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ABSTRACT

The Gini coefficient is a measure used in economics to evaluate the
equitability of the distribution of a resource across a population.
This project applied the Gini coefficient as a classification method
for a decade-long data set consisting of environmental observations
and carbon flux data for a coniferous forest in Finland. Our results
show consistency in the Gini coefficient for environmental variables,
even with interannual variation in the measurements during the
carbon uptake period or when the ecosystem is absorbing carbon
from the atmosphere. The Gini coefficient calculations showed this
ecosystem has an inequitable distribution of carbon uptake and
release within the carbon uptake period, which is comparable to the
inequitable distribution of temperature and precipitation during the
same time period. We also calculated the percentage of the carbon
uptake period that has passed for different cumulative proportions
of a measurement. Future applications of the Gini coefficient to
other ecosystems will enhance knowledge of the distribution of
environmental and flux measurements across the carbon uptake
period.
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1. Introduction

Understanding anticipated changes in climate due to anthropogenic inputs is a major
scientific focus of the twenty-first century (Stocker et al., 2013). Short-term changes
in temperature, as well as variation in the timing and amount of precipitation, have
measurable effects on the interannual patterns of carbon gain for terrestrial ecosystems
(Ciais et al., 2005; Keenan et al., 2014; Piao et al., 2008; Wohlfahrt et al., 2013). Likewise,
ecological forecasting and mathematical modeling studies suggest long-term changes in
patterns of precipitation, temperature, and other climate extremes impact plant habitat,
species composition, and ultimately carbon dynamics of terrestrial ecosystems (Hoover &
Rogers, 2015; Park, Jeong,Ho, &Kim, 2015). To better understand future carbon dynamics
of terrestrial ecosystems, examining the distributions of both carbon gain and loss, as well
as environmental measurements linked to short-term carbon dynamics, will be essential.

Nearly continuous monitoring of environmental measurements of precipitation, tem-
perature, and fluxes of carbon dioxide and water at the ecosystem scale are available
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Table 1. List of abbreviations for flux variables and auxiliary measurements. Flux values are integrated
over the length of the timestep.

Symbol Units Description

Radiation µmol m−2 day−1 Incoming photosynthetic photon flux density
Precip millimeters Precipitation
T ◦C Air temperature
GPP g carbon m−2 day−1 Gross ecosystem productivity flux, or carbon taken up through photosynthesis
TER g carbon m−2 day−1 Total ecosystem respiration flux, or carbon released through respiratory processes
NEE g carbon m−2 day−1 Net ecosystem exchange of carbon (= TER − GPP)

through ecological networks such as FLUXNET (Baldocchi et al., 2001, http://daac.ornl.gov/
FLUXNET). This network contains over 500 sites worldwide in a variety of biomes, with
some sites providing over fifteen years of continuous data (Baldocchi, 2008; Baldocchi &
Meyers, 1998). Ecosystems in this network are instrumented to collect data on carbon
dioxide, water vapor, energy exchanges and other environmental measurements such
as precipitation and temperature. One key measurement is the net ecosystem carbon
exchange (which in this study is abbreviated as NEE, see Table 1 for a summary and
description of all measurements used in this study). Half-hourly changes in NEE are
driven by two biological processes at thewhole-ecosystem level: gross primary productivity
(GPP), which transforms atmospheric carbon to simple sugars by photosynthesis, and total
ecosystem respiration (TER), which includes both autotrophic and heterotrophic respira-
tion. Typically GPP and TER are derived from measurements of NEE using functional
relationships that include temperature, moisture, or other environmental measurements
(Desai et al., 2008; Reichstein et al., 2005).

The measurements of NEE, GPP, and TER are all rates of change (all have units of g
carbonm−2 day−1). A value ofNEE is calculated as the difference between the two positive
rates GPP and TER. Positive values of NEE represent that at that given point in time,
the ecosystem is a net source of carbon to the atmosphere; negative values imply that the
ecosystem is absorbing carbon from the atmosphere.MathematicallyNEE represents a rate
of change so the cumulative sum or integral of NEE across a year provide a measurement
of the net carbon uptake accumulated by an ecosystem (Zobitz, 2013). The period of
decreasing annual cumulative NEE during the year is called the carbon uptake period,
which is approximately similar in length to the growing season (Churkina, Schimel,
Braswell, & Xiao, 2005). This study aims to understand patterns in the distribution of
environmental and micrometrological measurements during the carbon uptake period.

One approach to understanding how a quantity is distributed iswith theGini coefficient.
Thismeasure was developed by CorradoGini as a way to quantify how equitably a resource
is distributed in a given population (Gini, 1932). Standard applications of the Gini coeffi-
cient are to income distribution across groups through time (Jantzen & Volpert, 2012; US
Census Bureau, Data Integration Division, n.d.). In other contexts the Gini coefficent has
been applied to measure disproportionality in ship traffic (González Cancelas, Palomino
Monzón, Soler-Flores, and Almázan Gárate, 2013), energy resources (Catalano, Leise, &
Pfaff, 2009), inequality in plant size or fecundity (Damgaard & Weiner, 2000), spatial
distributions of different land types (Huang, Xia, & Yang, 2013), as well as a classification
scheme on forest structure (Russell, Woodall, D’Amato, Domke, & Saatchi, 2014).

http://daac.ornl.gov/FLUXNET
http://daac.ornl.gov/FLUXNET
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The objective of this study is to investigate the feasibility for the Gini coefficient as
a classification scheme for ecosystems using data provided by FLUXNET. To simplify the
analysis, this study calculates the Gini coefficient using data from a coniferous forest in
Finland during its carbon uptake period. We address the following key questions:

(1) How disproportionate are the distributions of GPP and TER and other environ-
mental measurements?

(2) Are there similarities between the distribution of environmental measurements
(temperature, radiation, precipitation) as compared to the distribution of GPP and
TER?

2. Methods

2.1. Environmental site description

This studyutilizeddata fromHyytiälä, Finlandwithdata designated as ‘FreeFair-Use’ in the
FLUXNET database (http://fluxnet.fluxdata.org/data/la-thuile-dataset/). This site (61.8475
latitude, 24.2950 longitude) is a coniferous evergreen needle leaf forest dominated with
Scots Pine (Pinus Sylvestrus) located at an elevation of 185 meters above sea level. Average
growth of the trees is about 8 m3 hectare−1 year−1. Climate characteristics of Hyytiälä are
cool, humid summers (Suni et al., 2003). Data analyzed from this study ranged from the
years 1997 to 2006.

2.2. Environmental and carbon flux data

This study utilized six different measurements – three measurements of environmental
or meteorological data along with three measurements of the carbon flux density (NEE,
GPP, and TER). All measurements are provided in half-hourly increments. To smooth out
stochasiticty in the data we aggregated, or in some cases averaged, the environmental and
flux measurements to a daily value. NEE is calculated as the difference between the two
positive rates GPP (carbon uptake) and TER (carbon release), according to the following
algebraic equation:

NEE = TER − GPP (1)

At the ecosystem scale TER andGPP cannot be measured directly but rather inferred from
process based models (Desai et al., 2008; Reichstein et al., 2005; Reichstein, Stoy, Desai,
Lasslop, & Richardson, 2012). Typically TER is assumed to be an exponential function of
temperature (TER = f (T)). Once TER is specified by an air temperature measurement,
then GPP is calculated as the difference between NEE and TER. We recognize with this
direct causality between temperature and respiration we would expect strong similarities
in the calculated results for the Gini coefficient between TER and temperature.

Environmental data included air temperature, precipitation, and photosynthetic photon
flux density – or a measure of the spectral range of solar radiation for photosynthesis
– which for this study we will refer to this as radiation (Campbell & Norman, 1998).
All measurements are provided in half-hourly intervals through the FLUXNET database,
processed according to standard published methodologies (Papale et al., 2006). Gaps in a
half-hourly measurement are due to instrument malfunction or periods of atmospheric
stability which can underestimate the flux measurement in the eddy covariance technique.

http://fluxnet.fluxdata.org/data/la-thuile-dataset/
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Table 2. Summary of environmental variables and flux measurements across the carbon uptake period.

Year CUP
∑

Precip Radiation T
∑

NEE
∑

GPP
∑

TER

1997 158 375 371 13.1 −316 950 634
1998 181 499 307 10.5 −336 963 627
1999 181 240 377 11.5 −296 911 615
2000 172 350 333 11.3 −305 1013 707
2001 152 264 338 11.8 −296 872 575
2002 202 269 341 11.6 −317 1087 771
2003 132 250 363 12.3 −234 766 532
2004 162 329 334 11.6 −344 889 545
2005 166 332 361 11.6 −316 908 592
2006 169 207 385 13.4 −340 929 590

Notes: Abbreviations are as follows: CUP = carbon uptake period (days), or the period of decreasing annual cumulative net
carbon uptake, approximately similar in length to the growing season;

∑
Precip = total precipitation (mm); Radiation =

average daily incoming photosynthetically active radiation (µmol m−2 day −1); T = average temperature (◦C); ∑NEE =
Total net ecosystem exchange, or net carbon absorbed by the ecosystem (g carbon m−2);

∑
GPP = Total gross primary

productivity, or total carbon absorbed through photosynthesis (g carbon m−2);
∑

TER = Total total ecosystem respiration,
or total carbon released during respiratory processes (g carbon m−2.).

In these situations, gap-filling techniques are employed for a half-hourly measurement to
produce a reasonable flux value (Reichstein et al., 2005).

After the data were accessed we used the software programs R and RStudio for analysis
and visualization (R Core Team, 2014; RStudio Team, 2015). Measurements ofNEE, GPP,
and TER, radiation, and precipitation were summed to daily values, and air temperature
was averaged over the course of the day. A daily value of these measurements was excluded
from the results if more than 50% of the aggregated daily data were gap-filled. Table 2
reports the average environmental conditions and the length of the carbon uptake period
for each of the years studied within the data, given as an aggregate.

2.3. Calculation of the Gini coefficient & cumulative proportion function

The Gini coefficient is a summary statistic that quantifies how much a distribution of
measurements differs from the uniform (equitable) distribution (Catalano et al., 2009;
Farris, 2010; Jantzen & Volpert, 2012). While typically applied to income, in this study
we calculate the Gini coefficient to quantify the distribution of a measurement across the
carbon uptake period. We describe how we calculated the Gini coefficient from the carbon
uptake in Figures 1 and 2. Panel a of these figures display the time series of measurements
ofGPP (carbon uptake) and TER (carbon release) for Hyytiälä in 2001. Approximately 870
g carbon m−2 of carbon were taken up through photosynthesis during this carbon uptake
period, with a histogram shown in Figure 1(b). Similarly, approximately 570 g carbonm−2

during the carbon uptake period of 2001 were released to the atmosphere through respi-
ration.

The Gini coefficient is calculated from the the histogram in Figure 1(b) by first comput-
ing the Lorenz curve in Figure 1(c) (Lorenz, 1905). The Lorenz curve plots the cumulative
frequency distribution of the measurement (in this case GPP in Figure 1(b)) as a function
of the frequency distribution of the number of measurements in each bin (Farris, 2010).
The point (0.67, 0.50) on the Lorenz curve shown in Figure 1(c) signifies that half of total
GPP (= 436 g carbon m−2) is contained within 67% of the GPPmeasurements during this
time period. If the GPP were distributed equally (meaning every day had the same value
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Figure 1. Panel (a) Timeseries plot of daily GPP, or carbon absorbed by photosynthesis, for the 2001
carbon uptake period. Panel (b) Frequency histogram of the GPP measurements across this same time
period. The sum of GPPmeasurements is 872 g carbon m−2. Panel (c) Lorenz curve with 1:1 line for the
GPP data shown in the previous 2 panels. The Gini coefficient is calculated from the area between the
1:1 line and the Lorenz curve, which for this example is 0.37. The point (0.67, 0.50) on panel (c) signifies
that half of total GPP (= 436 g carbon m−2) is contained within 67% of the GPP measurements during
this time period.

of GPP), then the Lorenz Curve would be equivalent to the function y = x, or the 1:1 line,
which is also called the line of perfect equality. Once the Lorenz curve is determined, the
Gini coefficient is calculated as the area between the line of perfect equality and the Lorenz
curve, which in this case is has a Gini coefficient of 0.37. Through this approach, the Gini
coefficient is scaled from zero (indicating a resource is equally distributed) to unity (a large
proportion of the resource is allocated to a single measurement). We calculated the Gini
coefficient for each environmental and carbon fluxmeasurement during the carbon uptake
period from 1997 to 2006.

Figure 2. Panel (a) Timeseries plot of daily TER, or carbon released by respiratory processes, for the
2001 carbon uptake period. The sum of TER measurements is 570 g carbon m−2. Panel (b) Cumulative
proportion of TER across this time period. The point (169, 0.5) signifies that half of the carbon released
by respiratory process (= 285 g carbon m−2) has occurred by day 169 of 2001 (June 18). Panel c) The
cumulative proportion of the carbon uptake period as a function of the percentage of cumulative TER
during this time period. Notice that the vertical axis on panel (b) is the horizontal axis on panel (c). The
point (0.31, 0.50) on panel (c) signifies that during the first half of the carbon uptake period 31% of the
total TER had occurred.
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The Gini coefficient removes the influence of time because data are sorted by increas-
ing values (see the histogram of GPP in Figure 1(b)). However one way to examine
the distribution of a measurement with respect to time is with cumulative proportions.
Figure 2(b) displays that the cumulative total proportion of the carbon released by res-
piration (TER) during the carbon uptake period of 2001. The point (169, 0.5) in Figure
2(b) signifies that half of the carbon released by respiratory process (=285 g carbon m−2)
has occurred by day 169 of 2001 (June 18). Typically, the carbon uptake period has inter
annual variation in its starting and ending points and duration (see Table 2). In order to
compare cumulative proportions across different years, we scale the carbon uptake period
(horizontal axis in Figure 2(b)) as a cumulative proportion. Figure 2(c) is effectively the
inverse function to Figure 2(b), but standardizes the carbon uptake period on a unit scale.
Switching the axes facilitates easier identification of when a cumulative proportion of a
measurement occurs. The point (0.31, 0.50) in Figure 2(c) signifies that during the first
half of the carbon uptake period, 31% of the total TER had occurred. If the ecosystem was
releasing carbon at a uniform rate during this time period, then the data would fall on the
1:1 line.

3. Results

Figure 3 shows box plots for the calculated Gini coefficients for the environmental and
flux variables during the carbon uptake period for each year examined in this study. The
whiskers are themaximumandminimumGini coefficient values. Outer limits on the boxes
are the first and third quantiles (25% and 75% respectively), with themiddle line in the box
the median. The Gini coefficient for precipitation was fairly consistent at approximately
0.2, regardless of the amount of cumulative precipitation or length of the carbon uptake
period (see Table 2).

Figures 4 and 5 display the cumulative proportion for the environmental or flux
measurements across all years of the represented data. To facilitate comparison we cal-
culated the box plot every 10% of the cumulative measurement on the horizontal axis.
For example in Figure 5(b), 50% of the cumulative TER flux during the carbon uptake
period occurs during the first 60% of the carbon uptake period, whereas for GPP, 50% of
the cumulative flux occurs during the first 55% of the carbon uptake period. Presenting
the data in this way reveals how a measurement is distributed during the carbon uptake
period. Values below the blue 1:1 line in Figures 4 and 5 signify that the measurement is
disproportionately larger than a uniform distribution, and values above the blue 1:1 line
suggest that the measurement is disproportionately smaller than a uniform distribution.
For example, precipitation (Figure 4(a)) suggests that this ecosystemhasdisproportionately
less precipitation during the first half of the carbon uptake period than the second half,
whereas radiation (Figure 4(c)) is more uniform.

4. Discussion

4.1. Disproportionality ofmeasurements across the carbon uptake period

Our results indicate that the Gini coefficient for different environmental measurements
tends to be fairly consistent across the years represented in the data (Figure 3), in spite
of the variation in environmental conditions and the length of the carbon uptake period
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Figure 3. Calculated Gini coefficients for the environmental and flux variables during the carbon
uptake period for each year examined in this study (1997–2006). The label ‘Precip’ refers to incoming
precipitation, ‘T’ refers to air temperature, ‘Radiation’ refers to incoming photosynthestically active
radiation, ‘GPP’ refers to gross primary productivity (carbon absorbed by photosynthesis), and ‘TER’
refers to total ecosystem respiration (carbon released by respiratory processes).

Figure 4. Cumulative proportion plot for the environmental measurements examined in this study,
evaluated every 10% of the cumulative measurement, taken across all years of available data. Values
below the blue 1:1 line signify that the measurement is disproportionately larger than a uniform
distribution, and values above the blue 1:1 line suggest that the measurement is disproportionately
smaller than a uniform distribution.

(Table 2). For this coniferous forest, environmental and flux measurements are not uni-
formly distributed across the growing season (Gini coefficient is nonzero). These results
support application of the Gini coefficient to other types of flux data as a classification
period.
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Figure 5. Cumulative proportion plot for GPP (carbon absorbed by photosynthesis, panel (a) and
TER (carbon released by respiratory processes, panel (b), evaluated every 10% of the cumulative
measurement, taken across all years of available data. Values below the blue 1:1 line signify that
themeasurement is disproportionately larger than a uniform distribution, and values above the blue 1:1
line suggest that the measurement is disproportionately smaller than a uniform distribution.

Comparing the different environmental measurements, radiation had the least vari-
ability in the Gini coefficient calculation (smallest interquartile width) in Figure 3 and 4.
Not surprisingly, an increased interquartile width in the Gini coefficients (Figure 3) also
corresponded to larger variation in the percentile plots. This suggests that the distribution
of the light environment of this ecosystem is more consistent and uniform compared
to precipitation and temperature. The uniformity of the light environment could be
attributable to the forest structure – coniferous forests have less dynamic variability in
their light environment than deciduous forests or agricultural ecosystems.

Figure 4 suggests larger variation in precipitation both in the early and late season,
with the ecosystem receiving a larger pulse of precipitation in the early season (box plots
above the line y = x). The disproportionality in precipitation may affect patterns of
carbon uptake through photosynthesis, as Figure 5(a) shows a similar disproportionality in
carbon absorbed throughphotosynthesis orGPP.More uniform temperature and radiation
(Figures 4(b)–(c)) in the late season may lead to more uniformity in carbon uptake and
release through photosynthesis and respiration (Figure 5).

Placing the results of this study in context, changes in climate ultimately predict
an increase in the carbon uptake period as the growing season length increases
(Churkina et al., 2005; Wohlfahrt et al., 2013). Observational studies have observed that
an increase in the carbon uptake period could lead to an overall carbon gain (Keenan et
al., 2014) or decrease (Ciais et al., 2005; Piao et al., 2008) for terrestrial ecosystems. Our
study corroborates with the conclusion that the timing and carbon uptake and release
(early or late season) matters. Figure 5 demonstrates the differences in the magnitude
between TER (carbon release) and GPP (carbon uptake) and how the two change over
the course of the carbon uptake period. Our results indicate a disproportionate amount of
GPP acquired during the early spring compared to TER, but that disproportionality does
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not last throughout the carbon uptake period. Since the GPP flux tends to be larger in
magnitude than TER, variation in the timing of spring onset may not be as deleterious
compared to any lengthening of the carbon uptake period due to a late autumn onset.

4.2. Similarities in the distributions of different measurements across the carbon
uptake period

It is well known that two different Lorenz curves can yield the same Gini coefficient
(Catalano et al., 2009; Farris, 2010), suggesting that the Gini coefficient is more of a
function of disproportionality within a sample rather than comparison across different
samples. Despite this potential pitfall, our results suggest that Figure 3 supports a similarity
in the Gini coefficients for temperature, radiation, and TER and GPP.

Similarities in the Gini coefficients for temperature and TER can be expected because
TER is modeled as a function of temperature (Desai et al., 2008; Reichstein et al., 2005;
2012). However, the similarities between in the Gini coefficients for TER and GPP to
radiation were not to be expected a priori, especially given the differences in the cumulative
proportion plots to radiation and GPP and TER (Figures 4 and 5). These changes may also
be in response to the distribution of precipitation and air temperature (Figures 4(a)–(b))
and the wide variation in these measurements.

The results presented here illuminate two potential benefits of applying the Gini coeffi-
cient to environmental and flux measurements in terrestrial ecosystems. By standardizing
everything to a unit scale and looking at the deviation from a uniform (equally distributed)
resource, the Gini coefficient and cumulative measurement plots help characterize differ-
ences between ecosystems in the context of changing length of the carbon uptake period
(Bao, Wen, Sun, Zhao, & Wang, 2014), the frequency and timing of precipitation, and
short term drought (Wei et al., 2014). The analysis presented here can classify differences
across ecosystems rather than through annual mean temperatures, rainfall, or moisture
levels.

5. Conclusions

The Gini coefficient can be used as classification for ecosystems using three environmental
sub-classifications: air temperature, moisture, and radiation. While radiation tended to be
consistent across seasons, the modeled variation inGPP (carbon uptake) and TER (carbon
release) is more of a response to the variation in air temperature and the models used
to determine the functional forms of GPP and TER. For our site, the carbon release and
uptake is much less productive during the first half of the growing season versus during
the second half of the growing season. Future planned work will expand this analysis to
other FLUXNET sites.
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