wild dogs experience a decrease in per capita net energy gain
when pack size is reduced. Causes of this decrease could include the increase in energy
expended per individual during a hunt, or a shorter post-hunt feeding period if there are
not enough individuals to guard their feeding packmates (Gusset & Macdonald, 2010).

In Section 2, we describe a predator–prey model proposed by Zhou et al. (2005) which
incorporates an Allee effect into the predator population through the numerical response
of the predator to its prey, f2(N , P). However, for all biologically reasonable parameter
sets, this model produces unstable oscillations leading to boom and bust cycles with
increasing amplitudes which eventually become biologically untenable. In response, in
Section 3, we propose a modified version of the Zhou et al. model in which intraspecific
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competition between predators for prey curtails the growth of the predator population
and allows for biologically tenable oscillations and the presence of a stable coexistence
equilibrium. Intraspecific competition between predators for prey occurs when the ratio
of predators to prey is sufficiently large, causing individuals in the predator population to
experience reduced fitness due to lack of sustenance (Purves, Sadava, Orians, & Heller,
2001). This intensified competition has been shown in blue crab populations where
they express agonistic behaviour, which results in injury when available prey is scarce
(Clark, Wolcott, Wolcott, & Hines, 1999). More extreme intraspecific competition has
manifested in intraspecific predation in a variety of predator populations due to scarcity
of another food source (Fox, 1975; Polis, 1981). The result of the intraspecific competition
between predators is that the numerical response of the predator population to its prey
becomes negative, f2(N , P) < 0. In Section 3, we provide a detailed description of themodel
and its equilibrium points, and then we derive the stability conditions for the coexistence
equilibrium. In Section 4, we compare our proposed model’s coexistence equilibrium and
its stability with that of the Zhou et al. model and the Lotka–Volterra model, concluding
with a discussion of some of the limitations and possible extensions of our model.

2. Predator-preymodel with a predator population Allee effect

AnAllee effect canbe incorporated into the predator populationof System (2) bymodifying
the numerical response of the predators to interaction with the prey, f2(N , P), such that f2
is decreased for small P. Zhou et al. (2005) examines the following model

dN
dt

= r1N − δNP, (3a)

dP
dt

= −r2P + θNP
(

P
P + B

)
, (3b)

where r1, r2, δ and θ are positive valued and as described for the Lotka–Volterra model (1),
and the parameter B > 0 is defined as the Allee effect constant. Note, the larger the value of
B, the lower the per captia growth rate of the predator population. Model (3) is the same as
the Lotka–Volterra system inModel (1), but the predator population’s numerical response
term is decreased as compared to the Lotka–Volterra system since P

P+B < 1. Furthermore,
while any ratio of B/P will reduce the numerical response and thus the growth rate of the
predator population, as the ratio B/P increases, the strength of the Allee effect increases;
specifically when B/P > (θN − r2)/r2, then the growth rate of the predator population is
negative (i.e. dP/dt < 0).

The Lotka–Volterra system (1) has a trivial equilibrium which is a saddle point for all
positive valued parameters, and a single non-trivial equilibrium at

(N∗, P∗) =
( r2

θ
,
r1
δ

)
.

This non-trivial equilibrium represents coexistence of the predator and prey populations
and is a centre for all positive parameter values. Thus, any initial condition (N(0), P(0))
such that N(0), P(0) > 0 and (N(0), P(0)) �= (N∗, P∗) will result in solutions which trace
along a closed orbit about (N∗, P∗). See Figure 1(a) for an example of such a cycle.



26 E. N. BODINE AND A. E. YUST

Figure 1. Trajectories for the prey (N) and predator (P) populations described by (a) the Lotka–Volterra
model given in System (1), and (b) the model proposed by Zhou et al. (2005) given in System (3).
Parameter values: r1 = .5, r2 = .1, δ = .03, θ = .01 (for both trajectories), and B = 4 for (b). In each
graph, the location of the non-trivial equilibrium is indicated by the point.

Model (3) also has a trivial equilibrium which is a saddle point for all positive valued
parameters, and a single non-trivial (coexistence) equilibrium at

(N∗, P∗) =
(
r2
θ

r1 + δB
r1

,
r1
δ

)
,

in which the prey population is larger than in the Lotka–Volterra system’s non-trivial
equilibrium. Furthermore, Zhou et al. (2005) showed that this equilibrium is an unstable
focus for all positive-valued parameter sets which leads to boom and bust cycles with
increasing amplitude in both populations. At some point, the height of the amplitude will
become biologically untenable. See Figure 1(b) for an example trajectory.

It should be noted that the same model as System (3) was proposed by Bazykin (1998),
though it was not explicitly described as adding an Allee effect. The model described by
Zhou et al. (2005) in System (3) has been often cited as a method for introducing an Allee
effect into the predator population of a predator–prey system (Courchamp et al., 2009;
Flores & González-Olivares, 2014; Lai, Liu, & Lin, 2010; Terry, 2013, 2015; Verdy, 2010;
Wang, Cai, & Ma, 2013 for some examples) and as evidence that adding an Allee effect to
the predator population of a predator–prey system can be destabilizing (Bompard, Amat,
Fauvergue, & Spataro, 2013; Boukal & Berec, 2009; Boukal, Sabelis, & Berec, 2007; Jang &
Diamond, 2007).

3. Predator–preymodelwith anAllee effect& intraspecific competition in the
predator population

We propose a modified version of the model presented by Zhou et al. (2005) that curtails
the growth rate of the predator population at large densities relative to its prey source. Our
model incorporates both an Allee effect and intraspecific competition into the numerical
response of the predator population,

dN
dt

= r1N − δNP, (4a)

dP
dt

= −r2P + θNP
(
1 − P

ηN

)(
P

P + B

)
, (4b)
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where r1, r2, δ and θ are positive-valued parameters as defined for the Lotka–Volterra
model (1), and B > 0 is the Allee effect constant as in Model (3). The parameter η > 0 is
a proportionality constant such that when the predator density P is larger than ηN , the
numerical response term f2(N , P) = θNP

(
1 − P

ηN

) (
P

P+B

)
is negative. Thus, the ratio

of the predator density to the prey density will determine when the predator population
experiences decay due to competition between predators for prey, introduced in ourmodel
by the intraspecific competition factor 1 − P

ηN . When the Allee effect constant B is small,
then the Allee effect will only cause reduced growth in the smallest predator densities.
As the value of B increases, the predator population experiences reduced growth for an
increasing range of densities. However, when the predator densities are large relative to B,
the Allee effect is negligible. In this case, when predator densities are also large relative to
ηN , then the intraspecific competition factor will dominate the numerical response.When
predator densities are small relative to ηN while large relative to B, then the numerical
response will behave like θNP, the numerical response from the Lotka–Volterra System
(1). On the other hand, if predator population densities are small relative to B, then the
Allee effect will slow the growth rate. In this case, when predator densities are also small
relative to ηN , then the intraspecific competition factor 1 − P

ηN ≈ 1 and, therefore has a
negligible effect on the numerical response. When predator densities are large relative to
ηN while small relative to B, then both factors decrease the numerical response and the
effect is multiplicative allowing for impacts of the Allee effect and intraspecific competition
to amplify each other. This can occur when the prey density is exceptionally low during
periods of low predator density, in which case it is expected that the growth rate of the
predator density would be very low and possibly negative provided the predator does not
have an alternative prey source.

3.1. Equilibria stability analysis

Model (4) has four equilibrium points:

EQ 1: N∗ = 0, P∗ = 0.
EQ 2: N∗ = r2

θ

r1 + δB
r1

+ r1
2δη

, P∗ = r1
δ
.

EQ 3: N∗ = 0, P∗ =
−r2η −

√
r22η2 − 4Br2ηθ

2θ
.

EQ 4: N∗ = 0, P∗ =
−r2η +

√
r22η2 − 4Br2ηθ

2θ
.

For EQ 3 and EQ 4, let� = r22η
2−4Br2ηθ .When� < 0, then P∗ �∈ R.When� ≥ 0, since

all parameters are positive, then P∗ < 0. Thus, irregardless of the sign of �, neither EQ 3
or EQ 4 are biologically tenable. Additionally, observe that the trivial equilibrium (EQ 1)
of Model (4) is always a saddle point, since the eigenvalues of the Jacobian evaluated at
EQ 1 have opposite signs, λ1 = r1 and λ2 = −r2. Therefore, we focus the remainder of the
analysis on EQ 2, which we will refer to as the coexistence equilibrium.

Proposition 1 (Stability of EQ 2): Let Bc(η) = r21θ/(r2δ2η), where r1, r2, δ, and η are
parameters as defined in System (4). The coexistence equilibrium (EQ 2) for System (4)
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is asymptotically stable when B < Bc(η), a centre when B = Bc(η), and unstable when
B > Bc(η).

Proof: The Routh–Hurwitz Conditions provide criteria for determining stability of an
equilibrium and classifying the equilibrium type (Kot, 2003). Let J represent the Jacobian
evaluated at EQ 2. The trace and determinant of the Jacobian evaluated at EQ 2 are,

Tr(J) = Br2δ2η − r21θ
r1δη + Bδ2η

, and (5)

det(J) = r21r2δη + Br1r2δ2η + r31θ
r1δη + Bδ2η

. (6)

The Routh–Hurwitz Conditions state that if det (J) < 0 then EQ 2 will be a saddle point
(regardless of the sign of Tr(J)), and that if det (J) > 0 then EQ 2 will be asymptotically
stable when Tr(J) < 0, a centre when Tr(J) = 0, and unstable when Tr(J) > 0.

All parameters are positive, and thus det(J) > 0, i.e. there are no biologically-tenable
parameters sets which cause EQ 2 to be a saddle point. Therefore we expect EQ 2 to be a
stable node, an unstable node, a stable focus, an unstable focus or a centre.

If we solve Tr(J) = 0 for B in terms of η, we obtain the curve

Bc(η) = r21θ
r2δ2η

. (7)

where the subscript c denotes EQ2being a centre. Furthermore, EQ2will be asymptotically
stable when Tr(J) < 0, which yields the condition B < Bc(η), and EQ 2 will be unstable
when Tr(J) > 0, which occurs when B > Bc(η).

Note, Bc(η) is the boundary between EQ 2 being asymptotically stable and unstable.
The parameter regions for stability are depicted in Figure 2.

Proposition 2 (Classification of EQ 2): Let

Bn(η) = − c
b
,B+

n (η) = −b + √
b2 − 4ac
2a

, and B−
n (η) = −b − √

b2 − 4ac
2a

,

where the values a = r2δ4η2(r2 − 4r1), b = −2r21δ
2η

(
2r1θ + r2(4δη + θ)

)
, and

c = r31
(
r1θ2 − 4r1δηθ − 4r2δ2η2

)
. Then the coexistence equilibrium (EQ 2) for System

(4) can be classified as a node or focus by the following criteria:

(a) If r2 = 4r1, then EQ 2 is a node when B < Bn(η), and a focus otherwise.
(b) If r2 < 4r1, then EQ 2 is a node when B < B−

n (η), and a focus otherwise.
(c) If r2 > 4r1, then EQ 2 is a node when B < B−

n (η) or B > B+
n (η), and a focus otherwise.

Proof: The Routh–Hurwitz Conditions give that EQ 2 will be a node when (Tr(J))2 −
4det(J) > 0 and a focus when (Tr(J))2 − 4det(J) < 0. Note that,

(Tr(J))2 − 4det(J) = aB2 + bB + c
(r1 + Bδ)2δ2η2

, (8)
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Figure 2. The hatch-shaded region represents the parameter values for which the coexistence
equilibrium of model (4) is stable. The solid-shaded region represents the parameter values for which
the coexistence equilibrium is a node. The function Bn(η) is given by Equation (10) and functions B+

n (η)

and B−
n (η) are given by Equation (12). The solid grey curve is defined by Bc(η) (Equation (7)), and η∗ is

given by Equation (14).
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where
a = r2δ4η2(r2 − 4r1), b = −2r21δ

2η
(
2r1θ + r2(4δη + θ)

)
,

and c = r31
(
r1θ2 − 4r1δηθ − 4r2δ2η2

)
.

The numerator of Equation (8) is quadratic in B, and the denominator is always positive.
Thus, we can determine the sign of (Tr(J))2 − 4det(J) by considering the sign of the
quadratic aB2 + bB + c.

Let f (B) = aB2 + bB + c. First, note that since all parameters are positive, a > 0 when
r2 > 4r1 and b > 0 always. Since c is quadratic in terms of η, we can determine that c > 0
when

0 < η <
θ(

√
r21 + r1r2 − r1)

2r2δ
. (9)

Next, if r2 = 4r1 (i.e. a = 0), then f (B) > 0 (i.e. EQ 2 is a node) when B < −c/b. Thus, in
the case where r2 = 4r1 the boundary between node and focus regions in the parameter
space is given by

Bn(η) = − c
b

= r1
(
θ2 − 4δηθ − 16δ2η2

)
4δ2η

(
8δη + 3θ

) . (10)

Note EQ 2 is a node when B < Bn(η). Furthermore, note that when r2 = 4r1,

Bc(η) − Bn(η) = r1(8δ2η2 + 6δηθ + θ2)

2δ2η(8δη + 3θ)
> 0,

since all parameters are assumed to be positive. Thus, when r2 = 4r1, Bc(η) > Bn(η), and
consequently there exist no positive valued parameters sets such that EQ 2 is an unstable
node (Figure 2(a)). Lastly, note that Bn(η) > 0 when 0 < η < η∗ where

η∗ = θ(
√
5 − 1)
8δ

. (11)

Now, when r2 �= 4r1 (i.e. a �= 0) then the quadratic f (B) has two roots

B+
n (η) = −b + √

b2 − 4ac
2a

and B−
n (η) = −b − √

b2 − 4ac
2a

. (12)

Note that

b2 − 4ac = 16r31δ
4η2

(
r32δ

2η2 + 3r1r22δηθ + r31θ
2 + 2r21r2θ

2) > 0 (13)

for all positive-valued parameters, and thus B+
n and B−

n are both real valued. The signs and
relative sizes of B+

n (η) and B−
n (η) are determine by the signs of a and c and are given in

Table 1. Additionally, if r2 > 4r1 (i.e. a > 0), then f (B) > 0 when B < B−
n or B > B+

n ; if
r2 < 4r1 (i.e. a < 0), then f (B) > 0 when B+

n < B < B−
n . However, these conditions can

be reduced when we account for the sign of c and require that B > 0; Table 1 shows the
simplifications in each case. Notice that if r2 < 4r1 (i.e. a < 0) and

η >
θ

(√
r21 + r1r2 − r1

)

2r2δ
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Table 1. Signs and relative sizes of B+
n (η) and B−

n (η) as defined by Equation (12).

Sign of Conditions for

a c B+
n (η) B−

n (η) B+
n (η) > B−

n (η) f (B) > 0

+ + + + True 0 < B < B−
n or B > B+

n
+ − + − True B > B+

n
− + − + False 0 < B < B−

n− − − − False None

(i.e. c < 0), there are no positive-valued parameter sets which cause f (B) > 0; in other
words, EQ 2 will be a focus.

It should be noted that when r2 �= 4r1, the curve B−
n (η) has a root at

η∗ =
θ

(√
r21 + r1r2 − r1

)

2r2δ
, (14)

and the curve B−
n (η) > 0 when 0 < η < η∗. Thus, the condition for B−

n (η) > 0
is equivalent to the condition for c > 0 (see Inequality (9)). Additionally, notice that
η∗ > 0 for all positive-valued parameter sets, and when r2 = 4r1 Equation (14) reduces to
Equation (11).

Figure 2 shows the stability regions for the parameter conditions (a) r2 = 4r1, (b)
r2 < 4r1, and (c) r2 > 4r1. Note that the only case in which an unstable node occurs is
when r2 > 4r1 (Figure 2(c)), and in each case stable nodes only occur when 0 < η < η∗,
where η∗ is defined by Equation (14).

3.2. Numerical results

Figures 3–5 show sample trajectories of Model (4) with parameter sets where r2 = 4r1
(Figure 3), r2 < 4r1 (Figure 4), and r2 > 4r1 (Figure 5). Parameter sets are chosen
to illustrate the trajectory of the system given the coexistence equilibrium residing in
one of the five potential stability regions shown in Figure 2: stable focus (Figures 3(a)–
5(a)), unstable focus (Figures 3(b)–5(b)), stable node (Figures 3(c)–5(c)), unstable node
(Figure 5(d)), and centre (Figures 3(d)–5(e)). In each figure, all parameters are fixed with
the exception of B and η; all parameter values for each figure are given in Table 2. This
illustrates the impact the relative values of the strength of the Allee effect B and the penalty
for intraspecific competition η have on the long term behaviour of the predator–prey
system. Note, larger values for both B and η tend to result in the coexistence equilibrium
being unstable.

Recall that the coexistence equilibrium can be an unstable node only in the case where
r2 > 4r1. Figure 5(d) shows the trajectory of the predator and prey populations in the case
where the coexistence equilibrium is an unstable node. This trajectory shows a slight rise
in the predator density before it plummets to extinction, after which the prey population
grows without bound. This eventual outcome of the predator population extinction while
the prey population grows without bound also occurs in the cases where the coexistence
equilibrium is an unstable focus (Figures 3(b), 4(b) and 5(b) for sample trajectories);



32 E. N. BODINE AND A. E. YUST

Figure 3. Trajectories of (N(t), P(t)) for model (4) with r2 = 4r1. Each simulation uses t ∈ [0, 150],
N(0) = 50, P(0) = 20, r1 = .1, r2 = .4, δ = .005, θ = .05, and η = 1. The location of EQ 2 is indicated
by the point.

Table 2. Parameter values used to generate Figures 3–5.

Stable Unstable

Node Focus Center Node Focus

r2 = 4r1 Figure 3(c) Figure 3(a) Figure 3(d) Figure 3(b)
r1 = .1, r2 = .4 η = 1 η = 1 η = 1 η = 1
δ = .005, θ = .05 B = 4 B = 30 B = 50 B = 57
r2 < 4r1 Figure 4(c) Figure 4(a) Figure 4(d) Figure 4(b)
r1 = .5, r2 = .3 η = .1 η = 1 η = 1 η = 3.8
δ = .03, θ = .02 B = 5 B = 1 B = 18.5185 B = 5
r2 > 4r1 Figure 5(c) Figure 5(a) Figure 5(e) Figure 5(d) Figure 5(b)
r1 = .03, r2 = .3 η = .75 η = 1 η = 1 η = 2 η = 1
δ = .002, θ = .02 B = 3 B = 14 B = 15 B = 5 B = 16

however, the trajectories are not simulated over a long enough period of time to show this
eventual outcome.

Lastly, it should be noted that when the coexistence equilibrium is a centre, both
populations display periodic cycling as shown in Figures 3(d), 3(d), and 5(e). However,
even slight perturbations of the parameter values will cause the equilibrium to shift to a
focuswhose stability depends on the direction of the perturbations (Figure 2). For example,
Figure 5(e) shows a centre when r2 > 4r1, η = 1 and B = 15. Notice, when the value of B is
increased to B = 16 (without changing the value of η or any other parameters), the regular
oscillations of the centre become oscillations with increasing amplitude, i.e. an unstable
focus (Figure 5(b)). Additionally, notice that when the value of B is decreased to B = 14
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Figure 4. Trajectories of (N(t), P(t)) for model (4) with r2 < 4r1. Each simulation uses t ∈ [0, 150],
N(0) = 50, P(0) = 20, r1 = .5, r2 = .3, δ = .03, and θ = .02. The location of EQ 2 is indicated by the
point.

(without changing any other parameters), the coexistence equilibrium becomes a stable
focus, and over time the oscillating populations will approach a steady state (Figure 5(a)).
It should be noted, any increase inB, however small, would have resulted in the coexistence
equilibrium becoming an unstable focus, and any decrease in B would have resulted in the
equilibrium becoming a stable focus. Thus, in an environment in which the values of η

and Bmay be prone to perturbation, one should not expect the coexistence equilibrium to
remain a centre over a long-time horizon.

4. Discussion

Our proposed model modifies the numerical response of the predators to their prey from
the Lotka–Volterra model (1) by decreasing the numerical response for relatively small
predator densities (Allee effect) and causing the numerical response to become negative for
sufficiently large ratios of predator densities to prey densities (intraspecific competition).
These modifications to the numerical response led our model to have quantitatively
different coexistence equilibriumpoints and qualitatively different coexistence equilibrium
stability outcomes than the Zhou et al. and Lotka–Volterra models. Table 3 shows a
comparison of the numerical responses of the predator population to its prey and the
resulting coexistence equilibrium of each model.
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Figure 5. Trajectories of (N(t), P(t)) for model (4) with r2 > 4r1. Each simulation uses t ∈ [0, 150],
N(0) = 50, P(0) = 20, r1 = .03, r2 = .3, δ = .002, and θ = .02. The location of EQ 2 is indicated by the
point.

Table 3. The numerical response terms of the predator population to its prey, f2(N, P) and the
coexistence equilibria for each of themodels discussed: the Lotka–Volterramodel defined by system (1);
the Zhou et al. model defined by system (3); and the novel model proposed here defined by system (4).

Model f2(N, P) Coexistence EQ (N∗ , P∗)

Lotka–Volterra (1) θNP
( r2

θ
, r1

δ

)
Zhou et al. (3) θNP

(
P

P+B

) (
r2
θ

r1+δB
r1

, r1
δ

)

Our model (4) θNP
(
1 − P

ηN

) (
P

P+B

) (
r2
θ

r1+δB
r1

+ r21
2δη ,

r1
δ

)
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4.1. Size of the prey population at the coexistence equilibrium

Note that the prey population at the coexistence equilibrium for the Zhou et al. model (3)
is proportionally larger than that of the Lotka–Voleterra model (1). Furthermore, the prey
population at the coexistence equilibrium for our model (4) is even larger than that of the
Zhou et al. model. Thus,

r2
θ

<
r2
θ

r1 + δB
r1

<
r2
θ

r1 + δB
r1

+ r21
2δη

.

Since ourmodel restricts the predator population frombecoming excessively large through
the mechanism of intraspecific competition, at the coexistence equilibrium the prey pop-
ulation is able to attain a large density despite the fact that the predator density is the same
at the coexistence equilibrium for all three models.

4.2. Coexistence equilibrium stability outcomes

In comparison to the Zhou et al. model (3) that, for all biologically reasonable parameter
values, has an unstable focus and the Lotka–Volterra model (1) that, for all biologically
reasonable parameter values, has a centre, the stability of our model (4) is parameter
dependent. In particular, the relationship between B (the Allee effect constant) and η

(the intraspecific competition proportionality constant) determines the stability of the
coexistence equilibrium. Note, the larger the value of B, the greater the density of predators
required to maintain a positive predator per capita growth rate. The larger the value of
η, the smaller the density of prey may be before the predator population experiences
negative per capita growth rates as a result of intraspecific competition. If B is large, then η

must be relatively small (and vice versa) to maintain stability (see hatch-shaded regions in
Figure 2). Additionally, if both B and η are relatively small, then stability is maintained.

4.3. Penalty on large predator population densities

In the Zhou et al. model (3), the addition of an Allee effect term on the numerical response
caused the oscillations of the predator and prey densities to have increasing amplitudes,
resulting in an unstable focus. Biologically, it is expected that very dense populations
will be disadvantageous, and so it is reasonable to incorporate a penalty on the numerical
response for large predator population densities relative to the density of their food source.
A penalty for intraspecific competition used in our model (4), can in some cases, dampen
the potentially unbounded growth caused by the Allee effect term; this penalty creates
biologically tenable parameter sets that result in a stable coexistence equilibrium.

4.4. Model limitations & extensions

Our model (4) produces an unstable node for some biologically reasonable parameter
sets. In these cases, the predator population goes extinct after which the prey population
increases without bound (Figure 5(d)). Eventually, the density of the prey population
will become untenable. Instead, the prey population would approach a carrying capacity
dependent on the limitations on the space and resources of the habitat. The unbounded
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prey growth occurs because, although our model (4) includes a penalty for large predator
populations,we did not impose a similar penalty on the prey population.A future extension
of this model could include this feature.

The penalty used for large predator population densities addresses decreased per capita
growth due to intraspecific competition, which depends on the ratio of predator to prey
population densities. However, other penalties may exist for large population sizes that
do not depend on the population density of another species. For instance, there may be
a spatial limitation for the predator population, or territorial species may spend less time
hunting due to intraspecific distraction (Kratina, Vos, Bateman, & Anholt, 2009). A future
model could explore another type of penalty for large populations or combination of
penalties.

The Lotka–Volterramodel (1) describes simplified predator–prey dynamics well, yet we
know many additional forces may be present which can alter the long-term behaviour of
the system. Ecologists and conservationists have produced empirical evidence supporting
the presence of the Allee effect (Courchamp, Clutton-Brock, & Grenfell, 1999; Kunin,
1992) and intraspecific competition (Knowlton, 1992; Kratina et al., 2009; Morin, 1986),
with specific examples of varied increases in intraspecific aggression when the food source
is scarce (Clark et al., 1999; Fox, 1975; Polis, 1981). Additionally, many theoretic models
have been constructed to examine the effects of each of these forces on ecological systems
(Bodine, Gross, & Lenhart, 2008; De Silva & Jang, 2015; Jang, 2010, 2013; McCarthy, 1997;
Ramos-Jiliberto, 2003; Wang, Liang, & Wang, 1999; Wittmann, Hutzenthaler, Gabriel, &
Metzler, 2013 for some examples). We have presented a new theoretic model that includes
these two empirically driven forces, which results in the parameter-dependent stability
of the coexistence equilibrium. Future studies of predator–prey systems can be used to
identify the particular parameter values that best model the density-dependent dynamics
of specific systems, and the theory presented here can be used to predict the long-term
stability of that system.
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