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ABSTRACT

In modelling, the dynamics of infectious disease, the choice of
the specific mathematical formulation of disease transmission (i.e.
the incidence function) is one of the initial assumptions to be
made. While inconsequential in many situations, we show that the
incidence function can have an effect on the existence of backward
bifurcation (the phenomenon where a disease can persist even when
the basic reproductive number is less than 1). More specifically, we
compare mass action (MA) and standard incidence (SI) (the most
common incidence functions) versions of two hallmark models in the
backward bifurcation literature and an original combination model.
Our findings indicate that the SI formation of disease transmission is
more conducive to backward bifurcation than MA, a trend seen in all
the models analysed.
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1. Introduction

The basic reproductive number, denoted R0, is one of the most important quantities in
the study of infectious disease. Defined as the average number of secondary infections
caused by a single infection introduced into a completely susceptible population, R0 is
a key measure of a disease’s potential to spread in a given population. In mathematical
epidemiology, the basic reproductive number determines the stability of the disease-free
equilibrium (DFE). Specifically, if R0 > 1, the infection replaces itself and contributes
additional infection leading to larger numbers of infections and an unstable DFE. If
R0 < 1, the infection does not replace itself and the DFE is stable.

In most situations, it is safe to overlook the ‘introduced into a completely susceptible
population’ phrase inR0’s definition to conclude that an average infection in general does
(or does not) replace itself and consequently the disease will persist (or die out). This
typical situation is realized through a forward, or supercritical, bifurcation at R0 = 1 and
is illustrated in Figure 1(a).
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Figure 1. Illustrations of forward and backward bifurcation atR0 = 1.
Notes: Blue dashed lines showunstable equilibria. Solid green lines showasymptotically stable equilibria.

However, having R0 < 1 is not always enough to guarantee eradication of a given
disease. Through a phenomenon known as backward, or subcritical, bifurcation depicted
in Figure 1(b), it is possible for a disease to persist despite R0 < 1. Here, the asymptotic
stability of the DFE is identical to that of the forward bifurcation (i.e. asymptotically stable
for R0 < 1 and unstable for R0 > 1). The difference is that the endemic equilibrium
that appears at R0 = 1 is unstable and exists for values of R0 < 1. When backward
bifurcation occurs, this unstable endemic equilibrium is typically accompanied by a larger
asymptotically stable endemic equilibrium. In this situation, the initial amount of infection
in the population determines whether the disease dies out or persists. Specifically, the
disease persists if the amount of initial infection is above the unstable endemic equilibrium
and dies out if it is below the unstable equilibrium.

While the existence of backward bifurcation is interesting from a purely mathematical
perspective, the phenomenon has important practical consequences for public health as
well. Summarizing pointsmade byBrauer (2004) andDushoff,Huang, andCastillo-Chavez
(1998), these include:

• For an endemic setting in which control measures are reducing the reproductive
number, the condition that R0 < 1 is not sufficient to eradicate the disease. Rather,
the reproductive number must be reduced beyond an eradication threshold, which
we denote R∗

0 (see Figure 1(b)), in order to eliminate the disease.
• For a setting in which R0 increases across the threshold of R0 = 1, the equilibrium
prevalence is a discontinuous function of R0. As the reproductive number crosses 1
from below, the introduction of an arbitrarily small number of infected individuals
results in a prevalence of P∗ > 0 (see Figure 1(b)).

While most of the literature on backward bifurcation has focused on simply proving the
existence of the counterintuitive behaviour, this paper takes a deeper look into backward
bifurcation by examining its sensitivity to the choice of incidence function. Our current
work is motivated by that of Sharomi, Podder, Gumel, Elbasha, and Watmough (2007)
which provides examples of HIV models with imperfect vaccination that demonstrate
backward bifurcation when using a standard incidence (SI) formulation but do not exhibit
the behaviour with an equivalent mass action (MA) formulation. In this paper, we test
the generality of their observation that SI favours the existence of backward bifurcation
over MA incidence by establishing analytic threshold conditions for both SI and MA
formulations of the models in two hallmark backward bifurcation papers and comparing
the resulting conditions.

While many types of incidence functions exist McCallum, Barlow, and Hone (2001),
we focus our attention on SI (also referred to as frequency-dependent transmission) and
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MA (also referred to as density dependent) as they are the two common most. In a SI
formulation, the force of infection is given by βS(t)I(t)

N(t) , where S(t) and I(t) denote the
number of susceptible and infectious individuals, respectively,N(t) is the total population
size and β is a transmission coefficient that includes the average number of contacts that an
infectious individualmakes per unit time and the proportion of those contacts that result in
disease transmission. Biologically, this reflects a situation where each infectious individual
would infect β people per unit time but only a proportion S(t)

N(t) of their contacts will be with
individuals that are currently susceptible to the disease.Hence, the rate of infectiondepends
on the proportionof the population that is currently susceptible. In theMA formulation, the
force of infection is given by σS(t)I(t) (where σ is the transmission coefficient) and each
infectious individual transmits the disease to σS(t) people per unit time. Consequently, the
rate of transmission depends on the number of susceptible individuals in the population
rather than the proportion. Notably, the SI and MA formulations are mathematically
equivalent if the size of the total population is constant (i.e. N(t) = N∗) as the constant
population size can be absorbed into the transmission coefficient (i.e. σ = β

N∗ ).
The structure of our paper is as follows: in Section 2, we examine the effect of the

incidence function in the backward bifurcation in the model of Feng, Castillo-Chavez, and
Capurro (2000); in Section 3, we do the same for the model of Kribs-Zaleta and Velasco-
Hernández (2000); and in Section 4, we analyse amodel that combines aspects of Feng et al.
(2000) and Kribs-Zaleta andVelasco-Hernández (2000). Throughout this work, we rely on
the general theorem for the existence of backward bifurcation of Castillo-Chavez and Song
(2004) which is closely related to that of van den Driessche and Watmough (2002). The
theorem proves the existence of backward bifurcation using the centre manifold theory to
determine the local behaviour of the system at the DFE when R0 = 1. A slightly modified
form of their result is given in Theorem 1 of the Supplementary Material (SM) for direct
applicability to our systems.

2. Backward bifurcation caused by exogenous reinfection

In Feng et al. (2000), the authors present a model for the epidemiology of tuberculosis
that includes exogenous reinfection (the characteristic of TB where a latently infected
individual can acquire a new infection from another infectious individual) and showed
that exogenous reinfection can produce backward bifurcation. We revisit this hallmark
work in the backward bifurcation literature to examine the effect of the incidence function
on the existence of backward bifurcation.

2.1. The Feng et al. model

A slightly generalized form of the model proposed in Feng et al. (2000) is given by

dS
dt

= �− λ(S, I ,N)− μS,

dE
dt

= λ(S, I ,N)− pλ(E, I ,N)− (μ+ k)E + σλ(T , I ,N),

dI
dt

= pλ(E, I ,N)+ kE − (μ+ r + d)I ,

dT
dt

= rI − σλ(T , I ,N)− μT , (1)
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Figure 2. Flow diagram of the Feng et al. model for TB. Standard incidence version when λ(X , I,N) =
β XI

N , for X ∈ {S, E , T}, and mass action version when λ(X , I,N) = βXI, for X ∈ {S, E , T}.

Table 1. Baseline parameter values and ranges for the (Feng et al. model, 2000).

Parameter Definition Value Range References

� Recruitment rate 417 400–500 Feng et al. (2000)
μ Natural mortality rate 1

62.5
1
80 − 1

55 Feng et al. (2000), Blower et al. (1995)
k Rate of slow progression .005 .001–.008 Feng et al. (2000), Blower et al. (1995)
σ Rate of infection of treated individuals .9 0–1.5 Feng et al. (2000)
r Recovery rate 2 .5–2.5 Feng et al. (2000)
d Disease-induced mortality rate .1 0–.5 Feng et al. (2000), Blower et al. (1995)
β Transmission coefficient Determined so thatR0 = 1
p Rate of exogenous reinfection Threshold parameter for BB

where N = S + E + I + T is the total population size. The model divides the population
into four classes depending on disease state; S (susceptible), E (latent stage of disease),
I (infectious stage of disease), and T (treated, but still susceptible). The model utilizes a
constant recruitment rate, �, and a per-capita disease induced rate of mortality, d. The
rate of progression from latency to infectivity is represented as k, the per-capita natural
mortality rate of the population as μ, the per-capita treatment rate as r, the factor of
susceptibility after treatment as σ and the factor of susceptibility during latent infection
as p. As p determines the level of exogenous reinfection, Feng et al. use p as a threshold
parameter for the existence of backward bifurcation (i.e. Howmuch exogenous reinfection
is required to produce backward bifurcation?).

In Feng et al. (2000), the authors use a SI force of infection given by λ(X, I ,N) = cβ XI
N

for X ∈ {S,E,T}, where c is the average number of contacts per unit time and β is the
average transmission probability of a single contact with a susceptible individual. For
simplicity, we use the single term β as the overall transmission coefficient without loss of
generality to formulate the force of infection as:

λ(X, I ,N) = β
XI
N

, for X ∈ {S,E,T}, (standard incidence version)

λ(X, I ,N) = βXI , for X ∈ {S,E,T}. (mass action version)

A flow diagram for the Feng et al. model is given in Figure 2 and a summary of model
parameters is given in Table 1.

2.2. Backward bifurcation threshold; SI Feng et al. model

We begin by establishing the condition for the existence of backward bifurcation for the
Feng et al. model as proposed in Feng et al. (2000) (i.e. the SI formulation) which is given by
System (1) with λ(X, I ,N) = β XI

N , for X ∈ {S,E,T}. We use the general theorem for the
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existence of backward bifurcation of Castillo-Chavez and Song (2004) which was restated
in Theorem 1 in the SM in a modified form for more direct applicability to our systems.

The basic reproductive number, R0, of the model is given by the product of the
transmission rate and average duration of infection, 1/(μ + r + d), multiplied by the
probability that a new infection progresses from latency to active infection before death
k/(μ+ k); resulting in

R0 =
(

β

μ+ r + d

)(
k

μ+ k

)
. (2)

As backward bifurcation describes the local behaviour of the DFE at the reproductive
number threshold, we begin our analysis by finding the DFE and β∗, the transmission rate
for which R0 = 1 to get

(S∗,E∗, I∗,T∗) =
(
�

μ
, 0, 0, 0

)
, β∗ =

(
μ+ k

) (
μ+ r + d

)
k

.

Linearizing around the DFE, we calculate the Jacobian of the system at the DFE to get

J =

⎡
⎢⎢⎣

−μ 0 −β 0
0 −μ− k β 0
0 k −μ− r − d 0
0 0 r −μ

⎤
⎥⎥⎦ .

As we are concerned with the system’s behaviour near R0 = 1, we evaluate the Jacobian
at β = β∗ and calculate its eigenvalues to get λ1,2,3,4 = 0,−k − 2μ− r − d,−μ,−μ. The
left and right eigenvectors, v and w, respectively, corresponding to the eigenvalue λ = 0,
are then found to be

v =
[
0,

kr
μ(k + 2μ+ r + d)

,
r(μ+ k)

μ(k + 2μ+ r + d)
, 0

]
,

w =
[
−μ

2 + μr + μd + kμ+ kr + kd
kr

,
μ(μ+ r + d)

kr
,
μ

r
, 1

]
.

In accordance with the conditions of Theorem 1 in the SM, we have that v · w = 1. With
this condition met, we rewrite our system in the form �x′ = f (�x) for a clearer application
of Theorem 1 in the SM by renaming the state variables as S = x1, E = x2, I = x3, and
T = x4. Our system becomes

x
′
1 = �− βx1x3

x1 + x2 + x3 + x4
− μx1,

x
′
2 = βx1x3

x1 + x2 + x3 + x4
− pβx2x3

x1 + x2 + x3 + x4
− (μ+ k)x2 + σβx3x4

x1 + x2 + x3 + x4
,

x
′
3 = pβx2x3

x1 + x2 + x3 + x4
+ kx2 − (μ+ r + d)x3,

x
′
4 = rx3 − σβx3x4

x1 + x2 + x3 + x4
− μx4.
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From this reformulated system, we may directly calculate a and b as described in the
Theorem 1 in the SM as

a =
n∑

k,i,j=1
vkwiwj

∂2fk
∂xi∂xj

(x∗,β∗)

=
(
2μ+ 2k

)
μ

(
μ+ r + d

) [
μ2

(
μ+ r + d

)
p − k

(
kμ+ μ2 + μr + kr

(
1 − σ

) + μd
)]

(
r + 2μ+ d + k

)
k2r�

, (3)

b =
n∑

k,i=1
vkwi

∂2fk
∂xi∂β

(x∗,β∗) = k
k + 2μ+ r + d

. (4)

As the parameters involved in the expression for b are all positive when assigned
biologically feasible values, we have that b > 0. Therefore, the existence of backward
bifurcation depends entirely on the sign of a. Noting that the necessary condition for the
existence of backward bifurcation from Theorem 1 in the SM is that a > 0, we see from
the form of (3) that backward bifurcation cannot occur without exogenous reinfection
(i.e. p = 0). More specifically, we can use (3) to establish the level of exogenous reinfection
necessary to produce backward bifurcation for the SI formulation of the Feng et al. model:

p > p∗
SI = k

(
kμ+ μ2 + μr + kr

(
1 − σ

) + μd
)

μ2
(
μ+ r + d

) . (5)

Notably in Feng et al. (2000), explicit conditions for the existence of backward bifurcation
are only found for a simplified model with no disease-induced mortality and where
reinfection after recovery occurs at the same rate as for susceptible (i.e. d = 0, σ = 1).
With these simplifications, the threshold p∗

SI = k(μ+k+r)
μ(μ+r) is identical to that stated in

Feng et al. (2000).

2.3. Backward bifurcation threshold; MA Feng et al. model

In order to examine the effect of MA vs SI on the existence of backward bifurcation for the
Feng et al. model, we perform the same mathematical analysis on the MA version of the
model which is given by System (1) with λ(X, I ,N) = βXI , for X ∈ {S,E,T}.

By considering the case where the infectious population is zero and solving for each of
the state variables, we find the DFE to be

DFE = (S∗,E∗, I∗,T∗) =
(
�

μ
, 0, 0, 0

)
. (6)

The basic reproductive number of the MA version of the Feng et al. model is found by
multiplying that of the SI version by the total population size at the DFE (as N does not
appear in the denominator of theMA term). Consequently, the basic reproductive number
and β∗ (the transmission rate for which R0 = 1) are given by

R0 = βk�
(μ+ r + d)(μ+ k)μ

, β∗ =
(
μ+ k

) (
μ+ r + d

)
μ

k�
. (7)
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To linearize the system around the DFE, we evaluate the the Jacobian at the DFE to get

J =

⎡
⎢⎢⎢⎣

−μ 0 −β�
μ

0
0 −μ− k β�

μ
0

0 k −μ− r − d 0
0 0 r −μ

⎤
⎥⎥⎥⎦ .

The eigenvalues of the Jacobian evaluated at β = β∗ are then given by λ1,2,3,4 = 0,−d −
2μ− k− r,−μ,−μ. The left and right eigenvectors, v and w, respectively, corresponding
to λ = 0, are then given by

v =
[
0,

kr
μ(d + 2μ+ k + r)

,
(μ+ k)r

μ(d + 2μ+ k + r)
, 0

]
,

w =
[
−μ

2 + μr + μd + kμ+ kr + kd
kr

,
μ(μ+ r + d)

kr
,
μ

r
, 1

]
.

Noting that v ·w = 1, we rename the state variables as S = x1, E = x2, I = x3 and T = x4
to reformulate our system as �x′ = f (�x) where

x
′
1 = �− βx1x3 − μx1,

x
′
2 = βx1x3 − pβx2x3 − (μ+ k)x2 + σβx3x4,

x
′
3 = pβx2x3 + kx2 − (μ+ r + d)x3,

x
′
4 = rx3 − σβx3x4 − μx4.

Calculating a and b from our differential system, according to the Theorem 1 in the SM,
we have that

a =
n∑

k,i,j=1
vkwiwj

∂2fk
∂xi∂xj

(x∗,β∗)

= 2μ
(
μ+ k

) (
μ+ r + d

) (
μ2

(
μ+ r + d

)
p − k

(
kμ+ (

1 − σ
)
rk + kd + μ2 + μr + μd

))
(
d + k + 2μ+ r

)
k2r�

, (8)

b =
n∑

k,i=1
vkwi

∂2fk
∂xi∂β

(x∗,β∗) = k�
(d + k + 2μ+ r)μ

. (9)

As was the case in the model formulated for SI, b > 0 for all biologically reasonable
parameters, and thus the existence of backward bifurcation hinges solely upon a > 0.
Using this condition, we establish the following threshold level of exogenous reinfection
necessary for the MA version of the Feng et al. model to exhibit backward bifurcation:

p > p∗
MA = k

(
kμ+ (

1 − σ
)
rk + kd + μ2 + μr + μd

)
μ2

(
μ+ r + d

) . (10)

2.4. Comparison of backward bifurcation thresholds

From the SI and MA thresholds in (5) and (10), we immediately see that exogenous
reinfection is the mechanism causing backward bifurcation. Without exogenous
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Figure 3. Bifurcation diagrams for the Feng et al. model using the baseline parameter values in
Table 1. The threshold rates of exogenous reinfection for the existence of backward bifurcation
evaluate to p∗

SI = .3224687 and p∗
MA = .3270838 for the standard incidence and mass action versions,

respectively.
Notes: Solid (dashed) curves indicate stable (unstable) equilibria. Green (red) curves show endemic
equilibria for the standard incidence (mass action) version. Behaviour of the disease-free equilibrium
(shown in black) is the same for standard incidence and mass action versions.

reinfection (i.e. p = 0), backward bifurcation is not exhibited by either the SI or MA
system. While the results of Feng et al. (2000) showed that backward bifurcation can
occur for biologically feasible parameter values in a model for tuberculosis, the question
of whether the required rates of exogenous reinfection are biologically realistic has been
debated (see Lipsitch & Murray, 2003; Wang, Feng, Aparicio, & Castillo-Chavez, 2014).
To some degree, its unintuitive nature has led to questions about the realism of model
assumptions/parameter values required to produce backward bifurcation. Here, we note
that amodel’s formulation of disease transmission (i.e. choice of incidence function) affects
the threshold conditions for backward bifurcation and consequently makes the behaviour
more (or less) biologically realistic.

A numerical illustration of the backward bifurcation phenomenon is shown in
Figure 3. Evaluating (5) and (10) using the baseline parameter values in Table 1, we have
that the critical levels of exogenous reinfection necessary to produce backward bifurcation
are p∗

SI = .3224687 and p∗
MA = .3270838 in the SI and MA versions, respectively. In

Figure 3(a), we see that neither version of the model exhibits backward bifurcation when
the exogenous reinfection rate, p, is such that p < p∗

SI < p∗
MA.When p∗

SI < p < p∗
MA as in

Figure 3(b), we see that the standard version of the model (green curve) exhibits backward
bifurcation but the MA version (red curve) does not. When p∗

SI < p∗
MA < p as in Figure

3(c), both versions exhibit the phenomenon.
An initial comparison of backward bifurcation thresholds for the Feng et al. model,

p∗
MA − p∗

SI = k2d
μ2(μ+ r + d)

> 0, (11)

shows that the MA formulation always requires a higher rate of exogenous
reinfection to produce backward bifurcation than a corresponding SI formulation. As
the SI formulation relaxes the necessary condition on the required rates of exogenous
reinfection (the central question regarding the realism of backward bifurcation), we say
that the SI formulation ‘favors the existence of backward bifurcation’ or ‘makes backward
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Figure 4. The ratio of the levels of exogenous reinfection levels required to produce backward bifurcation
in the mass action and standard incidence formulation of the Feng et al. model (i.e. p∗

MA/p
∗
SI in (12)).

Notes: In each plot, a single parameter is varied over its range in Table 1. All others are fixed at baseline
values.

Figure 5. Flow diagram of the Kribs-Zaleta et al. model. Standard incidence version when λ(X , I,N) =
β XI

N , for X ∈ {S, V}, and mass action version when λ(X , I,N) = βXI, for X ∈ {S, V}.

bifurcation more likely to occur’ and we reiterate that this does not mean that SI causes
backward bifurcation.

From (11), we see that thresholds, p∗
MA and p∗

SI, are equivalent if either k = 0 or d = 0.
The situation of k = 0 is not interesting because without slow progression from latent to
active TB, the infection is guaranteed to go extinct (note from (2) that k = 0 =⇒ R0 = 0,
because the initial infection introduced into a susceptible population cannot progress from
latent to active TB). When there is no disease-induced mortality (i.e. d = 0), the total
population is constant. As was noted in Section 1, the MA and SI models are equivalent
because constant population size in the SI can be absorbed into the transmission coefficient
β . Therefore, it follows that the threshold for backward bifurcationmust be identical. From
(11),we see that amount bywhich SI favours backward bifurcation is an increasing function
of the rate of slow progression (k) and a decreasing function of the natural mortality rate
(μ) and the recovery rate (r). Differentiating (11) with respect to d to get k2

(
μ+r

)
μ2

(
μ+r+d

)2 , we
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have that the difference in thresholds also increases as a function of the disease-induced
mortality rate.

To gain quantitative insight into the amount by which SI favours backward bifurcation
for the Feng et al. model, we consider the ratio of the backward bifurcation thresholds:

p∗
MA
p∗
SI

= 1 + kd
kr(1 − σ)+ μ2 + kμ+ μd + μr

. (12)

Evaluating at the baseline model parameters from Table 1, we have that p∗
MA/p

∗
SI = 1.014

showing that the threshold level of exogenous reinfection is only about 1.4% higher for the
MAmodel. In Figure 4, we see that ratio of backward bifurcation thresholds is significantly
more sensitive to the disease-inducedmortality rate (d) and the recovery rate (r) than other
variables. For biologically reasonable parameters, we see that MA can require up to ≈6%
faster rates of exogenous reinfection than the corresponding SI formulation.

3. Backward bifurcation caused by imperfect vaccination

In the previous section, we showed that the SI formulation of the Feng et al. model is more
conducive to backward bifurcation (i.e. requires a lower level of exogenous reinfection)
than the equivalent MA formulation. To see if this relationship holds when backward
bifurcation is caused by a different mechanism (other than exogenous reinfection as in
Feng et al. (2000)), we now investigate the model proposed by Kribs-Zaleta and Velasco-
Hernández (2000). In their model, which we will refer to as the Kribs-Zaleta et al. model,
backward bifurcation is caused by a partially protective vaccine.

3.1. The Kribs-Zaleta et al. model

The model proposed in Kribs-Zaleta and Velasco-Hernández (2000) is given by

dS
dt

= �− λ(S, I ,N)− (μ+ γ )S + rI + θV ,

dI
dt

= λ(S, I ,N)+ ψλ(V , I ,N)− (μ+ r + d)I ,

dV
dt

= γ S − ψλ(V , I ,N)− (μ+ θ)V ,

(13)

where N = S + I + V is the total population size. The model divides the population into
three classes; S, I , and V , representing susceptible, infectious, and vaccinated individuals,
respectively. Model parameters include the rate of vaccination, γ , the factor of protection
conferred by vaccination,ψ , the waning rate of the vaccine’s protection, θ , and the natural
rate of mortality, μ. The model analysed in Kribs-Zaleta and Velasco-Hernández (2000)
assumed no disease-induced mortality and recruitment into the population at a rate
identical to that of mortality (i.e. μN) which produces a constant population size. In
the last paragraph of Section 3 of Kribs-Zaleta and Velasco-Hernández (2000), the authors
pose a modified model with a constant recruitment rate (which we refer to as � for
consistency with the Feng et al. model) and disease-induced mortality at a rate of d. As the
SI andMA formulations are equivalent when the total population size is constant, it is this
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Table 2. Baseline parameter values and ranges for the Kribs-Zaleta et al. model (Kribs-Zaleta & Velasco-
Hernández, 2000).

Parameter Definition Value Range References

� Recruitment rate 417 400–500
Feng et al. (2000)

d Disease induced mortality .1 0–.5
Feng et al. (2000), Blower et al. (1995)

μ Natural mortality rate 1
62.5

1
80 − 1

55 Feng et al. (2000), Blower et al. (1995)
ψ Rate of infection of vaccinated

individuals
.44 0–1.0

Gerberry and Milner (2012)

θ Vaccination waning coefficient 1
15

1
10 − 1

55 Aronson et al. (2004), Sterne, Ro-
drigues, and Guedes (1998), Gerberry
and Milner (2012)

γ Rate of vaccination .15 0–2.0
Gerberry and Milner (2012)

β Transmission coefficient Determined so thatR0 = 1
r Recovery rate Threshold parameter for BB

modifiedmodel that we use to examine the effect of the incidence function on the existence
of backward bifurcation. Notably, Kribs-Zaleta et al. present a numerical demonstration
of backward bifurcation for this modified model but do not establish analytic thresholds
for the existence of the behaviour. The rate at which individuals recover from infection,
r, is used in Kribs-Zaleta and Velasco-Hernández (2000) as the threshold parameter for
backward bifurcation, i.e. the speed with which individuals must recover from infection to
produce a backward bifurcation. Notably, backward bifurcation in this three-classmodel is
only possible in the situation of a partially protective vaccine (which essentially divides the
uninfected population into two risk groups: susceptible and vaccinated) and sufficiently
high clearance rates for infection. Therefore, replenishment of susceptible individuals
(high-risk individuals) from the infected pool (because of high clearance rates) is what
drives backward bifurcation. The force of infection is formulated as:

λ(X, I ,N) = β
XI
N

, for X ∈ {S,V}, (standard incidence version)

λ(X, I ,N) = βXI , for X ∈ {S,V}, (mass action version)

where β is the transmission coefficient. Notably, the original statement of the model in
Kribs-Zaleta and Velasco-Hernández (2000) used a SI formulation. A flow diagram for the
Kribs-Zaleta et al. model is given in Figure 5 and a summary of the parameter values we
use is given in Table 2. Note, while the Kribs-Zaleta et al. model was not designed for a
particular disease, we use parameter values that are relevant for TB in order to preserve
consistency with the Feng et al. model.

3.2. Comparison of thresholds; Kribs-Zaleta et al. model

Again, we rely on the general theorem of Castillo-Chavez and Song (2004) (restated in
Theorem 1 in the SM) to establish conditions for the existence of backward bifurcation.
As the derivations are lengthy and similar to those shown in Sections 2.2 and 2.3 for the
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Figure 6. Bifurcation diagrams for the Kribs-Zaleta et al. model using the baseline parameter values in
Table 2. The threshold rates of recovery for the existence of backward bifurcation evaluate to r∗SI =
.4819918 and r∗MA = 4.219441 for the standard incidence and mass action versions, respectively.
Notes: Solid (dashed) curves indicate stable (unstable) equilibria. Green (red) curves show endemic
equilibria for the standard incidence (mass action) version. Behaviour of the disease-free equilibrium
(shown in black) is the same for standard incidence and mass action versions.

Feng et al. model, we move directly to the resulting thresholds. The full calculations are
provided in Section 2 of the SM. The resulting thresholds are given by

r > r∗SI = γ
(
γ + μ+ d

)
ψ2 + γ

(
μ+ 2θ − d

)
ψ + (

μ+ θ
)2

ψγ
(
1 − ψ

) (14)

and

r > r∗MA =
(
μ+ d

) (
μ2 + (

2θ + ψγ + ψ2γ
)
μ+ (

ψγ + θ
)2)

ψγμ
(
1 − ψ

) . (15)

A numerical illustration of the backward bifurcation phenomenon is shown in Figure 6.
Evaluating (14) and (15) using the baseline parameter values in Table 2, we have that the
critical rates of recovery necessary to produce backward bifurcation are r∗SI = .4819918
and r∗MA = 4.219441 in the SI and MA versions, respectively. In Figure 6(a), we see that
neither version of themodel exhibits backward bifurcationwhen the exogenous reinfection
rate, r, is such that r < r∗SI < r∗MA.When r∗SI < r < r∗MA as in Figure 6(b), we see that the
standard version of the model (green curve) exhibits backward bifurcation but the MA
version (red curve) does not. When r∗SI < r∗MA < r as in Figure 6(c), both versions exhibit
the phenomenon.

In both thresholds, we see that backward bifurcation requires partial protection con-
ferred by vaccination (i.e. ψ �= 0, 1) and a sufficiently fast recovery rate (r). Given
that these are the mechanisms causing the behaviour, we proceed to find which form
of the incidence function is more conducive to backward bifurcation (i.e. which incidence
function produces a less restrictive threshold on r.) Considering the difference between
the two thresholds,

r∗MA − r∗SI = d
(
ψγ + μ+ θ

)2
ψγμ

(
1 − ψ

) > 0, (16)

we see that the MA formulation is greater than the SI formulation, requiring a greater
recovery rate in order to produce backward bifurcation than the SI formulation of the
model. As with the Feng et al. model, the MA formulation can be said to be more
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Figure 7. The ratio of the rate of recovery required to produce backward bifurcation in the mass action
and standard incidence formulation of the Kribs-Zaleta et al. model (i.e. r∗MA/r

∗
SI in (17)).

Notes: In each plot, a single parameter is varied over its range in Table 2. All others are fixed at baseline
values.

restrictive towards backwards bifurcation, and that the SI formulation favours the existence
of backward bifurcation. From (16), we see that the thresholds are identical when d = 0.
However, as stated before, the total population size is constant without disease-induced
mortality, rendering the SI and MA formulations equivalent.

For a more quantitative analysis, we consider the ratio of the thresholds given by

r∗MA
r∗SI

= 1 + d
(
θ + μ+ ψγ

)2
μ(ψ2γ 2 + ψ

((
μ+ d

)
ψ − d + 2θ + μ

)
γ + (

μ+ θ
)2
)
. (17)

Evaluating at the baseline parameter values from Table 2, we have that r∗MA/r
∗
SI = 7.924,

showing that backward bifurcation for the MA formulation requires recovery rates nearly
eight times as large as the SI version.Hence, a SI formulation of theKribs-Zaleta et al.model
is much more likely to exhibit backward bifurcation than an equivalent MA version.

Figure 7 shows the ratio of thresholds when individual parameters are varied through
their range in Table 2. We see that ratio of backward bifurcation thresholds is by far
most sensitive to disease-induced mortality, d, and that the ratio is a decreasing function
of both the natural morality rate, μ, and the waning rate of the vaccine’s protection, θ .
Interestingly, the ratio of the thresholds is non-monotonic as a function of both the vaccine
rate, γ , or the level of vaccine protection, ψ , and exhibits a maximum value within the
biologically feasible range.

4. Combining exogenous reinfection and imperfect vaccination

To this point, we have shown that the SI formulation of disease transmission is more
conducive to backward bifurcation than the MA formulation for two hallmark models in
the backward bifurcation literature. While the simple vaccination model of Kribs-Zaleta
et al. is quite general and not designed for any particular disease, it is worth noting that its
main assumptions (a vaccine that offers imperfect protection that wanes with time and an
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infectious disease that does not confer immunity after recover) are completely applicable
in the case of tuberculosis. Hence, combining aspects of the Feng et al. and Kribs-Zaleta
et al. models produces a model that remains relevant to the dynamics of TB infection. We
now proceed to examine the effect of the choice of incidence function on the existence
of backward bifurcation for this new model that contains two characteristics that are
associated with backward bifurcation (exogenous reinfection and imperfect vaccination).

4.1. The combinationmodel

Incorporating aspects of the Feng et al. and Kribs-Zaleta et al. models, our combination
model for the dynamics of TB is given by

dS
dt

= �− λ(S, I ,N)− μS − γ S + θV ,

dV
dt

= γ S − θV − ψλ(V , I ,N)− μV ,

dE
dt

= ψλ(V , I ,N)+ λ(S, I ,N)− pλ(E, I ,N)− (μ+ k)E + σλ(T , I ,N),

dI
dt

= pλ(E, I ,N)+ kE − (μ+ r + d)I ,

dT
dt

= rI − σλ(T , I ,N)− μT , (18)

where N = S + V + E + I + T is the size of the total population. The model divides
the population into five classes; S,V ,E, I and T , representing susceptible, vaccinated,
latently infected, infectious and treated (but still susceptible) individuals, respectively.
Model parameters include a constant recruitment rate, �, the natural mortality rate, μ,
per-capita disease-induced rate of mortality, d, the rate of vaccination, γ , the factor of
protection conferred by vaccination, ψ , the waning rate of the vaccine’s protection, θ ,
rate of progression from latency to infectivity, k, the factor of susceptibility during latent
infection as p, per-capita treatment rate, r, and factor of susceptibility after treatment as σ .
The force of infection is formulated as:

λ(X, I ,N) = β
XI
N

, for X ∈ {S,E,V ,T}, (standard incidence version)

λ(X, I ,N) = βXI , for X ∈ {S,E,V ,T}, (mass action version)

where β is the transmission coefficient. A flow diagram for the combinationmodel is given
in Figure 8 and a summary of model parameters is given in Table 3.

4.2. Comparison of thresholds; combinationmodel

In Section 3 of the SM, we use Theorem 1 in the SM to establish conditions for the existence
of backward bifurcation for the SI andMAversions of the combinationmodel. To compare
the thresholds of the combinationmodel to those of the previousmodels, we examine both
the exogenous reinfection rate, p, (as in Section 2.4 for Feng et al. model) and the rate of
recovery, r (as in Section 3.2 for the Kribs-Zaleta et al. model). As the calculations for the
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Figure 8. Flow diagram of the combination TB model. Standard incidence version when λ(X , I,N) =
β XI

N , for X ∈ {S, V , E , T}, and mass action version when λ(X , I,N) = βXI, for X ∈ {S, V , E , T}.

Table 3. Baseline parameter values and ranges for the combination model for tuberculosis dynamics in
System (18).

Parameter Definition Value Range References

� Recruitment rate 417 400–500
Feng et al. (2000)

μ Natural mortality rate 1
62.5

1
80 − 1

55 Feng et al. (2000), Blower et al. (1995)
k Rate of slow progression .005 .001–.008

Feng et al. (2000), Blower et al. (1995)
σ Rate of infection of treated individuals .9 0–1.5

Feng et al. (2000)
d Disease-induced mortality rate .1 0–.5

Feng et al. (2000), Blower et al. (1995)
γ Rate of vaccination .15 0–2.0

Gerberry and Milner (2012)
ψ Rate of infection of vaccinated individuals .44 0–1.0

Gerberry and Milner (2012)
θ Vaccination waning coefficient 1

15
1
10 − 1

55 Aronson et al. (2004), Sterne et al.
(1998), Gerberry and Milner (2012)

r Recovery rate 2 .5–2.5
Feng et al. (2000)

p Rate of exogenous reinfection Threshold parameter for BB
β Transmission coefficient Determined so thatR0 = 1

thresholds are lengthy and not particularly enlightening, we relegate them to the SM. See
Sections 3.1 and 3.2 of the SM for the treatments of the SI and MA formulations of the
combination model, respectively.

In applying the theorem of Castillo-Chavez and Song (2004), we find that imperfect
vaccination plays a much different role in the combination model than it does in the
Kribs-Zaleta et al. model. To see this, we note that, for both the SI and MA versions of the
combination model, the existence of backward bifurcation reduces to the condition that

c0 + c1θ + c2r − c3σ − c4p < 0,

where c1, . . . , c4 are positive terms (see (14) and (19) in Sections 3.1 and 3.2 of the SM
for details). As the c2r term is positive, we see that a high rate of recovery r is no longer
sufficient (aswas the case for theKribs-Zaleta et al.model) to produce backward bifurcation
for the combinationmodel. Rather, it is the rates of reinfection, both after recovery (σ ) and
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Figure 9. Bifurcation diagrams for the combination model using the baseline parameter values in
Table 3. The threshold rates of exogenous reinfection for the existence of backward bifurcation evaluate
to p∗

SI = .1690434 and p∗
MA = .1719923 for the standard incidence and mass action versions,

respectively.
Notes: Solid (dashed) curves indicate stable (unstable) equilibria. Green (red) curves show endemic
equilibria for the standard incidence (mass action) version. Behaviour of the disease-free equilibrium
(shown in black) is the same for standard incidence and mass action versions.

exogenous (p), that drive backward bifurcation. For this reason, we focus our attention on
the threshold for exogenous reinfection, p, necessary to produce the behaviour.

A numerical illustration of the backward bifurcation phenomenon is shown in
Figure 9. Evaluating (15) and (20) from the Supplemental Material using the baseline
parameter values in Table 3, we have that the critical levels of exogenous reinfection
necessary to produce backward bifurcation are p∗

SI = .1690434 and p∗
MA = .1719923 for

the SI and MA versions, respectively. In Figure 9(a), we see that neither version of the
model exhibits backward bifurcation when the exogenous reinfection rate, p, is such that
p < p∗

SI < p∗
MA.When p∗

SI < p < p∗
MA as in Figure 9(b), we see that the standard version

of the model (green curve) exhibits a very small backward bifurcation and the MA version
(red curve) does not. When p∗

SI < p∗
MA < p as in Figure 9(c), both versions exhibit the

phenomenon.
While the exact expressions for the threshold rates of exogenous reinfection are

unwieldy (see (15) and (20) in the SM), the difference between the MA and SI thresholds
simplifies to

p∗
MA − p∗

SI =
(
θ + μ+ ψγ

)
k2d(

μ+ r + d
) (
θ + μ+ γ

)
μ2 > 0.

Therefore, we have that the MA formulation always requires a higher rate of exogenous
reinfection to produce backward bifurcation than the corresponding SI formulation.

To quantify the amount by which SI favours backward bifurcation for the combination
model, we consider the ratio of the backward bifurcation thresholds, p∗

MA/p
∗
SI, where

p∗
MA and p∗

SI are (15) and (20) in the SM, respectively. Evaluating at the baseline model
parameters from Table 3, we have that p∗

MA/p
∗
SI = 1.017. In Figure 10, we illustrate the

effect of varying each individual model parameters over its range in Table 3. As with the
Feng et al. model, we see that disease-induced mortality rate, d and the recover rate, r,
have the largest impact on the ratio of the MA and SI backward bifurcation thresholds.
As disease-induced mortality increases, we have that MA threshold increases from being
the same as the SI threshold to about higher than the SI threshold. As the recovery rate
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Figure 10. The ratio of the levels of exogenous reinfection required to produce backward bifurcation in
the mass action and standard incidence formulation of the combination model (solid curves).
Notes: Corresponding ratios of thresholds for the Feng et al. model (dashed curves) are included for
comparison when available. In each plot, a single parameter is varied over its range in Table 3. All others
are fixed at baseline values.

increases, the MA threshold decreases from about 6% higher down to about 1.5% larger
than the SI threshold.

Lastly, we compare the results of the combination and Feng et al. models (solid and
dashed curves in Figure 10, respectively) to examine the effect of adding imperfect vac-
cination into the Feng et al. model. Overall, the general behaviour of the two models is
very similar but we do see that the ratios are indeed larger for the combination model.
Therefore, we see that the relative restrictiveness of the MA thresholds vs the SI thresholds
is increased by incorporating the additional model complexity.

5. Discussion

In all of the models we have considered, we have found that the SI formulation of disease
transmission favours backward bifurcation as opposed to the MA formulation. More
precisely, we found that the existence conditions for backward bifurcation are always
less restrictive for SI than for MA. For both the Feng et al. and combination models, the
MA formulation was onlymodestlymore restrictive, requiring exogenous reinfection rates
to be nomore than 8% larger than the SI formulation. For the Kribs-Zaleta et al. model, the
effect is huge as the MA formulation requires recovery rates up to an order of magnitude
larger than those of the SI formulation. For all of the models considered, we found that the
ratio of theMA and SI thresholds was most sensitive to the disease-induced mortality rate,
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d, and that the ratio was an increasing function of disease-induced death. For the Feng
et al. and combination models, the threshold ratio decreases significantly as the recovery
rate, r, increases.

It must be stated, however, that our results only hold when one considers the case of a
dynamic population. If the total population is constant,N∗, the SI formulation β1 SIN can be
seen to be equivalent to theMA formulation β2SI by setting β2 = β1

N∗ (i.e. by absorbing the
constant population sizeN∗ into the transmission coefficient). In themodels considered in
this work, the size of the total population changes in response to disease dynamics because
we have considered only fatal diseases (i.e. those with disease-induced mortality). Hence,
the sensitivity of our results to disease-induced mortality seems appropriate.

In this work, we have found that the SI formulation of disease transmission favours
the existence of backward bifurcation compared to a correspondingMA formulation. Like
much of the backward bifurcation literature, we have focused on the mathematical details
of the phenomenon rather than biological explanation. To conclude our work and offer
some intuition regarding our findings, we propose thinking of backward bifurcation in
terms of the infectious potential of an average infected individual, which we refer to as
Patient A. In the standard case of forward bifurcation, Patient A’s infectious potential
is maximized when the rest of the population is uninfected (i.e. Patient A’s maximum
infectious potential is equal to R0). If other individuals besides Patient A are infected,
the pool of uninfected is depleted and Patient A’s infectious potential is reduced. In
the situation of backward bifurcation, the presence of other infected individuals in the
population can actually increase the infectious potential of Patient A. This occurs if the
depletion of the uninfected pool is somehow counteracted by a change in the structure of
the population that increases Patient A’s infectious potential (Dushoff et al., 1998).

Mathematically, we can make sense of the main observation of this work by examining
the structure of the SI and MA forms of the incidence function. When using the MA
formation of incidence, Patient A’s rate of infecting others is βS. If individuals other than
Patient A are infected, the number of susceptible individuals is reduced, thus reducing the
infectious potential of Patient A. If SI were used instead, Patient A’s rate of infecting others
is β S

N . When additional individuals are infected, the number of susceptibles is reduced,
but the disease-induced mortality of those infections also reduces the size of the total
population. This reduction in the denominator of the incidence term, means that having
additional infection in the population has a smaller effect (possibly only slightly) on the
infectious potential of Patient A. Thus, the conditions for the depletion of the uninfected
pool to be counteracted by a change in population structure will be less restrictive (possibly
only slightly). This would confirm our result that for a dynamic population, backward
bifurcation appears more readily in amodel utilizing the SI form of the incidence function,
as opposed to the MA form.

Despite being the foundationof anymathematicalmodel of infectious disease, the choice
of incidence function is often made with insufficient consideration and justification. In
many circumstances, the behaviour of interest is insensitive to this decision. In this work,
we have shown if one is interested in studying backward bifurcation, it is very important to
carefully choose and justify the formulation of disease transmission that most realistically
represents the situation being modelled.
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