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ABSTRACT

The mutant allele frequencies in oncogenes peak around .40 and
rapidly decrease. In this article, we explain why this is the case.
Invokinga key result frommathematical analysis in ourmodel, namely,
the inverse function theorem,we estimate the selection coefficients of
the mutant alleles as a function of germline allele frequencies. Under
complete dominance of oncogenic mutations, this selection function
is expected tobe linearly correlatedwith thedistributionof themutant
alleles. We demonstrate that this is the case by investigating the allele
frequencies of mutations in oncogenes across various cancer types,
validating our model for mean effective selection. Consistent with
the population genetics model of fitness, the selection function fits
a gamma-distribution curve that accurately describes the trend of
the mutant allele frequencies. While existing equations for selection
explain evolution at low allele frequencies, our equations are general
formulas for natural selection under complete dominance operating
at all frequencies. We show that selection exhibits linear behaviour
at all times, favouring dominant alleles with respect to the change
in recessive allele frequencies. Also, these equations show, selection
behaves like power law against the recessive alleles at low dominant
allele frequencies.
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1. Introduction

Cancer is an evolutionary disease with mutant alleles acting as a unit of selection and,
therefore, quantifying selection is necessary. Since, the distribution of the allele frequen-
cies of somatic mutations reflects the nature of selection underlying the mutant clones,
modelling this distribution is essential. Recently, Williams, Werner, Barnes, Graham, and
Sottoriva (2016) showed neutral tumour evolution results in a power-law distribution of
the mutant allele frequencies, and this law fits 303 of 904 cancers of various types. While
neutral evolution remains an important aspect in several cancer types, the distribution of
the allele frequencies of mutations in genes that undergo positive selection, has not been
determined so far. This is difficult to model because the allele frequencies of positively
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selected mutations are related to their functional consequences, and therefore we have
to take into account the degree of dominance exhibited by these mutations. However, in
the case of oncogenes, which are primarily dominant, determining the distribution of the
mutant allele frequencies should be feasible. It is worth noting that in the context of human
polymorphisms, the allele frequencies of new deleterious mutations have been studied and
fitness distribution is shown to follow a gamma distribution (Eyre-Walker, Woolfit, &
Phelps, 2006). Nonetheless, the fitness function and distribution of allele frequencies of
oncogenic mutations in tumours have not been described.

The mutant allele frequencies in oncogenes peak around .40 and rapidly decrease.
We built a mathematical model to describe the trend of these frequencies. We assumed
complete dominance of oncogenic mutations, although we realize dominance (or partial
dominance) can be modelled as a function of the functional impact of these mutations,
which can be derived from algorithms such as PolyPhen and SIFT (Adzhubei et al., 2010;
Ng&Henikoff, 2003). The scope of this article is restricted to describe the general tendency
of the frequencies rather than considering the impact of themutations on their frequencies.
By taking advantage of a key result in mathematical analysis, namely, the inverse function
theorem,we estimate themean effective selection of themutations as a function of germline
allele frequencies. Under complete dominance of oncogenic mutations, this selection
function is expected to be linearly correlated with the distribution of the mutant alleles.
We demonstrate that this is the case by investigating the allele frequencies of mutations in
oncogenes across various cancer types, validating our model for mean effective selection.
Consistent with population genetics model of fitness, the selection function fits a gamma-
distribution curve that accurately describes the trend of the mutant allele frequencies.

Thismodel infersmean effective selection for oncogenicmutations without considering
other alterations in the DNA that could change the dynamics of the tumour micro-
environment. Moreover, this measure is an effective selection coefficient in the sense that
it is selection coefficient relative to the change in mutant/germline allele frequencies.
Combining this estimate with other modifications, such as copy number changes, and
integrating the functional impact of the resulting protein will help in understanding the
evolution of the mutant clones in various tumours. Although the equations that we derive
are currently applied in the context of oncogenes, these are general formulas for natural
selection under complete dominance operating at all frequencies. While being consistent
with known formulas that explain evolution at low frequencies, one of these equations
(Equation (9)) shows that selection against recessive alleles behaves in a power-law-like
manner, reiterating the powerful role of natural selection. This would also explain the
reason some tumours undergo rapid clonal evolution. Further, at high frequencies of the
dominant alleles, the linear expansion exhibited by selection could partly be the reason
behind drug resistance, under dominance.

2. Determining selection coefficients

We use the standard model described in Falconer (1960) for selection under complete
dominance. An illustration of this model for dominant and recessive alleles when the
frequencies are not time dependent is shown in Supplementary Figure 1. Under thismodel,
if s is the coefficient of selection, p and q are the allele frequencies with p+ q = 1, the new
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allele frequencies f , in terms of p and q are given by

f (p) = p2 + pq
1 − sq2

= p
1 − sq2

; f (q) = 1 − f (p) = q − sq2

1 − sq2
. (1)

Using this model for time-dependent allele frequencies, we derive a new equation for the
number of mutant alleles in terms of the germline allele frequency.

At time t, let M be a population of cells consisting of mutant and germline genotypes
with p2t , 2ptqt and q2t as frequencies of mutant homozygous, mutant heterozygous and
germline genotypes of M, respectively, with pt + qt = 1. Let the strength of the selection
be expressed as a coefficient of selection, s, which is proportional to the reduction of
the germline genotype, compared to the mutant genotypes which are favoured for the
tumour growth. In reality, the selection coefficient should be a function of time. However,
we can consider s as mean selection acting over time and so the time dependence can
be omitted. Thus, in our model, we assume the frequencies are time dependent, but the
selection is time independent. If the fitness of the homozygous and heterozygous mutant
genotypes are taken to be 1 as it is likely the case in oncogenes, the fitness of the germline
genotype which is selected against is then 1− s. Thus, after one generation, the newmutant
allele frequency, Mqt , in terms of the recessive germline allele frequency qt is given by
Equation (1), which is

Mqt = qt − sq2t
1 − sq2t

. (2)

Hence, change in mutant allele frequency, �Mqt , resulting in a small time interval �t of
selection is

�Mqt = [Mqt − qt]�t = − sq2t (1 − qt)
1 − sq2t

�t.

Let T0 and T be the time of tumour initiation and the time of tumour biopsy, respectively.
Then,

M(qT) =
∫ T

T0
dMqt = −

∫ T

T0

sq2t (1 − qt)
1 − sq2t

dt. (3)

Let C[T0,T] be the set of all continuous functions on the interval [T0,T] and let qt ∈
C[T0,T]. Note that C[T0,T] can be viewed as a set of random variables (since continuous
functions on R are measurable). Let this set when viewed as a set of random variables be
denoted by R[T0,T]. Define G : C → R by G(qt) = qt , that is, G is an identity function
from C to R. Since C[T0,T] is a Banach space, inverse function theorem tells us that

dG(qt)
dt

= q′
t = 1

[G−1]′(qt) =⇒ dt = [G−1]′(qt)dqt

Denoting F = G−1 and u = qt , we see that, if u0 = qT0 and uT = qT are initial and final
frequencies, then Equation (3) is

M(uT) = −
∫ uT

u0

su2(1 − u)
1 − su2

F ′(u)du (4)

This formula allows us to express the number of mutant alleles purely in terms of germline
allele frequencies and decouples time dependence. Since G defines a function in C as a
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random variable, G essentially associates a cumulative distribution function (CDF) (or
a probability density function) that describes the random variable. If λ is the fraction
of reduction of germline alleles due to selection s at any time t, we can model the CDF
associated with G either as a relative increase in mutant alleles or as an absolute increase
in mutant alleles that corresponds to an absolute decrease in germline alleles. That is, an
absolute decrease in germline allele frequency gt due to λ reduction in germline alleles is
given by,

G(gt) = gt − λgt
1 − λgt

and hence F is described by the CDF

F(gt) = gt
λ(gt − 1) + 1

.

Alternatively, a relative increase in mutant allele frequency is given by the CDF (Note: this
CDF is a relative increase)

F(gt) = 1 − gt
gt − λgt

.

This is a relative increase because (ignoring the quadratic and higher powers of λ)

F(gt) = 1 − gt
gt − λgt

=
(
1 − gt
gt

)
+ λ

(
1 − gt
gt

)
.

In this paper, we will model F as a relative increase in the mutant alleles, and so the
derivative of F(u) is given by

F ′(u) = − 1
(1 − λ)u2

and therefore, Equation (4) reduces to

M(uT) = s
1 − λ

∫ uT

u0

1 − u
1 − su2

du ≈ sλ
∫ uT

u0
(1 − u)du = sλ

(
uT − u2T

2

)
+ sλC

where sλ = s/1 − λ can be interpreted as mean effective selection coefficient favouring
mutant genotypes. If the coefficient is extremely small at T0, then sλC ≈ 0, and hence the
number of mutations in terms of the observed germline allele frequency q at time T is
given by

M(q) ≈ sλ
(
q − q2

2

)
(5)

and sλ is therefore,

sλ ≈ M(q)
[
q − q2

2

]−1

(6)

Also, from Equation (1), since we have

M(p) ≈ p + sλp(1 − p)2, (7)

if sλ is very small or when p is small, the number of mutationsM(p) in terms of the mutant
allele frequency p can be approximated by sλp+p. Therefore, we expect sλ to be correlated
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Figure 1. Scatter plot of (q − q2/2,M(q)) and the gamma-distribution curve fit.

with the distribution of the mutant allele frequencies for small values of sλ. However, we
note from Equations (6) and (7) that extremely small values of q orM(p) = 0 will make sλ
unbounded or negative, and hence correlation may not be valid.

3. Results

We determined the selection coefficients sλ for mutations in oncogenes to see if they
are correlated with the distribution of the mutant allele frequencies. To do this, we first
identified 574 proto-oncogenes from the Uniprot database (The UniProt Consortium,
2015) out of which 236were exclusive toHomo sapiens. A total of 42,525mutations in these
genes were queried from the cBio portal (Cerami, 2012; Gao, Aksoy, & Dogrusoz, 2013)
and 25,848 mutations for which mutant allele frequencies were available, was retained
(Supplementary Table 1 available upon request). The germline allele frequencies were
computed by subtracting the mutant allele frequencies from 1 and M(q) was normalized
with its standard Euclidean norm.

Equation (5) essentially states sλ should be correlated with the random variable M(q)
under the random variable q−q2/2. Therefore, it is natural to fit the data (q−q2/2,M(q)).
Since two fitness distributions, the gamma and the exponential have been traditionally
applied to model selection coefficients (Gillespie, 1994), we employed both functions.
Consistent with the fitness function of deleterious mutations in human polymorphisms
(Eyre-Walker et al., 2006), the gamma-distribution curve fitted well with minimal residual
error of 6 × 10−4 with fitting function with respect to x = q − q2/2, given by

g(α,β , ρ, δ; x) = ρ

βα�(α)
xα−1e

−x
β + δ
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where shape, scale, amplitude, and offset parameters α, β , ρ, and δ were identified as 68.17,
.006, .02, and .01, respectively. MATLAB’s1 nlinfit was used to fit the data with initial
conditions [1, 1, .5, 1] for the parameters.

Figure 1 shows the scatter plot of (q − q2/2,M(q)) and the gamma-distribution curve
fit. This function allows us to compute sλ for each mutation through Equation (6), i.e.
sλ = g(α,β , ρ, δ; x)/x, where x is the transformed allele frequency, q − q2/2. Since sλ
coefficients are asmuch as the number ofmutations andM(p) is restricted by the frequency
bin size, to find the correlation, we sub-sampled sλ for 10,000 iterations and considered
mean correlation. Also, for the reasons discussed following Equation (7), mutant allele
frequencies greater than .90 and M(p) = 0 were not considered. The mean correlation
was determined to be .79 with mean p-value 2.3e−12. We also determined the line of
best fit (MATLAB’s polyfit routine with degree 1) to infer the slope to find the optimal
sλ that would fit with the mutant allele frequencies. Figure 2(a) shows the correlation
between sλ coefficients and M(p) and Figure 2(b) shows optimal sλ that fits the mutant
allele frequencies.

4. Discussion

Good correlation between selection coefficients sλ and themutant allele frequencies explain
why the frequencies are centred around .40 and rapidly decrease. Selection coefficients are
maximized around this region and reduce exponentially.

In population genetics, it is known that at low frequencies under dominance, selection
for/against dominant alleles follows O(p) and selection for/against recessive alleles grows
at O(q2). This is because Equation (1) tells us that

�f (p, q) = ± spq2

1 − sq2
.

While this is true when the unit of measure is generation time, integrating the selection
equation with respect to time establishes that at all frequencies selection for the dominant
alleles with respect to change in recessive allele frequency are linear. This can be seen by
differentiating Equation (5):

dM(q)
dq

= sλ(1 − q) = sλp. (8)

Similar analysis on selection against recessive allele with respect to dominant allele fre-
quency would reveal (See Supplementary Method 1)

dM(p)
dp

= −sθ
q2

p
. (9)

where −sθ = −s(1 − λ) can be interpreted as effective selection against recessive alleles.
These formulas, Equations (8) and (9), as relative increase and decrease, define natural
selectionunder complete dominance. Equation (8) is natural after all – for a givendominant
allele frequency, the rate of change of dominant alleles in terms of (the loss of) germline
alleles, should be proportional to the amount of selection that takes place. While both
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equations are consistent with known observation under low frequencies, Equation (9)
suggests that at low frequencies of the dominant alleles, selection against the recessive
alleles acts in a power-law-like manner, demonstrating why positive (natural) selection
is a potent force. It is worth noting that this power-law growth of relative fitness has
been observed in long-term evolution experiments (Lenski, 2015;Wiser, Ribeck, & Lenski,
2013). Under complete dominance, selection would maximize the dominant alleles at all
costs.

Equations (8) and (9) also allow us to compute the rate of change of gene/mutation
frequencies with respect to time. If α and β are the rate of growth of dominant and
recessive alleles, respectively, we can expect an exponential growth. Therefore,

dp
dt

= αp; dq
dt

= βq.

Hence, denotingM(q) byMq andM(p) byMp, we see

dMq

dt
= dMq

dq
· dq
dt

= sλβpq, (10)

and
dMp

dt
= dMp

dp
· dp
dt

= −sθαq2. (11)

Thus, if the genes/mutations don’t directly dependon time, the total derivative, i.e. selection
acting over time, is given by

dM
dt

= sλβpq − sθαq2.

Further, Equations (10) and (11), help us write the general equation for evolution through
natural selection for diploid genomes under complete dominance

α2sθdqdMq + β2sλdpdMp = 0.

In the context of cancer, especially in the evolution of mutant clones in oncogenes
when mutant allele frequencies are small, the normal linear growth of the mutant alleles
along with the power-law-like loss of recessive germline alleles will doubly accelerate the
progression of the mutant clones, possibly contributing to heterogeneity in the presence of
competing mutations. Similarly, when recessive germline allele frequencies are small, and
they grow quadratically, the progression of the mutant alleles will proceed linearly, still
dominating andpossibly conferringmore resistance to therapy and giving rise tometastatic
clones. Therefore, incorporating selection measures in evaluating functional impact of the
mutations and assessing the aggressiveness of the tumours by taking the degree of selection
into account will lead to better understanding of this complex evolutionary disease.

Note

1. The MATLAB routine used to generate the results is available upon request.
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