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ABSTRACT

The invasion of predatory lionfish (Pterois volitans) represents a major
threat to the western Atlantic coral reef ecosystems. The proliferation
of venomous, fast reproducing and aggressive P. volitans in coral
reefs causes severe declines in the abundance and diversity of reef
herbivores. There is also widespread cannibalism amongst P. volitans
populations. A mathematical model is proposed to study the effects
of predation on the biomass of herbivorous reef fishes by considering
two life stages and intraguild predation of P. volitans population with
harvesting of adult P. volitans. The system undergoes a supercritical
Hopf bifurcation when the invasiveness of P. volitans crosses a certain
critical value. It is observed that cannibalism of P. volitans induces
stability in the system even with high invasiveness of adult P. volitans.
The dynamic instability of the system due to higher invasiveness of
P. volitans can be controlled by increasing the rate of harvesting of
P. volitans. It is also proven that P. volitans goes extinct when the
harvest rate is greater than some critical threshold value. These results
indicate that the dynamical behaviour of themodel is very sensitive to
the harvesting of P. volitans, which in turn is useful in the conservation
of reef herbivores.
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1. Introduction

The invasion of Pterois volitans in the western Atlantic has brought a major change to
the biodiversity of coral reefs (Morris et al., 2009). P. volitans are voracious in nature,
spreading rapidly to new marine environments and driving down the populations of reef
herbivores drastically (Benkwitt, 2015). The loss of herbivores results in the proliferation
of algae, especially the brown algae Lobophora variegata, Dictyota spp. and Sargassum
spp., which prevent the growth of corals (Acropora spp. and Montastraea spp.) on the
seabed (Bhattacharyya & Pal, 2015). With venomous spines, P. volitans are the top-notch
predators in the Atlantic and Caribbean regions. Since top predators like sharks and
groupers typically avoid P. volitans and thus fail to keep the species population in check,
commercial harvesting of the adult P. volitans species seems to be the only way to mitigate
their impact on coral reef ecosystems (Morris & Whitfield, 2009).
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Parrotfish (Sparisoma spp.) play an important role inmaintainingwesternAtlantic coral
reef ecosystems by consuming algae to control its growth and promote coral recruitment
(Fishelson, 1997; Rotjan & Lewis, 2006). P. volitans affect corals by overconsuming Par-
rotfish and other herbivorous fish that keep algae from overgrowing corals. As observed
by Goreau and Hayes (1994), Hare and Whitfield (2003), and Albins and Hixon (2008),
in the presence of predatory P. volitans, there is a rapid loss of herbivorous Parrotfish and
subsequent loss of corals. Apart from preying on reef herbivores, adult P. volitans exhibit
cannibalism, eating juveniles of their own species (Morris et al., 2009). Cannibalism has a
strong impact on population dynamics because it reduces the predation pressure on reef
herbivores (Rudolf, 2008).

Almost all organisms have a life history that takes them through multiple stages from
juvenile to adult (Zhang, Chen, & Neumann, 2000) and cannibalistic interactions are very
common in stage-structured populations (Rudolf, 2007). To model the effect of invasive
P. volitans, we have considered a two-stage-structured system (Bhattacharyya & Pal, 2014),
with Parrotfish and P. volitans following a Holling type III functional response (Luwig,
Jones,&Holling, 1978). This response function is sigmoid, rising slowlywhen resources are
rare, accelerating when resources become more abundant and finally reaching a saturated
upper limit (Edwards & Brindley, 1999). The rate of loss from the prey population due to
predation is defined as the uptake rate of the predator. In this formulation, the per capita
uptake rate by the predator is given by

f (x) = mx2

a2 + x2
,

where x is the prey abundance. This functional response is parameterized by the constants
m and a, wherem is the maximal prey uptake rate by the predator, and a is the value of the
prey population level when the uptake rate per unit prey is half their maximum value, i.e.
f (x)|x=a = m/2.

In ourmodel, we have considered the stage structure of the juvenile and adult P. volitans
under the assumption that the adult P. volitans prey on Parrotfish and have reproductive
ability. For effective, widespread control of P. volitans, a non-constant harvesting policy,
introduced by Lenzini and Rebaza (2010), is used in our model. We will examine the inter-
actions of algae, Parrotfish and P. volitans to determine effective strategies for controlling
the growth of P. volitans in coral reefs. We have studied the model analytically as well as
numerically, with all proofs relegated to the Appendix 1.

2. Themodel

We consider a mathematical model consisting of algae at the first trophic level with
concentration P(t) at time t, and Parrotfish at the second trophic level with concentration
x(t), feeding on the algae. We also consider a two-stage structure for the top predator
P. volitans, with y(t) and z(t) as the concentrations of juvenile and adult P. volitans,
respectively. In our proposed model, it is assumed that adult P. volitans prey both on
Parrotfish and juvenile P. volitans, whereas juvenile P. volitans do not attack Parrotfish,
and have no reproductive ability (Wang & Chen, 1997). Adult P. volitans are harvested
with a non-constant harvesting policy that provides diminishing marginal returns of
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the harvesting organization (Leard, Lewis, & Rebaza, 2008). We make the following
assumptions in formulating the mathematical model:

(H1) In the absence of Parrotfish, macroalgae have only intraspecic competition, and
grow according to the logistic equation with intrinsic growth rate r and carrying
capacity K .

(H2) The death rate of Parrotfish is proportional to the existing Parrotfish population
with a proportionality constant D1.

(H3) The death rate of juvenile P. volitans and the transformation rate from juvenile to
adult P. volitans are proportional to the existing juvenile population with propor-
tionality constants D2 and μ, respectively.

(H4) The death rate of adult P. volitans is proportional to the existing adult population
with a proportionality constant D3.

(H5)
m3y2z
a23 + y2

represents the rate of cannibalism of adult P. volitans (z) by consuming juvenile
P. volitans (y) leading to the growth of new juveniles. The growth rate of new
juveniles is

αm3y2z
a23 + y2

, 0 < α < 1.

Thus,
(1 − α)m3y2z

a23 + y2

represents the reduction in growth rate of juvenile P. volitans due to cannibalism.

The basic equations with all the parameters are

dP
dt

= rP
(
1 − P

K

)
− m1P2x

a21 + P2

dx
dt

= x

(
α1m1P2

a21 + P2
− D1 − m2xz

a22 + x2

)

dy
dt

= α2m2x2z
a22 + x2

− (μ+ D2)y − (1 − α)m3y2z
a23 + y2

dz
dt

= μy − D3z − hz
c + z

, (1)

where P(0) ≥ 0, x(0) ≥ 0, y(0) ≥ 0 and z(0) ≥ 0. Here 1/μ represents the total time spent
by P. volitans in its juvenile stage, h is the maximum harvesting rate of adult P. volitans,
c is the concentration of adult P. volitans for which the rate of harvesting is exactly half
the maximal harvesting rate, m1 is the maximal uptake rate of algae by Parrotfish, m2 is
the maximal uptake rate of Parrotfish by the adult P. volitans, m3 is the maximal uptake
rate of juvenile P. volitans by the adult P. volitans and ai are the corresponding half
saturation constants (i = 1, 2, 3). The parameters α and αi represent the growth efficiency
(0 < α,αi < 1, i = 1, 2) of the organisms; all of these are positive quantities. The parameters
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K , h, c are environmental variables, while r, μ, mi, ai, Di, α and αi are properties of the
organisms.

3. Non-dimensionalization of the system

Let us change the variables of the system (1) to non-dimensional ones by substituting

P̄ = P
K
, x̄ = x

α1K
, ȳ = y

α1α2K
, z̄ = z

α1α2K
, t̄ = rt,

and defining non-dimensional parameters

ā1 = a1
K
, ā2 = a2

α1K
, ā3 = a3

α1α2K
, m̄1 = α1m1

r
, m̄2 = α2m2

r
, m̄3 = (1 − α)m3

r
,

D̄1 = D1

r
, D̄2 = D2

r
, D̄3 = D3

r
, μ̄ = μ

r
, h̄ = h

α1α2rK
, c̄ = c

α1α2K
.

After we make the substitutions above and drop the bars for simplicity, the system (1) is
reduced to

dX
dt

= f (X), (2)

where X = [
P x y z

]T and f (X) = [
F1 F2 F3 F4

]T with

F1(P, x) = P(1 − P)− m1xP2

a21 + P2
,

F2(P, x, z) = x

(
m1P2

a21 + P2
− m2xz

a22 + x2
− D1

)
,

F3(x, y, z) = m2x2z
a22 + x2

− m3y2z
a23 + y2

− (μ+ D2)y,

F4(y, z) = μy − hz
c + z

− D3z.

We assume that all initial values are non-negative. The right-hand sides of the equations
in the system (2) are smooth functions of the variables P, x, y, z and the parameters. The
following lemma gives the condition for which the solutions of the system (2) are positive.
Lemma 3.1: If y(t) and z(t) are always positive, then all possible solutions of the system
(2) are positive.

Therefore, as long as y(t) > 0 and z(t) > 0 for all t, local existence and uniqueness
properties hold in the region� = {(P, x, y, z) : P > 0, x > 0, y > 0, z > 0}.

4. Boundedness and permanence of the system

We first prove that the solutions of Equation (2) with initial values in � are bounded, so
that Equation (2) represents a biologicallymeaningful system. The proofs of all the lemmas
are given in the Appendix 1.
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Lemma 4.1: For all ε > 0, there exists tε > 0 such that all the solutions of (2) with positive
initial values fall into the set

{
(P, x, y, z) ∈ � : P(t)+ x(t)+ y(t)+ z(t) < 1/D + ε, ε > 0

}
whenever t ≥ tε , where D = min{1,D1,D2,D3}.

Since P(t) + x(t) + y(t) + z(t) < 1/D as t → ∞ it follows that there exist positive
numbers M1,M2,M3 with M1 + M2 + M3 < 1/D such that x(t) ≤ M1, y(t) ≤ M2 and
z(t) ≤ M3 for large values of t.

Let us define

λ =
√

a21D1

m1 − D1
, m1 > D1.

Then λ denotes the break-even concentration of algae for which the Parrotfish population
is constant in the absence of P. volitans. The following lemma states the condition under
which neither Parrotfish nor P. volitans can survive in the system:
Lemma 4.2: If (i)m1 ≤ D1 or (ii)m1 > D1 and λ > 1/D hold, then

lim
t→∞ x(t) = lim

t→∞ y(t) = lim
t→∞ z(t) = 0.

According to Lemma 4.2, we have

(i) If the maximal uptake rate of Parrotfish is less than or equal to its death rate, then
Parrotfish and P. volitans will not survive in the system.

(ii) If the maximal uptake rate of Parrotfish is greater than its death rate and the break-
even concentration λ is greater than 1/D, then Parrotfish and P. volitans will not
survive in the system.

The system (2) will be permanent (Ruan, 1993) if there exists u1i ,Mi ∈ (0,∞) such that

u1i ≤ lim ui(t) ≤ Mi

for each organism ui(t) in the system (i = 1, . . . , 4). Permanence represents convergence
on an interior attractor from any positive initial conditions, and hence, can be regarded as
a strong form of coexistence. From a biological point of view, the permanence of a system
ensures the survival of all the organisms in the long run. Without any loss of generality,
we assume thatm1 > D1 andm2 > D2. The condition given in the following Lemma rules
out the possibility of extinction of any organism in the system.
Lemma 4.3: If there exists p1, 0 < p1 < λ, then for large t, there exists

x1 = m2M3(a21 + p21)
(m1 − D1)(p21 − λ2)

, y1 > 0, and z1 >
M2(a22 + x21)(μ+ D2)

(m2 − m3)x21 − m3a22
,

such that each solution of the system (2) with positive initial values falls into the compact set

{
(P, x, y, z) : p1 ≤ P(t) ≤ 1/D, x1 ≤ x(t) ≤ M1, y1 ≤ y(t) ≤ M2, z1 ≤ z(t) ≤ M3

}
,

and stays there.
System (2) is called competitive (Smith, 1995) if there exists a diagonal matrix

H = diag(ε1, . . . , ε4) such that HJ(X)H has non-positive off-diagonal elements,
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where J(X) is the Jacobian of the system (2) and εi is either 1 or –1 (i = 1, . . . , 4). By
choosing H = diag(1,−1,−1, 1), we see that the off-diagonal elements of HJ(X)H are
non-positive if

m3y2(t)
a23 + y2(t)

<
m2x2(t)
a22 + x2(t)

for all t > 0. This leads to the following result:
Lemma 4.4: The system (2) is competitive if

x(t) > x1 >

√
m3a22

m2 − m3

for large t, where m2 > m3.

5. Equilibria and their stability

The system (2) possesses the following feasible equilibria:

(i) Organism-free equilibrium E0 = (0, 0, 0, 0);
(ii) Parrotfish- and P. volitans-free equilibrium E1 = (1, 0, 0, 0);
(iii) P. volitans-free equilibrium E2 =

(
λ, λ(1−λ)D1

, 0, 0
)
;

(iv) The equilibrium of coexistence E∗ = (P∗, x∗, y∗, z∗), where P∗ is a positive root of
the equation

m2θ
2(P)ψ(P)

a22 + θ2(P)
− m3φ

2(P)ψ(P)
a23 + φ2(P)

= (μ+ D2)φ(P)

with

θ(P) = (1 − P)(a21 + P2)
m1P

, φ(P) = 1
μ

(
D3 + h

c + ψ(P)

)
ψ(P), and

ψ(P) = (m1 − D1)(P2 − λ2)(a22 + θ2(P))
m2(a21 + P2)θ(P)

; x∗ = θ(P∗), y∗ = ψ(P∗), z∗ = φ(P∗).

We see that E0 and E1 always exist, E2 exists if λ < 1, and E∗ exists if P∗ > λ.
We analyse the local stability of system (2) using eigenvalue analysis of the Jacobian

matrix, J(X), evaluated at the appropriate equilibrium. The eigenvalues of J(X) at E0 are
1, −D1, −μ− D2 and −D3 − h/c. This gives the following result:
Lemma 5.1: The organism-free equilibrium E0 of the system (2) is always a saddle point.

Therefore, the system (2) is very unlikely to collapse.
Lemma 5.2: The critical point E1 of the system (2) is locally asymptotically stable if D1 >
m1/(a21 + 1).

Therefore, with a high mortality rate of Parrotfish, the system (2) stabilizes at the
Parrotfish- and P. volitans-free equilibrium E1. The decrease in the mortality rate of
Parrotfish changes the stability of the system (2) from an algae-dominated state in the
absence of Parrotfish to an algae-Parrotfish coexistence state. The following Lemma gives
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the condition for which coexistence of Parrotfish and algae is possible in the absence of
P. volitans.
Lemma 5.3: The critical point E2 =

(
λ, λ(1−λ)D1

, 0, 0
)
of the system (2) is locally asymptot-

ically stable if

λ < 1 and
λ(1 − λ)

a2

√
cμm2

(μ+ D2)(cD3 + h)
− 1 < D1 <

m1

2(1 − λ)
.

The system is persistent at E∗ if all the boundary equilibria repel interior trajectories
(Ruan, 1993). The following Lemma gives the condition of persistence of the system (2)
at E∗:
Lemma 5.4: All the organisms will persist if λ < 1 and

D1 ≤ min

{
m1

a21 + 1
,
λ(1 − λ)

a2

√
cμm2

(μ+ D2)(cD3 + h)
− 1

}
.

Therefore, with a low mortality rate of Parrotfish, all the organisms in the system (2)
coexist.
Lemma 5.5: The system (2) has no periodic solution around the positive equilibrium E∗ if

1 + μ+ m1

(
1 + 2x∗

P∗

)
+ m2

(
1 + 2z∗

x∗

)
+ m3 < L,

where L is the minimum of the following six quantities:

(i) D1 + 2P∗ + 2m1P∗x∗a21
(a21+P∗2)2 + 2m2x∗z∗a22

(a22+x∗2)2 ,

(ii) 2P∗ + μ+ D2 + 2m3y∗z∗a23
(a23+y∗2)2 + 2m1P∗x∗a21

(a21+P∗2)2 ,

(iii) 2P∗ + D3 + 2m1P∗x∗a21
(a21+P∗2)2 + ch

(c+z∗)2 ,

(iv) μ+ D1 + D2 + 2m2x∗z∗a22
(a22+x∗2)2 + 2m3y∗z∗a23

(a23+y∗2)2 ,

(v) D1 + D3 + 2m2x∗z∗a22
(a22+x∗2)2 + ch

(c+z∗)2 ,

(vi) μ+ D1 + D3 + ch
(c+z∗)2 + 2m3y∗z∗a23

(a23+y∗2)2 .

Corollary 5.1: If the conditions stated in Lemmas 5.4 and 5.5 both hold, then the positive
equilibrium is locally asymptotically stable.

Nowwe use the Routh–Hurwitz criterion to find the necessary and sufficient conditions
for stability of the system (2) at E∗.
Lemma 5.6: The positive equilibrium E∗ of the system (2) is locally asymptotically stable if

Q1 > 0, Q1Q2 > Q3, and Q1Q2Q3 > Q2
3 + Q2

1Q4,

where

Q1 = −
(
F1P|E∗ + F2x |E∗ + F3y |E∗ + F4z |E∗

)
,

Q2 =
(
F1S |E∗ + F2x |E∗

) (
F3y |E∗ + F4z |E∗

)
+ F1P|E∗F2x |E∗ + F3y |E∗F4z |E∗

− μF3z |E∗ − F1x |E∗F2P|E∗ ,
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Q3 =
(
μF3z |E∗ − F3y |E∗F4z |E∗)(F1P|E∗ + F2x |E∗

)
+ (

F1x |E∗F2P|E∗ − F1P|E∗F2x |E∗
) (

F3y |E∗ + F4z |E∗
)

− μF3x |E∗F2z |E∗ ,

Q4 =
(
F3y |E∗F4z |E∗ − μF3z |E∗

) (
F1P|E∗F2x |E∗ − F1x |E∗F2P|E∗

)+ μF1P|E∗F2z |E∗F3x |E∗ .

Due to the complexity in the algebraic expressions involved, it is difficult to interpret
the results in ecological terms; however, numerical simulations are used to illustrate the
dynamical behaviour of the system about E∗.

6. Hopf bifurcation

We will study the Hopf bifurcation of the system (2) at E∗, taking m2 as a bifurcation
parameter.

The characteristic equation of the Jacobian matrix at E∗ isG(λ) = u4 +Q1u3 +Q2u2 +
Q3u+Q4 = 0. SolvingQ1Q2Q3−Q2

3 −Q2
1Q4 = 0, the critical value ofm2 can be obtained,

say,m2 = m2cr .
Lemma 6.1: The system undergoes a Hopf bifurcation at m2 = m2cr if and only if

(i) f1(m2cr ) = f2(m2cr ),
(ii)

[
M(m2)K(m2)− N(m2)L(m2)

]
m2=m2cr

�= 0,

where

f1(m2) = Q1(m2)Q2(m2)Q3(m2), f2(m2) = Q2
3(m2)+ Q2

1(m2)Q4(m2),
K(m2) = 4β31 (m2)− 12β1(m2)β

2
2 (m2)+ 3

(
β21 (m2)− β22 (m2)

)
Q1(m2)

+ 2β1(m2)Q2(m2)+ Q3(m2),
L(m2) = 12β21 (m2)β2(m2)− 4β32 (m2)+ 6β1(m2)β2(m2)Q1(m2)+ 2β2(m2)Q2(m2),

M(m2) = β31 (m2)Q
′
1(m2)− 3β1(m2)β

2
2 (m2)Q

′
1(m2)+ (

β21 (m2)− β22 (m2)
)
Q

′
2(m2)

+ β1(m2)Q
′
3(m2),

N(m2) = 3β21 (m2)β2(m2)Q
′
1(m2)− β32Q

′
1(m2)+ 2β1(m2)β2(m2)Q

′
2(m2)

+ β2(m2)Q
′
3(m2);

β1(m2) and β2(m2) are real and imaginary parts, respectively, of a pair of eigenvalues for
all m2 ∈ (m2cr − ε,m2cr + ε).

The condition (ii) is equivalent to dg(m2)/dm2|(m2=m2cr ) �= 0. Thus, using numerical
methods, condition (i) can be verified by showing that the curves y = f1(m2) and
y = f2(m2) intersect at m2 = m2cr , whereas the condition (ii) can be verified by showing
that the tangent to the curve y = g(m2) at m2 = m2cr is not parallel to the m2 axis
(Siekmann, Malchow, & Venturino, 2008).
Corollary 6.1: The period τ of the bifurcating periodic orbits close tom2 = m2cr is given by

τ(m2cr ) = 2π

√
Q1(m2cr )

Q3(m2cr )
.



LETTERS IN BIOMATHEMATICS 127

6.1. Stability of bifurcating periodic solution

We investigate the orbital stability of the Hopf-bifurcating periodic solution using Poore’s
sufficient condition (Poore, 1976). The supercritical/subcritical nature of Hopf-bifurcating
periodic solution is determined by the positive/negative sign of the real part of�, respec-
tively, where

� = −alFlujumusbjbmb̄s + 2alFlujumbj(J
−1
E∗ )mrFrupuqbpb̄q

+ alFlujuk b̄j
[
(JE∗ − 2iω0)

−1]
kr F

r
upuqbpbq,

the repeated indices within each term imply a sum from 1 to 4, all the derivatives of Fl

are evaluated at the equilibrium E∗ with u1 = P, u2 = x, u3 = y, u4 = z, and JE∗ is the
Jacobian matrix of (2) calculated at E∗.

[
(JE∗)−1]

mr denotes the element in rowm, column
r of (JE∗)−1.

The left and right normalized eigenvectors of JE∗ with respect to the eigenvalues ±iω0
atm2 = m2cr are given by

a = ξ1

F2PF3xF4y

(
F2PF

3
xF

4
y , a2F

3
xF

4
y , a3F

4
y , a4

)
and

b = ξ2

F1xF2z F4y

(
F1xF

2
z F

4
y , b2F

2
z F

4
y , b3, b4F

4
y

)T
,

where ξ1 and ξ2 are complex numbers,

a2 = iω0 − F1P ,
a3 = F4y [(F1PF2x − F1xF

2
P − ω2

0)− iω0(F1P + F2x )],
a4 = ω2

0(F
1
P + F2x )− F3y (F

1
PF

2
x − F1xF

2
P − ω2

0)+ iω0{F1PF2x − F1xF
2
P − ω2

0 + F3P(F
1
P + F2x )},

b2 = iω0 − F1P ,
b3 = ω2

0(F
1
P + F2x )− F4z (F

1
PF

2
x − F1xF

2
P − ω2

0)+ iω0{F1PF2x − F1xF
2
P − ω2

0 + F4z (F
1
P + F2x )},

b4 = [ω2
0(F

1
P + F2x )− F4z (F

1
PF

2
x − F1xF

2
P − ω2

0)+ iω0{F1PF2x − F1xF
2
P − ω2

0 + F4z (F
1
P + F2x )}].

Using a.b = 1, we obtain ξ1ξ2.
If (�)m2=m2cr > 0, then the system (2) undergoes a supercritical Hopf bifurcation asm2

is increased through m2cr , so that the bifurcating periodic orbit is asymptotically orbitally
stable.

7. Numerical simulations

In this section, we investigate the effects of various parameters on the qualitative behaviour
of our system using the numerical approach of Bhattacharyya and Pal (2013) using
MATLAB. The default set of parameter values, mostly taken from Bhattacharyya and
Pal (2013), is given in Table 1. Under this set of parameter values, it is observed that the
system becomes locally asymptotically stable at E∗ (cf. Figure 1).

We will now verify the feasibility of the criteria of stability in Section 5.
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Table 1. Default parameter values used in the numerical analysis.

Parameters Description of parameters Default value Dimension

r Intrinsic growth rate of Algae 4 1/time
K Carrying capacity of the system 5 mass/volume
m1 Maximal uptake rate of Parrotfish on Algae 3 1/time
m2 Maximal uptake rate of adult Pterois volitans on Parrotfish 5 1/time
m3 Maximal uptake rate of adult Pterois volitans on juvenile Pterois volitans 5 1/time
a1 Half saturation const. for uptake of Algae by Parrotfish 2 mass/volume
a2 Half saturation const. for uptake of Parrotfish by adult Pterois volitans 2 mass/volume
a3 Half saturation const. for uptake of juvenile Pterois volitans by adult Pterois volitans 3 mass/volume
α1 Growth efficiency of Parrotfish on Algae 0.3 –
α2 Growth efficiency of adult Pterois volitans on Parrotfish 0.6 –
α Growth efficiency of adult Pterois volitans growth on juvenile Pterois volitans 0.4 –
D1 Death rate of Parrotfish 0.3 1/time
D2 Death rate of juvenile Pterois volitans 0.2 1/time
D3 Death rate of adult Pterois volitans 0.1 1/time
1
μ Total time spent by Pterois volitans in its juvenile stage 0.2 time
h Maximal harvesting rate of adult Pterois volitans 2 1/time
c Half saturation constant for harvesting of adult Pterois volitans 1 1/time
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Figure 1. Time series analysis of the system for the parameters given in Table 1, the system has a stable
focus at E∗.

Example 1: If the maximal harvesting rate of adult P. volitans is increased (viz. h = 2.5),
and all other parameters are as given in Table 1, then we obtain

λ < 1 and 0.0503 = λ(1 − λ)

a2

√
cμm2

(μ+ D2)(cD3 + h)
− 1 < D1 <

m1

2(1 − λ)
= 0.1569,

satisfying the condition of stability at E2 = (0.2828, 2.7046, 0, 0) as given in Lemma 5.3. E2
is a stable focus with eigenvalues −0.0477, −1.9023 and −0.1195± i0.2396 (cf. Figure 2).
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Figure 2. Time series analysis of the system for h = 2.5 and other parameter values as given in Table 1,
the system has a stable focus at E2.
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Figure 3. Phase plane diagram of the system projected on Pxz-space for D1 = 0.85 and other parameter
values as given in Table 1, the system has a stable node at E1.

Example 2: If the death rate of Parrotfish is increased (viz. D1 = 0.85), leaving all other
parameters unaltered, then the system approaches a stable node at E1 = (1, 0, 0, 0), with
eigenvalues −1, −0.0185, −0.525 and −1.3. In this case, we obtain D1 > m1/(a21 + 1) =
0.194, satisfying Lemma 5.2 (cf. Figure 3).

Example 3: Under the set of parameter values are as given in Table 1, the system is locally
asymptotically stable at E∗ = (0.5803, 1.5968, 0.095, 0.2801), with eigenvalues −1.7192,
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Figure 4. Phase plane diagram of the system projected on Pxz-space form1 = 2.5 and other parameters
as given in Table 1 with initial value I1. The system is oscillatory around E∗ (in black). For m1 = 1.2
and other parameters as given in Table 1, the system is locally asymptotically stable at E2 (in blue). For
m1 = 0.5 and other parameters as given in Table 1, the system is locally asymptotically stable at E1 (in
red).
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Figure 5. Phase plane diagram of the system projected on Pxz-space form2 = 7 and other parameters
as given in Table 1 with initial value I1 = (0.1, 1, 0.01). The system is oscillatory around E∗ (in blue). For
m2 = 7 and h = 3.2, other parameters as given in Table 1, the system is locally asymptotically stable at
E2 (in black).

−0.3302 and −1.0076 ± i0.1422. In this case we obtain

λ < 1 and D1 ≤ λ(1 − λ)

a2

√
cμm2

(μ+ D2)(cD3 + h)
− 1 = 0.093,

satisfying the analytical conditions of persistence as given in Lemma 5.4. We also obtain

Q1 = 1.2282, Q1Q2 − Q3 = 1.2282, and Q1Q2Q3 − Q2
3 − Q2

1Q4 = 0.0126,
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Figure 6. Time series analysis of the system form2 = 7 and other parameter values as given in Table 1,
the system is oscillatory around E∗ (solid). Form2 = 7, a3 = 0.5 and other parameter values as given in
Table 1, the system is LAS at E∗ (dotted).

4.6 5 5.15 5.2 5.25 5.5 6
0.02

0.04

0.06

0.08

0.1

0.12

2

 f 1(m
2), 

f 2(m
2)

4.6 5 5.15 5.2 5.25 5.5 6
−0.04

−0.02

0

0.02

0.04

0.06

2

 g
(m

2) =
 f 1(m

2) −
 f 2(m

2)

 f
2
(m

2
)

 f
1
(m

2
) = f

2
(m

2
)

 g(m
2
)

 f
1
(m

(a)

(b)

2
)

Unstable at E*

(Q
1
Q

2
Q

3
 < Q

3
2 + Q

1
2Q

4
)

Stable at E*

(Q
1
Q

2
Q

3
 > Q

3
2 + Q

1
2Q

4
)

Figure 7. The relative position of f1(m2), f2(m2) and g(m2) showing that a Hopf bifurcation occurs when
the two curves intersect atm2cr = 5.2.

satisfying the analytical conditions of stability at E∗ as given in Lemma 5.6 (cf. Figure 1).
Example 4: For m1 = 2.5, the system is oscillatory around E∗ (cf. Figure 4). When we
decrease the value of m1 (viz. m1 = 1.2), the system becomes stable at E2. On further
lowering the value ofm1 (viz.m1 = 0.5), we find that the system stabilizes at E1.
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Figure 8. The system undergoes a supercritical Hopf bifurcation asm2 is increased throughm2cr = 5.2
with other parameter values as given in Table 1.

Example 5: We observe that the system is oscillatory around E∗ for m2 = 7 (cf.
Figure 5). In this case by increasing the maximal harvesting rate of adult P. volitans (viz.
h = 3.2), the system becomes locally asymptotically stable at E2.
Example 6: For high invasiveness of adult P. volitans, the system becomes oscillatory
around E∗ (cf. Figure 5). When the value of a3 is lowered (viz. a3 = 0.5), the system
stabilizes at E∗ (cf. Figure 6).

7.1. Hopf bifurcation

We observe that the system becomes oscillatory when the maximal uptake rate of adult
P. volitans is high. We therefore considerm2 as a bifurcation parameter. For m2 < 5.2 we
see that f1(m2) > f2(m2), satisfying the Routh–Hurwitz condition, so that the system is
locally asymptotically stable at E∗. For m2 > 5.2 we see that f1(m2) < f2(m2) and so the
system is unstable atE∗ (cf. Figure 7(a)).Moreover, we observe that the tangent to the graph
of g(m2) atm2 = 5.2 is not parallel to them2 axis (cf. Figure 7(b)), satisfying the condition(
dg/dm2

) |(m2=5.2) �= 0. In Figure 8, we observe that a supercritical Hopf bifurcation
occurs when the parameterm2 is increased through the critical valuem2cr = 5.2.

8. Discussion

We have considered a tri-trophic food chain model consisting of algae and Parrotfish in
the first two trophic levels, respectively, while juvenile and adult P. volitans reside in the
third trophic level. We analyse the effect of predation with stage-structured cannibalism
and study the effect of harvesting of the adult P. volitans on the dynamics of the system.
The threshold values for the existence and stability of various steady states of the system
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are worked out. In order to keep sustainable development of the coral reef ecosystem, it is
desirable to have a positive equilibrium which is asymptotically stable. Keeping this view
in mind, we have established some strong criteria for existence of the positive equilibrium.
We studied bifurcation with respect to the parameter representing the invasiveness of
adult P. volitans in the system. The critical parameter value at which bifurcation occurs
is determined to preserve the system under consideration in its natural state. We observe
that when the maximal uptake rate of adult P. volitans on Parrotfish crosses a certain
critical value, the system enters into Hopf bifurcation that induces oscillation around the
positive equilibrium. The stability as well as the direction of Hopf bifurcation near the
interior equilibrium is obtained by applying the algorithm due to Poore (1976). We have
also provided numerical simulations to substantiate our analytic results. From analytical
and numerical observations we obtain the following conclusions:

(i) If the growth rate of Parrotfish is low, then the Parrotfish would become extinct.
(ii) Higher mortality rate of Parrotfish can lead to the extinction of both Parrotfish

and P. volitans from the system. This represents the fact that rapid elimination of
herbivorous fish can be fatal for the coral reef ecosystem.

(iii) High rate of predation of adult P. volitans on Parrotfish induces oscillation around
thepositive equilibrium leading todynamic instability, representing thephenomenon
of ecological imbalance due to high invasiveness of P. volitans in the coral reef
ecosystem. This dynamic instability can be controlled by increasing the rate of
harvesting of adult P. volitans. Moreover, a high harvesting rate of adult P. volitans
can eliminate P. volitans from the system.

(iv) The increase of cannibalism of P. volitans stabilizes the system even with high
invasiveness of adult P. volitans.

Throughout the article we focus on searching for a suitable way to control the growth of
algae, Parrotfish and P. volitans, and maintain a stable coexistence of all the species. Our
numerical simulations suggest that the maximal harvesting rate of adult P. volitans can be
used as a control parameter to maintain the stability of the system at the coexistence steady
state.

Our results are based on a model that has no growth equation for the corals. It would
be interesting to incorporate corals in our system to study the dynamics of coral reefs in
the presence of invasive P. volitans.
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Appendix 1.

A.1. Proof of Lemma 3.1

Proof: From the first two equations of the system (2) we have,

P(t) = P(0)e
∫ t
0

(
1−P− m1xP

a21+P2

)
dτ

and x(t) = x(0)e
∫ t
0

(
α1m1P

2

a21+P2
− m2xz

a22+x2
−D1

)
dτ
.

This implies, if P(0) > 0 and x(0) > 0, then P(t) > 0 and x(t) > 0 for all t > 0. Hence, if y(t) > 0
and z(t) > 0 for all t, it may be concluded that all the solutions of the system (2) are always positive.

�

A.2. Proof of Lemma 4.1

Proof: Since dP/dt ≤ P(1−P), it follows that for ε > 0, there exists tε > 0 such thatP(t) ≤ 1+ε for
all t ≥ tε . We have d�(t)/dt < 1+ ε−D�(t) for all t ≥ tε , where�(t) = P(t)+ x(t)+ y(t)+ z(t)
and D = min{1,D1,D2,D3}. Let u(t) be the solution of du/dt + uD = 1, satisfying u(0) =
�(0). Then u(t) = 1/D + (

�(0)− 1/D
)
e−tD → 1/D as t → ∞. By comparison, it follows that

P(t)+ x(t)+ y(t)+ z(t) < 1/D + ε, for all t ≥ tε , proving the Lemma. �

A.3. Proof of Lemma 4.2

Proof: If possible, let limt→∞ P(t) = 0. Then if P(t) decreases monotonically to zero, there exists
T1 > 0 such thatP(t)+m1x(t)P(t)/(a21 + P2(t)) < 1 for all t > T1. This gives dP/dt > 0 for all t > T1,
contradicting to our assumption. Therefore, there exists 0 < p1 ≤ 1/D such that p1 ≤ P(t) ≤ 1/D
for all t > T1, where D = min{1,D1,D2,D3}. Since limt→∞ sup[x(t) + y(t) + z(t)] < 1/D, it
follows that there exists T2 > 0 such that x(t) ≤ M1, y(t) ≤ M2, and z(t) ≤ M3, where M1, M2,
M3 are finite positive constants satisfying M1 + M2 + M3 < 1/D. For t > max{T1,T2}, we have
dx/dt ≥ x

(
m1p21/(a

2
1 + p21)− D1 − m2M3/x

)
. This implies

(
dx/dt

) |x=x1≥ 0 for t > max{T1,T2},
where x1 = m2M3(a21 + p21)/{(m1 − D1)(p21 − λ2)}. It is also seen that, x1 > 0 if p1 > λ. This
implies that if p1 > λ is satisfied, then there exists T3 > 0 such that x1 ≤ x(t) ≤ M1 for all
t > T3. For t > T3, we have dy/dt ≥ m2x21z/(a

2
2 + x21) − (μ + D2)M2 − m3z, and so if z(t) >

M2(a22 + x21)(μ + D2)/{(m2 − m3)x21 − m3a22} holds, then dy/dt > 0 for all t > T3. Let there exist
z1 > 0 such that M2(a22 + x21)(μ + D2)/{(m2 − m3)x21 − m3a22} < z1 < M3. If z(t) ≥ z1 > 0, we
have dy/dt > 0 for all t ≥ T3, and so in this case, there exists T4 > 0 and 0 < y1 < M2 such
that y(t) ≥ y1 for all t ≥ T4. Therefore, for all t ≥ T4, if z(t) ≥ z1 holds, then y1 ≤ y(t) ≤ M2
and z1 ≤ z(t) ≤ M3. Let T = max{T1,T2,T3,T4}. Then for t > T , there exists finite positive real
numbers p1, x1, y1, z1,M1,M2,M3 with

M1 + M2 + M3 <
1
D
, p1 > λ, x1 = m2M3(a21 + p21)

(m1 − D1)(p21 − λ2)
and z1 >

M2(a22 + x21)(μ+ D2)

(m2 − m3)x21 − m3a22
,

such that p1 ≤ P(t) ≤ 1/D, x1 ≤ x(t) ≤ M1, y1 ≤ y(t) ≤ M2, and z1 ≤ z(t) ≤ M3. �

A.4. Proof of Lemma 4.3

Proof: (i) If m1 ≤ D1, then dx/dt < −a21xD1/(a21 + P2) < 0. This implies limt→∞ x(t) exists and
is non-negative. If possible, let limt→∞ x(t) = η > 0. Since dP/dt ≤ P(1 − P), it follows that for

http://dx.doi.org/10.1016/s0025-5564(00)00033-x
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ε > 0, there exists tε > 0 such that P(t) ≤ 1 + ε, for all t ≥ tε . Thus for all t ≥ tε , we get

x(t) ≤ x(tε)e
− a21D1(t−tε )

a21+(1+ε)2 → 0 as t → ∞,

this leads to a contradiction. Therefore, for m1 ≤ D1, we must have limt→∞ x(t) = 0, and so
limt→∞ y(t) = 0 = limt→∞ z(t).

(ii) Since limt→∞ sup[P(t) + x(t) + y(t) + z(t)] ≤ 1/D, it follows that for all ε > 0, there
exists tε > 0 such that P(t) ≤ 1/D + ε for all t ≥ tε . If m1 > D2, then for all t ≥ tε we have
dx/dt ≤ x(m1 − D1)

{
(1/D + ε)2 − λ2

}
/a21. Therefore, if λ > 1/D + ε, then dx/dt < 0 for all

t ≥ tε . This implies limt→∞ x(t) = 0, and consequently limt→∞ y(t) = 0 = limt→∞ z(t). �

A.5. Proof of Lemma 4.4

Proof: The Jacobian of the system (2) at (P, x, y, z) is given by

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − 2P − 2m1Pxa21
(a21+P2)2

− m1P2
a21+P2

0 0
2m1Pxa21
(a21+P2)2

m1P2
a21+P2

− D1 − 2m2xza22
(a22+x2)2

0 − m2x2
a22+x2

0 2m2xza22
(a22+x2)2

−μ− D2 − 2m3yza23
(a23+y2)2

m2x2
a22+x2

− m3y2

a23+y2

0 0 μ −D3 − ch
(c+z)2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Let us consider

H =
⎡
⎢⎣
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎦ .

Then we have

HJH =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − 2P − 2m1Pxa21
(a21+P2)2

− m1P2
a21+P2

0 0

− 2m1Pxa21
(a21+P2)2

− m1P2
a21+P2

+ D1 + 2m2xza22
(a22+x2)2

0 − m2x2
a22+x2

0 − 2m2xza22
(a22+x2)2

−μ− D2 − 2m3yza23
(a23+y2)2

m3y2

a23+y2
− m2x2

a22+x2

0 0 −μ −D3 − ch
(c+z)2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

All the off-diagonal elements of the matrix HJH are negative if m3y2/(a23 + y2) < m2x2/(a22 + x2).
Therefore, ifm2 > m3 and

x(t) > x1 >

√
m3a22

m2 − m3
for large t,

all the off-diagonal elements of HJH are negative, and consequently, the system (2) is
competitive. �

A.6. Proof of Lemma 5.1

Proof: The Jacobian matrix at E0 is

V(E0) =

⎡
⎢⎢⎣
1 0 0 0
0 −D1 0 0
0 0 −μ− D2 0
0 0 μ −D3 − h

c

⎤
⎥⎥⎦ .
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At E0, the eigenvalues of the Jacobian matrix are 1, −D1, −μ− D2 and −D3 − h/c. Therefore, the
system (2) is always unstable at E0. �

A.7. Proof of Lemma 5.2

Proof: The Jacobian matrix at E1 is

V(E1) =

⎡
⎢⎢⎢⎣

−1 − m1
a21+1

0 0
0 m1

a21+1
− D1 0 0

0 0 −μ− D2 0
0 0 μ −D3 − h

c

⎤
⎥⎥⎥⎦ .

The eigenvalues of the Jacobian matrix evaluated at E1 are −1, −μ−D2, −D2 − h/c andm1/(a21 +
1)−D1. Therefore, the system (2) is locally asymptotically stable atE1 if and only ifD1 > m1/(a21+1).

�

A.8. Proof of Lemma 5.3

Proof: The Jacobian matrix at E2 is

V(E2) =

⎡
⎢⎢⎢⎢⎢⎣

(1−λ)(2D1−m1)
m1

−D1 0 0
2D1(1−λ)a21

m1λ2
0 0 − m2λ

2(1−λ)2
a22D

2
1+λ2(1−λ)2

0 0 −μ− D2
m2λ

2(1−λ)2
a22D

2
1+λ2(1−λ)2

0 0 μ −D3 − h
c

⎤
⎥⎥⎥⎥⎥⎦ .

The eigenvalues are obtained from the two quadratic equations:

η2 − η
(1 − λ)(2D1 − m1)

m1
+ 2D2

1(1 − λ)a21
m1λ2

= 0 (A1)

and

η2 + η

(
μ+ D2 + D3 + h

c

)
+ (μ+ D2)

(
D3 + h

c

)
− μm2λ

2(1 − λ)2

a22D
2
1 + λ2(1 − λ)2

= 0. (A2)

All the roots of Equation (A1) and Equation (A2) have negative real parts if

λ(1 − λ)

a2

√
cμm2

(μ+ D2)(cD3 + h)
− 1 < D1 <

m1

2(1 − λ)
.

Therefore, under the aforesaid conditions, the system (2) is locally asymptotically stable at E2. �

A.9. Proof of Lemma 5.4

Proof: In order to prove the persistence of the system,we shall show that all the boundary equilibria
of the system are repellers. It is observed that the system is always unstable atE0. IfD1 ≤ m1/(a21+1),
then the system is unstable at E1. The system is unstable at E2 if

D1 ≤ λ(1 − λ)

a2

√
cμm2

(μ+ D2)(cD3 + h)
− 1 or D1 ≥ m1

2(1 − λ)
.
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Sincem1/(a21 + 1) < m1/{2(1 − λ)}, it follows that all the boundary equilibria are repellers if

D1 ≤ λ(1 − λ)

a2

√
cμm2

(μ+ D2)(cD3 + h)
− 1.

We have also proved that the system is bounded. Therefore, the system is persistent under the
aforesaid conditions. �

A.10. Proof of Lemma 5.5

Proof: The second additive compound matrix of the Jacobian of the system (2) is

J(2) =

⎡
⎢⎢⎢⎢⎢⎣

FP + Gx 0 Gz 0 0 0
Hx FP + Hy Hz Fx 0 0
0 μ FP + Iz 0 Fx 0
0 GP 0 Gx + Hy Hz −Gz
0 0 GP μ Gx + Iz 0
0 0 0 0 Hx Hy + Iz

⎤
⎥⎥⎥⎥⎥⎦ .

Let |X|∞ = supi |Xi|. The logarithmic norm μ∞(J(2)) of J(2) endowed by the vector norm |X|∞ is
the supremum of the following:

FP + Gx + |Gz |, FP + Hy + |Fx| + |Hx| + |Hz |, FP + Iz + μ+ |Fx|,
Gx + Hy + |GP | + |Gz | + |Hz |, Gx + Iz + μ+ |GP |, and Hy + Iz + |Hx|.

Now, (FP + Gx + |Gz |)E∗ < 0 if

1 + m1 + m2 < D1 + 2P∗ + 2m1P∗x∗a21
(a21 + P∗2)2

+ 2m2x∗z∗a22
(a22 + x∗2)2

= L1,

(FP + Hy + |Fx| + |Hx| + |Hz |)E∗ < 0 if

1 + m1 + m2

(
1 + 2z∗

x∗

)
+ m3 < 2P∗ + μ+ D2 + 2m3y∗z∗a23

(a23 + y∗2)2
+ 2m1P∗x∗a21
(a21 + P∗2)2

= L2,

(FP + Iz + μ+ |Fx|)E∗ < 0 if

1 + μ+ m1 < 2P∗ + D3 + 2m1P∗x∗a21
(a21 + P∗2)2

+ ch
(c + z∗)2

= L3,

(Gx + Hy + |GP | + |Gz | + |Hz |)E∗ < 0 if

m1

(
1 + 2x∗

P∗

)
+ 2m2 + m3 < μ+ D1 + D2 + 2m2x∗z∗a22

(a22 + x∗2)2
+ 2m3y∗z∗a23
(a23 + y∗2)2

= L4,

(Gx + Iz + μ+ |GP |)E∗ < 0 if

m1

(
1 + 2x∗

P∗

)
+ μ < D1 + D3 + 2m2x∗z∗a22

(a22 + x∗2)2
+ ch
(c + z∗)2

= L5,
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and (Hy + Iz + |Hx|)E∗ < 0 if

2m2z∗

x∗ < μ+ D1 + D3 + ch
(c + z∗)2

+ 2m3y∗z∗a23
(a23 + y∗2)2

= L6.

Therefore, if 1 + μ + m1
(
1 + 2x∗/P∗) + m2

(
1 + 2z∗/x∗) + m3 < L, then μ∞(J(2)(E∗)) < 0,

where L = min{L1, . . . , L6}. As a direct application of the method adopted by Li and Muldowney
(1993), we can say that under the aforesaid conditions, the system (2) has no periodic solutions
around E∗. �

A.11. Proof of Lemma 6.1

Proof: The necessary and sufficient conditions for a Hopf bifurcation to occur atm2 = m2cr are

(i) f1(m2cr ) = f2(m2cr ),
(ii) Re

[
dλj
dm2

]
m2=m2cr

�= 0,

whereλj (j = 1, . . . , 4) are the roots ofG(λ) = 0. Let g : (0,∞) → R be a continuously differentiable
function ofm2 defined by g(m2) = f1(m2)− f2(m2). The existence ofm2cr is ensured by solving the
equation g(m2cr ) = 0. Atm2 = m2cr , the characteristic equation G(λ) = 0 can be expressed as

(
λ2 + Q3(m2cr )

Q1(m2cr )

)(
λ2 + λQ1(m2cr )+ Q1(m2cr )Q4(m2cr )

Q3(m2cr )

)
= 0. (A3)

Equation (A3) has the pair of purely imaginary roots λ1 = iω0 and λ2 = λ̄1, where ω0 =√
Q3(m2cr )/Q1(m2cr ). If λ3 and λ4 are not real, then Reλ3 = −Q1(m2cr )/2 < 0. If λ3 and λ4

are real, then λ3 + λ4 < 0 and λ3λ4 = Q4(m2cr )/ω
2
0 > 0. This implies λ3, λ4 < 0. Since g is a

continuously differentiable function of m2, there exists an open interval (m2cr − ε,m2cr + ε), such
that λ1(m2) = β1(m2)+ iβ2(m2) and λ2(m2) = β1(m2)− iβ2(m2) for allm2 ∈ (m2cr −ε,m2cr +ε).
Therefore, for allm2 ∈ (m2cr − ε,m2cr + ε), dG(λ)/dm2 = 0 gives

dλ
dm2

= −{M(m2)K(m2)− N(m2)L(m2)} + i {N(m2)K(m2)− M(m2)L(m2)}
K2(m2)+ L2(m2)

.

Hence, if
[
M(m2)K(m2)− N(m2)L(m2)

]
m2=m2cr

�= 0 holds, then Re
(
dλj/dm2

)
m2=m2cr

�= 0, and
consequently, the system (2) undergoes a non-degenerate Hopf bifurcation atm2 = m2cr . �
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