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ABSTRACT
La Crosse Virus (LACV) is an arbovirus found in Eastern Appalachia
and can cause pediatric encephalitis in prepubescent children. To
assess the risk and transmissionof this disease, it is particularly impor-
tant to understand the average population of Aedes mosquitoes,
which are the vectors of this virus. We use a deterministic com-
partmental model to study the effects of environmental factors on
the population dynamics of Aedes mosquitoes in the Knox County
area.Weuse locally-collectedmosquitopopulationdata to adjust our
model outputs and find thatmodel transitions areheavily dependent
on the fluctuations of both temperature and accumulated precipi-
tation. These findings should be considered for mosquito manage-
ment in Southern Appalachia, as well as in other regions with slight
modifications to our model.
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1. Introduction

Discovered in La Crosse, Wisconsin, in 1960, La Crosse virus (LACV) is the most
frequently diagnosed pediatric arbovirus in the continental United States (Thompson,
Kalfayan, & Anslow, 1965). Children under the age of 15 (typically 5–9 years old) infected
with LACV may develop symptoms such as headaches, fever, disorientation, and seizures
and are then diagnosed with La Crosse encephalitis (LACE) (Erwin et al., 2002). LACE is
a significant public health concern in the Midwestern (Calisher, 1994) and Appalachian
(Erwin et al., 2002; Haddow&Odoi, 2009) regions of the United States, and infection rates
often spike in summer and in early fall (Szumlas et al., 1996). The time betweenwhen a sus-
ceptible human is bitten and when symptoms emerge, or the intrinsic incubation period,
ranges from 5 to 15 days (Centers for Disease Control and Prevention 2016). In one study,
12% of hospitalized children with LACE had neurological deficits by time of discharge,
and increased levels of behavioural problems were recorded 1–1.5 years after infection;
thus, children infected with LACV face the lifelong risk of adverse health outcomes (Erwin
et al., 2002).
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In the east Tennessee region, where LACV is endemic and is transmitted via the
bite of infected Aedes mosquitoes, LACV is maintained in the environment in a
zoonotic cycle, between the primary vector Ae. triseriatus, and reservoir hosts such as
common gray squirrels (Sciurus carolinensis) and chipmunks (Tamias striatus) (Beaty
& Calisher, 1991; Grimstad, 1988). Hypothesized accessory vectors include Ae. albopic-
tus and Ae. japonicus (Gerhardt et al., 2001; Westby, 2015). Although hematophagy
occurs, infection with LACV does not have negative health impacts on reservoir hosts
(Borucki, Kempf, Blitvich, Blair, & Beaty, 2002). LACV is also maintained within
the mosquito population via venereal transmission from male mosquitoes to female
mosquitoes (Beaty & Thompson, 1975) and transovarial transmission from an infected
female passing LACV to her eggs (Hughes, Gonzalez, Reagan, Blair, & Beaty, 2006).
No Known negative health impacts to the offspring (Patrican & DeFoliart, 1985). Eggs
infected with LACV retain the virus through their overwintering stage and will ulti-
mately emerge the following season as infected adults (Beaty & Calisher, 1991; Grim-
stad, 1988).

Thus, understanding the dynamics of the vectors is important for managing LACV
and preventing LACE. A mathematical rigorous approach to modelling a population of
a species with the life-history divided in age classes has been previously outlined (Gurney,
Nisbet, & Lawton, 1983). This work points out that some rates may have a type of delayed
effect (Beck-Johnson et al., 2013). Environmental factors, such as temperature and precip-
itation, are known to influence mosquito population dynamics, and previous studies have
shown a relationship between such environmental variables and arboviral infection rates
for other vectors and vector-borne diseases (Paull et al., 2017). The different impacts of
environmental factors on individual species is not well known and the fine details of how
they influence population dynamics have not been well established. Mosquito develop-
ment from one life stage to another often depends on either temperature, precipitation, or
both; environmental factors over an extended period likely play a significant role on lifes-
pan, parity, and biting frequency. The combined effects of rainfall and temperature had an
impact on West Nile virus transmission over a single season (Shand et al., 2016); though
the specific impacts of temperature and precipitation are likely to vary for LACV com-
pared toWest Nile virus because they are transmitted by different mosquito genera. Other
environmentally-driven models have been created for Ae. albopictus in a Mediterranean
climate (Cailly et al., 2012; Ezanno et al., 2015; Tran et al., 2013).

While LACV is endemic in southern Appalachia, the region does not have an Aedes
surveillance programme. In eastern Tennessee where LACV is frequently diagnosed in 20
different counties which vary each year, only one county health department has amosquito
surveillance programme and that programme targets West Nile virus. Most mosquito col-
lections in the region are reactive by the state health department and are in collaboration
with local universities (Erwin et al., 2002; Gerhardt et al., 2001; Lambert et al., 2015; Trout
Fryxell et al., 2015). If the region had established surveillance, like others do for West Nile
virus, then multi-season models of mosquitoes could be developed for the region. To our
knowledge, fewmodels exist to study the dynamics of LACV vectors (Bewick, Agusto, Cal-
abrese, Muturi, & Fagan, 2016; Nance, Trout Fryxell, & Lenhart, 2018), furthermore, the
potential to use environmental factors as predictors of LACV risk has not been fully real-
ized. As a result, the subsequent benefit of anticipating and responding to changes in LACV
risk has not been harnessed. Accordingly, the goal of this project is to use mathematical
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modelling to develop a model that incorporates temperature and precipitation to explain
the dynamics of LACV vectors over a single season in Knox County, TN. This model will
use data from a single season fromUrquhart et al. study inKnoxCounty in 2013 (Urquhart,
Paulsen,Moncayo,&Trout Fryxell, 2016).Thismodelling effort iswarranted by the number
of LACE cases in the region and the need to establish an Aedes/ LACV surveillance pro-
gramme; consequently, we begin this modelling effort by modelling the population over a
single season. Subsequent developedmodels will ultimately be used by health departments
to prepare for LACV risk periods, and may be used as the basis of similar models for use
in other regions experiencing LACV risk.

In the next section, we present ourmodel and some details about the corresponding data
and its collection. In the third section, we discuss the choice of specific functional forms
for rates depending on temperature and precipitation and present those rate functions with
parameters estimated from the data from Urquhart et al. (2016). Our numerical results
with the estimated rates are shown and are compared with the data. The final section gives
a discussion of our work.

2. Model formulation

We created a model with a system of ordinary differential equations (ODE) to illustrate
Aedes abundance over a single season in east Tennessee, specifically for an average Knox
County mosquito collection site using field-collected Ae. triseriatus, Ae. albopictus, and
Ae. japonicus. All three of these mosquitoes were combined in the model because they
are confirmed or hypothesized vectors of LACV, have similar life histories, and were not
identifiable at the egg stage; thus, modelling the three species together was justified. Bio-
logical and environmental data were used as inputs in the mathematical model, with a
particular focus on the impacts of temperature and precipitation in determining mosquito
population dynamics. Our model incorporated parameters from local field-collected data
obtained from the Trout Fryxell laboratory. This data set was also used in Urquhart’s study
in Knox County in 2013. Briefly, mosquito traps targeting host-seekingmosquitoes, gravid
mosquitoes, and mosquito eggs were placed at eight sites throughout Knox County, TN.
Five sites were located at households from 2011-12 positive LACE cases, and the remain-
ing three sites were set within five kilometres of the previous sites, thus selecting for areas
likely to have LACV-positive mosquito populations (Urquhart et al., 2016).

The original study by Urquhart et al. (2016) was designed as a trapping efficacy study;
consequently, many traps were used at the different sites to identify the best trapping
method for each LACV vector. These traps were originally designed to assist collectors in
determining the relative mosquito population size. Because they conducted a time-series
monitoring effort with a variety of traps targeting different life stages and environmental
conditions, we used these data to generate our initial model. We hope to continue these
efforts and be able to forecast LACV transmission in the region. The data used here will
resemble future surveillance efforts as most surveillance activities are limited to moni-
toring relative vector abundance; these data are often what is used to drive management
decisions.

Daily temperature and precipitation data were obtained from the National Oceanic and
AtmosphericAdministration’s (NOAA)NationalWeather Service andNationalCenters for
Environmental Information, respectively. Since the amount of standing water present at a
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Figure 1. Temperature and accumulated precipitation (over 7 days) data during summer. (a) Tempera-
ture and (b) Accumulated precipitation.

collection site greatly influences the oviposition process (Wang, Tang, & Cheke, 2016), we
utilize accumulated precipitation prior tomosquito collection instead of daily precipitation
in our model.

Temperature and accumulated precipitation were recorded over the study season. The
daily mean temperature in 2013 from June 29 (calendar day 180) to October 27 (calendar
day 300) is plotted in Figure 1(a). The temperature fluctuates until the hottest period of
summer, around calendar day 240, after which the temperature trend starts to decrease.
Studying over a large range of temperature provides us the opportunity to effectively map
the effects of temperature on mosquito dynamics. Precipitation was summed seven days
prior to mosquito collection, termed accumulated precipitation, since simulations were
most accurate with seven-day accumulation (described in detail below). Accumulated pre-
cipitation is highest in the beginning of the study period, varying throughout the following
weeks and is displayed in Figure 1(b).

The model diagram in Figure 2 shows the model compartments. We focus our model
on female mosquitoes only. Compartments represent mosquito life stages: (E) egg, (I)
immature, (H) host-seeking, and (G) gravid. Each compartment represents the average
number of mosquitoes per trap area in the corresponding life stage. The egg compartment
consists ofmosquito life stages fromoviposition and embryonating to hatching. The imma-
ture compartment consists of the several larval life stages and pupae. The host-seeking
compartment consists of adult mosquitoes searching for blood meals. Finally, the gravid
compartment consists of mosquitoes ready to oviposit. In the model system below, T(t)
represents the temperature at time t and P(t) represents the accumulated precipitation at
time t.

E′ = b(P)G − fE(T,P)E − μEE

I′ = fE(T,P)E − fI(T,P)I − μII

H′ = fI(T,P)I + γG − dH − μHH

G′ = dH − γG − μGG

(1)
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Figure 2. Model diagram.

The differential equations above describe the movement of mosquitoes across life
stages. The compartments have fixed mortality rates, with μE,μI ,μH , and μG relative
to the concurrent life stage of mosquitoes. Additionally, since the typical mosquito lifes-
pan is spent at a single collection site representing ∼300 metre in radius, no migratory
terms were included in our model (Medeiros, Boothe, Roark, & Hamer, 2017). The ODE
for the egg compartment contains the term b(P)G, which represents that eggs laid by
gravid mosquitoes enter the egg compartment at the oviposition rate of b(P). While male
mosquitoes can carry LACV if infected transovarially, only female mosquitoes can infect
humans by biting. To represent this, the model does not consider male mosquitoes. Hence,
the oviposition rate b(P) was adjusted to represent a one-to-one sex ratio. The transition
rate at which eggs hatch and reach the larval stage is represented by the function fE(T,P).
The term fE(T,P)E represents the movement from the egg compartment to the immature
compartment. Finally,μE describes the death rate for eggs, and the termμEE describes the
deaths in the egg compartment. The specific structure of the functions T(t) and P(t) will
be discussed in the next section.

The immature compartment has entry from the egg compartment at the rate of fE, rep-
resented by the term fE(T,P)E. The transition rate at which larvae emerge and mature
into host-seeking adults is represented by the function fI ; the term −fI(T,P)I represents
the movement of mosquitoes from the immature to the host-seeking compartment. Sim-
ilar to the ODE for the egg compartment, the corresponding death rate for the immature
compartment is denoted by μI .

Mosquitoes enter the host-seeking compartment at the rate −fI(T,P) from the imma-
ture compartment, represented by the term −fI(T,P)I. Once the host-seeking mosquitoes
find a bloodmeal, theymove to the gravid stage ready to oviposit. Thismovement occurs at
the rate of d, is represented by the term−dH. Once the gravidmosquitoes have oviposited,
they move back to the host-seeking compartment at the rate of γ and restart the process of
finding a blood meal. This process is represented by the term γG. This compartment also
has a corresponding death rate of μH . The gravid compartment has entry from the host-
seeking compartment at the rate of d, represented by the term dH. After oviposition, the
gravid mosquitoes return to the host-seeking compartment at the rate of γ , represented by
the term −γH. This compartment also has a death rate of μG.

3. Results

As evident in Table 1, most of our parameters were estimated from the field-collected data.
While b(P), fE, and fI are functions of T and P, the remaining parameters are constants in
the model.
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Table 1. Parameters with values used in simulations.

Description Values Reference

b Oviposition rate Variable Estimated
fE Transition rate from egg to immature Variable Estimated
fI Transition rate from immature to

host-seeking
Variable Estimated

d Transition rate from host-seeking to
gravid

0.4 Trout Fryxell Laboratory Estimate

γ Transition rate from gravid to host
seeking after oviposition

0.4 Trout Fryxell Laboratory Estimate

μE Death rate for egg 0.05 (Hanson & Craig, 1995)
μI Death rate for immature 0.05 (Barrera, 1996; Delatte, Gimonneau, Triboire, & Fontenille, 2009;

Livdahl & Edgerly, 1987; Teng & Apperson, 2000)
μH Death rate for host-seeking 0.18 Trout Fryxell Laboratory Estimate, (Brady et al., 2013)
μG Death rate for gravid 0.18 Trout Fryxell Laboratory Estimate, (Brady et al., 2013)

To include the influence of environmental factors on the mosquito population dynam-
ics, we set the oviposition rate b, the transition rate from eggs to immature mosquitoes fE,
and the transition rate from immature mosquitoes to host-seeking adults fI as functions of
either temperature or accumulated precipitation.We determine the functional forms for b,
fE, and fI based on howmosquito populations change over time. We also assume that tem-
perature and accumulated precipitation affect these three rates differently. Note that there is
no evidence that the natural death rates of these populations depend on temperature and
precipitation. The transiton rates between the gravid and host-seeking populations have
been estimated in Trout Fryxell’s lab.

We use ODE45, a higher order Runge-Kutta method in MATLAB (MATLAB, 2017),
to numerically solve our system of differential equations. To find functional forms for
b, FE, and FI , we tested combinations of polynomials, logistic functions, and Holling’s
type II functional responses. We also decided how many days to include in accumu-
lated precipitation; we checked accumulation over 1 day, 2 days, and continuing up to
10 days. In this fitting procedure, we searched over parameters for each functional form
and over each length of the accumulation. We set the objective functional as the relative
error of the MATLAB simulated mosquito populations from the field-collected mosquito
populations. Then, to estimate parameters and various functional forms, we minimized
this relative error through the Ordinary Least Squares method, where the data were
the totals of eggs and the combination of gravid and host-seeking adults on observed
days. Due to the small number of gravid mosquitoes (n = 300 total) compared to host-
seeking mosquitoes (n = 2672 total), we fit the model to host-seeking mosquitoes. Also,
because gravid mosquitoes are only gravid for about 2 days before they become host-
seeking mosquitoes and because host-seeking mosquitoes transmit LACV we considered
host-seeking mosquitoes as the more important life stage.

We used the MATLAB function fminsearch (a simplex algorithm used for constrained
optimization) to narrow the parameter ranges and then used fmincon (an interior point
algorithmused for constrained optimization) to estimate the best parameters for each func-
tional form and for accumulation level. The functional forms with their corresponding
fitted parameters and length of accumulated precipitation with the smallest relative error
were used in simulations. To give somemore background on our choices, we discuss below
more details of the mechanisms drivng the choices of functional forms.
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Since we know that cumulative precipitation four weeks prior to collectionmay indicate
levels ofAe. albopictus populations (Haddow, Gerhardt, Jones, & Odoi, 2009), we hypothe-
size that with increasing accumulated precipitation, the oviposition rate b(P) continues to
increase until the accumulated precipitation gets close to a certain level. After that point,
the oviposition rate stays approximately constant. Hence, we used functional forms which
act accordingly to our hypothesis; a logistic type function (plus a constant) was the rate
chosen for b(P).

Since the transition rates from eggs to immatures and immatures to host-seeking are
affected by both precipitation and temperature, (Nance et al., 2018; Wang et al., 2016; Xu
et al., 2016), fE and fI are functions of temperature and accumulated precipitation. In our
choices, we considered functional forms that had T + P as variables and also those had
two separate functions of T and P added separately. We hypothesize that with increasing
temperature, the transition rate from eggs to immatures increases and eventually plateaus.
For fE, the sum of a Holling’s Type II functional responses in E and a logistic function in P
(plus a constant) were chosen.

We hypothesize that with increasing temperature and precipitation, the transition rate
from immatures to host-seeking increases until a certain point, after which this transition
rate decreases with increasing temperature and precipitation (Delatte et al., 2009). A down-
ward facing parabola in the sum T + P was chosen. The selected rate functions for b, fE,
and fI are listed below.

b(P) = 0.000199
1 + 0.0001722 e−0.0192P + 3.388

fE(T,P) = 0.000004537T
1 + T

+ 0.00102
1 + 0.000984 e−0.00103P + 0.0663

fI(T,P) = −0.0003638(T + P)2 + 0.02479(T + P) − 0.3533

(2)

Initial valueswere obtained fromfield-collected data.Due to the under-sampling of the first
three weeks, we begin simulations on week 4. At that time, the Trout Fryxell laboratory col-
lected 291 eggs and 31maturemosquitoes from the field. In this context, both host-seeking
and gravid mosquitoes are defined as mature adults. To determine the initial values for the
remaining compartments, we assume that the immature population was roughly half as
large as the egg population. Additionally, there were slightlymore host-seekingmosquitoes
than gravid mosquitoes in our data. Thus, simulations were run with E = 291, I = 145,
H = 17, and G = 14 as initial conditions. With our estimated parameters and functional
forms, we run our simulations.

Our simulations for each one of the compartments in our model are shown in Figure 3.
We plot the summer months against the average abundance of mosquitoes per site. The
abundance is high throughout the summer; however, the mosquito abundance plummets
towards the end of the summer months as expected due to the decrease in temperatures
and in accumulated precipitation. In Figure 4, we compare our simulations for adults and
eggs against the field-collected data for eggs and adults. To check the accuracy of our sim-
ulations, we compute the relative error. We find that the relative error for the simulation
for adult compartments is 20%, and the corresponding relative error for egg simulations
is 25%.
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Figure 3. Simulations of abundance at various mosquito life stages. (a) Eggs. (b) Immature. (c) Host
Seeking and (d) Gravid.

Figure 4. Field abundance versus simulated abundance. (a) Eggs and (b) Adults.
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4. Discussion

Using data from 2013 collected by the Trout Fryxell laboratory and presented in Urquhart
et al. (2016) we chose our functional forms and parameters and length of accumulation to
represent mosquito populations at an average sampling location in Knox County, TN. This
model demonstrates the value of integrating field-collected data with mathematical mod-
elling, as we have created a model that is both sensitive to environmental conditions and
adjusted for specificity to the geographic region in which it will be applied. Furthermore,
by modelling a single site/location, our model is more applicable to the field, as a single
site more closely matches the extent to which humans are exposed to mosquitoes and their
associated viruses. In fact, our model can be easily adopted in different regions across the
world.

In application, the results of the model indicate a few key conclusions relative to pest
management and public health efforts. The impact of accumulated precipitation on the
model reflects the importance of drainage and the need to prevent the formation of stand-
ingwater in areas frequented by those likely to contract LACV.Our study provides evidence
that water from precipitation plays an important role in the life cycle of mosquitoes. Addi-
tionally, the results of this study indicate that modelling can be a useful part of integrated
pest management, as informative campaigns and strategic pesticide use before and during
predicted peak times can generate public awareness, minimize undue concern, and allow
for efficient allocation of pest management resources.

A number of errors reduce the accuracy of the model’s fit, though these errors do not
disqualify the validity of the model overall. The use of a single season’s data creates a
liability for overfitting the model to conditions unique to that single season. Weather vari-
ations between the same seasons of different years could indicate the need to do future
work incorporating multi-year seasonal data in a model. Variations between generalized
weather data and microclimates at sampling locations may also account for error in the
fit of the model (Murdock, Evans, McClanahan, Miagowicz, & Tesla, 2017). Addition-
ally, the absence of environmental terms aside from temperature and precipitation may
create limitations, when the impact of other weather events are substantial. Using tem-
perature and precipitation in the model allows incorporation of the environmental factors
most influential on mosquito population dynamics. Previously, Paull et al. (2017) iden-
tified drivers for West Nile virus epidemics in North America. In that paper, drought
was a driver for WNV and in Tennessee it was a combination of increasing temperatures
and decreased precipitation that was associated with West Nile virus-infected mosquitoes
(Paull et al., 2017). However, other environmental factors, such as humidity, wind-speed,
local flora, and amount of shade also likely play a role in mosquito population and activity
levels. For this reason, incorporating terms for other weather factors may be a useful future
addition. Finally, the error in fitting egg abundance was much greater than that of the adult
mosquito population. Adult mosquitoes are responsible for transmission of LACV, and we
therefore prioritize creating a model that accurately fits the population dynamics of adult
mosquitoes in general; however, future improvements in the model’s egg abundance cal-
culations may result in more accurate predictions of egg abundance and adult mosquito
population dynamics.
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