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ABSTRACT ARTICLE HISTORY

A minimal stochastic generalization of a deterministic open-ended Received 18 January 2019
logistic growth model is proposed for efficiently describing the bio- ~ Accepted 6 November 2019
logical growth of individual organisms under natural environment. KEYWORDS

The model is a system of stochastic differential equations. Its unique g0 ended logistic growth;
solvability in a strong sense is proven, and the behaviour of the stochastic differential
solution is analysed. The presented model is then applied to the equation; Plecoglossus
migratory fish Plecoglossus altivelis altivelis (P. altivelis, Ayu) having altivelis altivelis; unique

a one-year life history based on the data sets collected in 2017 and solvability

2018.

1. Introduction

Evaluation and prediction of biological growth (length, mass or size etc.) of individual
organisms are indispensable in resources and ecological management problems, such as
agriculture (Dasgupta, 2017; Garcia-Barrios, Mayer-Foulkes, Franco, Urquijo-Vasquez, &
Franco-Pérez, 2001), forestry (Aubry-Kientz, Rossi, Boreux, & Hérault, 2015; Garcia, 1983)
and fishery (Basilone et al., 2018; Yoshioka & Yaegashi, 2018a). Biological growth in a
natural environment can be reasonably considered in the framework of stochastic pro-
cesses (Wang & Thomas, 1995), in which each sample path corresponds to each individual,
and difference among individuals is naturally described. Mathematical models based on
stochastic differential equations (SDEs) (@ksendal, 2003) are major examples, and mod-
els based on continuous (Barrera, Roman-Roman, & Torres-Ruiz, 2018) and jump (Russo
et al., 2009) stochastic processes have been proposed so far. Probabilistic linkages between
deterministic and stochastic models have been analysed as well (Di Crescenzo & Spina,
2016).

Models of the logistic or Ricker types are in the major stream of biological growth mod-
els (Tsoularis & Wallace, 2002). The open-ended model (Thornley & France, 2005) is a
unique deterministic logistic model where the weight and the capacity (final mass) follow
a system of differential equations. The model can efficiently describe the biological growth
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depending on environmental conditions such as temperature and nutrition. Detailed the-
oretical analyses of the open-ended and related logistic models have been carried out from
the viewpoint of dynamical systems (Safuan, Towers, Jovanoski, & Sidhu, 2012; Thornley,
Shepherd, & France, 2007). The open-ended model, owing to its formulation considering
the environmental variability, can potentially describe the biological growth of individ-
ual organisms under the natural environment; however, the same initial condition always
gives the same growth curve because the model is deterministic. A natural question is
whether we can formulate its reasonable stochastic counterpart or not. This question is
the motivation of this article.

The objective of this article is to formulate a minimal stochastic generalization of the
open-ended logistic model such that individual difference observed in biological growth
under natural environment is reasonably described. The model is a system of SDEs driven
by a continuous Gaussian white noise; the simplest continuous-time noise. A noise term
has been added to the governing SDE of the capacity, representing stochastic environ-
mental varijability in a simple manner. Well-posedness of the model from the viewpoint
of unique solvability in the strong path-wise sense (Capasso & Bakstein, 2005), which is
a theoretically important and non-trivial issue, is discussed and its solution behaviour is
analysed. In addition, as a prompt report, its application to biological growth analysis of the
migratory fish Plecoglossus altivelis altivelis (P. altivelis, Ayu) in Hii River, Japan (Yoshioka
& Yaegashi, 2018b) in 2017 and 2018, is carried out. This article thus contributes to the
formulation of a stochastic open-ended logistic model, its theoretical analysis and further
its application.

2. Mathematical model
2.1. Model formulation

We consider the biological growth of individual organisms in a habitat with an emphasis
on applications to fisheries where tracking growth dynamics of fishes are of critical impor-
tance. It has been found, as discussed in Section 3 with the observed data, that their growth
dynamics seem to be logistic-like but not homogenous. This means a natural fact that dif-
ferent individuals have different growth curves. We consider that there exists a governing
system of SDEs to describe the biological growth dynamics and that the difference among
individuals is a consequence of different paths of the noises. SDEs are fundamental tools for
modelling and analysis of biological growth dynamics (Donnet, Foulley, & Samson, 2010;
Roman-Romaén & Torres-Ruiz, 2015; Strathe, Serensen, & Danfaer, 2009). They provide
a robust framework for assessing the dynamics in a relatively simple manner. In addition,
SDE:s can be effectively incorporated into modern fisheries management models (Poudel
& Sandal, 2015; Yoshioka, Yaegashi, Yoshioka, & Tsugihashi, 2019). The stochasticity in
our application can be considered as environmental and hydrological disturbance acting
on the individual fishes in rivers. Based on the open-ended logistic formalism (Thornley &
France, 2005), the disturbance is efficiently considered to be a factor that distinguishes the
growth dynamics of the individuals. The difference between the conventional open-ended
logistic model and our model is that the latter has a stochastic term, while the former does
not. The disturbance in our model is considered as a continuous-time white noise in the
governing SDE of the final mass. Mathematically, we consider that different sample paths
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generated by the system of SDEs correspond to different growth curves. Later, we numer-
ically show that the individuals have different final masses and that the presented model
can reasonably reproduce the observed growth dynamics of fishes living in a river.

Mathematical background of SDEs are found in the widely read textbooks (Capasso
& Bakstein, 2005; Qksendal, 2003). The time is denoted as t > 0 and the body weight
at the time ¢t is denoted as a continuous-time variable X;. The 1-D standard Brownian
motion defined on the usual complete probability space (Qksendal, 2003) is denoted as
B;. The Brownian motion is a zero-mean Gaussian white noise having independent incre-
ments. The variance of By — B (t > s > 0) is t — 5. The (environmental) capacity, which
is referred to as the final mass parameter in Thornley and France (2005), at the time ¢ is
denoted as a continuous-time variable K;. Based on the deterministic open-ended model
(Thornley & France, 2005), the stochastic counterpart is proposed as

X
d.Xt =r (1 — %) Xtdt, t>0 (1)

t
with
th = D(Xt — Kt)dt + O'(Xt — Kt)dBt, t>0 (2)

subject to the initial condition 0 < X¢ < Ky. Here, r > 0 represents the specific growth
rate, D > 0 is a relaxation parameter and o > 0 represents the environmental noise inten-
sity. Setting o = 0 in (2) recovers the deterministic model (Thornley & France, 2005). The
first SDE (1) is the logistic-type equation having the final mass that is state-dependent in
our model. The second SDE (2) governs the temporal evolution of the capacity. Its right-
hand side has two terms: the first term represents the empirical process of getting older and
development in a lumped manner, and the second term its fluctuation. Phenomenologi-
cally, larger D results in an earlier termination of the effective biological growth because
the first term has a mean-reverting form like the Ornstein-Uhlenbeck model (Uhlenbeck
& Ornstein, 1930). The model assumes that no body growth occurs when X; = K; asin the
classical logistic models. Anderson, Jovanoski, Sidhu, and Towers (2016) also considered
a stochastic capacity, but their approach is different from ours because their final mass is
essentially a Brownian motion.

2.2. Theoretical analysis

Well-posedness, namely unique solvability, of the system (1)-(2) is a non-trivial issue
since its coefficients do not comply with the Lipschitz continuity (a sufficient condition
for unique solvability of SDEs) (Theorem 4.4; Capasso & Bakstein, 2005). We prove that
the system (1)-(2) admits a unique strong solution. Analogous mathematical results would
hold true when X;/K; in (1) is replaced by (X; /K;)?, where > 1 as in Thornley et al.
(2007).

Firstly, observe that a formal application of the Itd’s lemma (@ksendal, 2003) to
U; = X;/K; yields

dX; XdK; 12X,(dKy)?

dU; = —* —
‘K K 2 K

= A(Uy)dt + C(U;)dB; (3)




70 H. YOSHIOKA ET AL.

with
A(U) = Ui(1 — U)(r+ D+ o*(1 — Uy)) (4)

and
C(Up) = o Uy(1 — Up). (5)

The following lemma is the key to show the well-posedness of the model.

Lemma 2.1: The SDE

dUt = A(Ut)dt + C(Ut)dBt, t>0 (6)
with the initial condition 0 < Uy < 1 admits a unique strong solution with 0 < U; < 1.
Proof: The proof here follows Appendix A of Lungu and @ksendal (1997). The only dif-

ference is that our SDE (6) has a cubic drift term, while that of the literature has a quadratic
drift term. Firstly, consider the auxiliary SDE

dU; = A(U)dt + max{0, C(Uy)}dB;, t> 0 (7)
with

. A

A(Ut)={ (é]f) (U(tofonUi)l), £>0 (8)

which has globally Lipschitz continuous drift and diffusion terms, and thus admits a unique
strong solution (Theorem 4.4 of Capasso & Bakstein, 2005). Therefore, if the solution to
the auxiliary SDE (7) is valued in (0, 1), then it is a unique strong solution to the SDE (6)
as well.

Set the stopping time t = inf{t > 0|U; = 0,1} and consider the process Y; = In U;
definedin 0 < t < 7. We show t = 400, meaning that Uy > 0 for t > 0. Assume U; = 0.
An application of the Itd’s lemma to Y; yields

2
dy, = 4l (dUtz)
U, 2U"
1
=1-U)r+D+0c*1—U))dt+o(1 — Uy)dB, — 502(1 —U)*dt  (9)
and thus

t t
Y, =Y, +/ [(1 —U)(r+D+0c%1—-Uy)) — éaz(l — US)Z} ds+/ o (1 — Uy)dB,.
0 0

(10)
The right-hand side of (10) does not blow up at each t > 0, while the left hand-side
blows up as t 1 t by the definition of 7. This is a contradiction, showing v = +oc. In
the same way, U; < 1 for t > 0 follows by considering the process Y; = In(1 — Uy). Con-
sequently, we proved that the solution to the SDE (7) is valued in (0, 1). This completes
the proof. |
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Consider the system of SDEs
dXt = T(l — Ut)Xtdt, t>0 (11)

and (6) with the initial conditions Xy > 0 and 0 < Uy < 1. By Lemma 2.1, U; is bounded
and continuous, showing that the SDE (11) is uniquely solved as

t
X = Xo exp (/ r(l — Us)ds> >0, t>0. (12)
0

Therefore, the systems (11) and (6) admits a unique strong solution (X;, Uy), t > 0. We
then apply the Itd’s lemma to Ky = X;/U; and yield the SDE (2). Furthermore, we have
0 < X; < Ky because 0 < U; < 1and X; > 0. The presented model thus generates exactly
one sample path such that 0 < X; < K; is satisfied for each given By. Since

Uy(1 = Up(r + D) < A(Up) < U(1 = Up)(r + D+ 0%) (13)

for the solution U;, the comparison argument of SDEs (Corollary 3.1 of Peng & Zhu,
2006) with the limiting behaviour of a logistic SDE (Theorem 2.2 of Lungu & @ksendal,

1997) gives lim U; = lim XK, I — 1. The biological growth, therefore, encounters
t——+00 t—+00

an eventual saturation as in the conventional models.
Consequently, we arrive at the following main mathematical analysis result.

Theorem 2.1: The system (1)-(2) admits a unique strong solution with 0 < X; < K; for
t > 0. This X; is increasing with respect to t > 0. In addition, . ligrn XK' =1
—+00

However, these results do not give quantitative information on the biological growth.
This issue is addressed below through an application.

Note that our analysis results have not only mathematical meaning but also biological
implications. From a biological viewpoint, Theorem 2.1 shows that the meaning of the
variables is in accordance with our intuitions because 0 < X; < K; is satisfied. In addition,
we see that the presented model leads to non-decreasing sample paths of X;. This implies
that the body weight of each individual does not decrease with respect to the time ¢, which
can be a reasonable requirement in mathematical modelling of biological growth curves
(Filipe, Braumann, & Roquete, 2012; Roman-Roman & Torres-Ruiz, 2015). On the other
hand, the final mass K; is not necessarily monotone as numerically demonstrated in the
next section. From a mathematical viewpoint, the authors consider that still many biolog-
ical models have not been analysed mathematically, meaning that their well-posedness is
an open question. Using a model that is not necessarily well-posed is dangerous and poten-
tially leads to wrong results. Theorem 2.1 guarantees the well-posedness of our model. In
summary, the model is biologically plausible and mathematically rigorous.

Remark 2.1: We can consider a stochastic term in the SDE of X; as well. Mathematically,
this seems not to be a difficult task and the unique solvability of the resulting system of SDEs
would still hold true. In addition, a more complex model may be more accurate. However, the
increasing property of the body weight X, proved in Theorem 2.1 will be lost by adding the
noise term. Therefore, the resulting model may be qualitatively different from the presented
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model. Furthermore, considering more than one noise sources requires modelling their corre-
lations. If a sufficiently dense data set will be available, then we will be able to address this
issue.

3. Application
3.1. Parameter identification procedure

The presented model is applied to P. altivelis in Hii River, San-in area, Japan. Detailed
life history of the fish is explained in Yoshioka and Yoshioka and Yaegashi (2018a, 2018b,
2018c). In this river, most of the fish population originate from juvenile fish released in
early May by Hii River Fisheries Cooperatives. The main growth period of the fish in the
river is from May to October each year, after that they spawn and die.

The two field surveys were carried out during 2017 and 2018 in the river with the help
of Hii River Fisheries Cooperatives. The first one is intensive surveys on 3 August 2017 and
6 August 2018, at which 234 and 189 individuals were caught, respectively. The second one
is the long-term field survey from July to October each year, in which the fish is caught in
the river at irregular intervals. In both surveys, the body weights of the caught individual
fishes were measured. A part of the data collected at the intensive and field surveys in 2017
has been presented in Yoshioka et al. (2019) and the annual information booklet of Hii
River Fisheries Cooperatives (Yoshioka, Yaegashi, Yoshioka, & Tsugihashi, 2018).

For each year, the model parameters are identified with the collected data at the inten-
sive surveys with a trial and error approach, so that the statistical moments (mean,
standard deviation and skewness) and the histogram are reasonably reproduced. The
statistical moments of X; are computed with a Monte-Carlo method with the standard
Euler-Maruyama discretization (Kloeden, Platen, & Schurz, 1994). The total number of
generated paths are 10° and the time increment is 90/45,000 (day). At each time step, we
simply computed the sample mean, sample standard deviation and sample skewness using
the sample paths generated by the Monte-Carlo method. The initial time is set so that the
day of intensive survey is 90 (day) and the initial condition X is set as 6 (g) based on a pre-
liminary observation result. The parameters to be identified are thus Ky (g), r (1/day), D
(1/day)and o (1/ dayl/ 2). For each year, the identified model is validated with the long-term
field survey results. We assume the same value of Ky for both 2017 and 2018 considering
that the difference in biological conditions of the juveniles between each year was small.

3.2. Application results

Table 1 summarizes the identified parameter values and Table 2 compares the observed
statistical moments and those with the identified model parameters. Table 2 implies that
models that do not consider the individual difference, namely deterministic models, are
clearly not applicable in the present case, and that the observed distributions are positively
skewed. This is because deterministic models are in principle not able to capture proba-
bilistic distributions. The difference between the observed data and the presented model
in Table 2 can be due to model simplicity; the presented model is a minimal open-ended
stochastic logistic model.

Figure 1 plots sample paths with the data in 2018, supporting Theorem 2.1 numeri-
cally. In addition, Figure 2 implies that different sample paths have different final masses.
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Table 1. Summary of identified
model parameters.

2017 2018
Ko (9) 200
r (1/day) 0.038 0.042
D (1/day) 0.015 0.019
o (1/day'/?) 0.11 0.091

Table 2. Comparison of observed and modelled statistical moments.

2017 2018
Observation Model Observation Model
Mean (g) 55.6 55.5 573 57.3
Standard deviation (g) 19.1 19.2 18.5 18.9
Skewness (-) 0.78 0.91 1.16 1.14

480
Weight 240
(€9)
0
0 60 120 180
t (day)

Figure 1. Sample paths of the couple (X;, K;) with the data in 2018. The same colour indicates the vari-
ables in the same couple. Paths with O correspond to X;, and those without O to K;. Different colors
correspond to different sample paths. For the colored figure, see the online version.

Figures 2 and 3 compare the modelled and observed histograms at the intensive surveys
in 2017 and 2018. The results obtained in Table 2 demonstrate that the presented model
accurately reproduces the observed statistical moments. The histograms with the observed
data in Figures 2 and 3 are also well reproduced by the histograms generated by the pre-
sented model. In particular, the positively skewed observed distributions are captured by
the model. From Table 1, we see that the biological growth was subject to smaller growth
rate, smaller relaxation rate and larger noise intensity in 2017 than those in 2018.

Finally, our model is examined against the collected data by the long-term surveys in
2017 and 2018. Figures 4 and 5 compare the modelled (mean, mean =+ standard deviation
and skewness) and observed biological growth of the individuals from May 1 (¢ = 0) in
each year. The figures demonstrate that the model reasonably tracks the observation results
despite its simplicity. The obtained results show that most of the observed data plots are
within the range of the mean at most the standard deviation. In each figure, the mean
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Figure 2. Comparison of the modelled and observed data at the intensive survey in 2017. Bars (White:
observed, Black, modelled) represent the histograms. Piecewise lines with circles (Grey: observed, Blue:
modelled) represent the cumulative probability. ‘0-10" means ‘0 < X < 10’". The same holds true for the
others. For the colored figure, see the online version.
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Figure 3. Comparison of the modelled and observed data at the intensive survey in 2018. Comparison
of the modelled and observed histograms in 2017. The same legends with Figure 2.

growth curve has a sigmoid-like shape as in the standard deterministic logistic models.
Comparing Figure 1, Figures 4 and 5 show that both sample paths and their means have
sigmoid-like shapes having different final masses. Unfortunately, because of a technical
reason that individuals die after measuring their weights, it was difficult to experimentally
verify whether the individuals have sigmoid-like paths as shown in Figure 1. A contact-
less methodology to correctly track the growth of individual fishes in the natural river
environment must be developed to resolve this issue.

The modelled results suggest qualitatively the same growth of the fish between each
year, while larger stochasticity in the growth in 2017. In addition, the positive skewness for
the latter half of the computational period is consistent with the observation results that
the individuals having higher weights than the mean values are captured more frequently.
Another important finding is that the growth rate r in 2018 is larger than that in 2017 as
shown in Table 1, and the mean body weight is larger in 2018 than that in 2017 at the



LETTERS IN BIOMATHEMATICS (&) 75

120 S

Weight 60
@

0 60 120 180
t (day)

Figure 4. Comparison of the modelled and the long-term observation result in 2017. Circles represent
the observed data, and the curves represent the modelled results (Black: mean, Blue: mean + standard
deviation, Red: mean — standard deviation, Green: skewness). For the colored figure, see the online
version.

120 ©

Weight

(2)
60

1
0 60 120 180
t (day)

Figure 5. Comparison of the modelled and the long-term observation result in 2018. The same legends
with Figure 4.

intensive surveys in August as shown in Table 2. August is the peak season of harvesting
the fish in Hii River, implying that a greater number of larger fishes are captured in 2018
than in 2017. The mean body weight at 180 (day) around which the fish reproduces is 63.9
(g) in 2018 and 69.1 (g) in 2017. The opposite ordering of the means between the results
at the intensive surveys and those at the terminal time may be due to the larger relaxation
parameter D (earlier maturity) in 2018. An allometric scaling relationship (Hendriks &
Mulder, 2008), which considers the fecundity as an increasing function of the body weight,
implies that a larger number of eggs have been reproduced per individual in 2017.
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4. Conclusions

A stochastic generalization of the open-ended logistic model was presented and its math-
ematical analysis was carried. The model was well-posed and its parameter values were
successfully identified with the collected data. The biological growth with the model is
monotone in the mean and encounters an eventual saturation like the conventional logistic
models. Future research will focus on an application of the model to fisheries manage-
ment, where the central problem would be cost-effective as well as ecologically-conscious
fisheries planning. Applicability of the model to other organisms is also of great interest.
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