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ABSTRACT

This article provides an overview of the Akaike and Bayesian
Information Criteria as applied to the setting of deterministic
modelling, with the perspective that this may be a useful tool for
biomathematics researcherswhose primary interests lie in the analysis
of compartmental models. We additionally examine a wide range
mechanistic and parameter assumptions in the cholera literature
through the unifying lens of model selection criteria. Five models for
cholera are considered using multiple model selection formulations,
and implications for choleramodelling and formodel selection criteria
are discussed.
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1. Introduction

We have two primary goals in this work: to share with the biomathematics community
a statistically valid framework for the comparison of deterministic models and, as a case
study, to express some particular mechanistic and parameter-related concerns that we
have gleaned from many years of cholera study. To this end, we put forward a method
for model comparison and contrast this technique for model selection with others by
measuring them against data from the first year of the cholera outbreak that followed
the 2010 Haitian earthquake. First, in Section 2 we introduce and discuss the Akaike
Information Criterion (AIC) as a basis for model comparison. This section is written for a
diverse group of researchers who are consumers of model selection theory, as opposed to
those whose sole research focus may bemodel assessment. Additionally, we provide a brief
overview of the Bayesian Information Criteria (BIC). Section 3 begins with a thorough
review of how the spread of cholera might be modelled from a mechanistic viewpoint,
and highlights disagreements in the literature regarding key parameter assumptions. Here
we also describe five models to be compared using the AIC and BIC criteria against data
from the recent outbreak in Haiti. In Section 4, we share some methods and results from
prior model selection investigations for cholera, as well as an investigation not intended
for cholera that provides a different point of view for model selection methodology.
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Finally, we discuss the methods and results from our model selection efforts for cholera in
Section 5, and provide a brief conclusion in Section 6.

2. An introduction tomaximum likelihood estimators and AIC

Model formulation involves judgement, experience, trial and error. The validity of amodel
should (i) be consistent with knowledge of the system under study, (ii) extrapolate to
related sets of data and (iii) have reasonable mathematical and statistical properties. Often
subject-matter considerations suggest a stochastic argument for a range of suitablemodels.
At other times, however, an analysis can only be realistically completed for one of several
competing models, and hence a basis for the selection of a single model is needed.

A precept that is usually implied but is often unstated is the principle of parsimony: ‘it
is vain to do with more what can be done with fewer’. That is, we should prefer simpler
models over more complex ones that fit our data about equally well. But what exactly does
this mean? If we have models with one, two and three parameters and respective errors
of, say, 100, 2 and 1 in fitting the data, then the second clearly improves on the first, but
do the second and the third perform ‘about equally well’? Model selection criteria are
intended to balance the increased model complexity with any improvement in fit to make
this determination.

Before we scrutinize various criteria for model selection from a statistical point of view,
wemust first define theword ‘model’.Do twodifferent parameter values applied to the same
mechanistic structure define two different models, or are two models viewed as different
because they have different mathematical structures, regardless of the particular values of
the parameters within each model? Usually, when the term ‘model’ is used in a statistical
article about model selection, it refers to a probability distribution (population) from
which data can be randomly sampled, and the question is, ‘From which true probability
distribution were the data that I observed sampled?’ However, those of us who work with
mechanistic models in systems biology typically employ a different meaning for the term
‘model’ – mostly, we consider a system of differential equations paired with an appropriate
parameter set to be a ‘model’. In this article we will use ‘model" to refer to a mathematical
structure paired with a particular set of parameters, and we will refer to a ‘family’ of models
as a mathematical structure whose family members are equipped with differing feasible
parameter choices.

A second point to be considered when assessing the relative values of two families of
models is that the underlying mechanistic modelling assumptions may be wildly different
between models, making the two options not equally suited for a particular application.
A third important point is that we may not wish to treat the models as the ‘most true’
from an application viewpoint after all. The best example of this would be neural network
models, where the fitted model is a ‘black box’, whose contents have no intrinsic interest
or meaning but are merely used for predictions.

In this introduction, we seek to reconcile our systems biology point-of-view with the
statistical model comparison point-of-view, and to define a statistically accurate process
under which several mechanistic models for systems may be compared. Given a particular
data sample and asked to find the best approximating model, we encounter two types of
errors: (i) an error caused by the choice of the family of models, and (ii) an error due to
the estimated parametrization of the model family. This concept can be formulated using
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the concept of Overall Risk, where

overall risk = risk of modelling + risk of estimation.

Often, during the course of the analysis of data, we may discover that the particular form
of the specified model is not appropriate for the data at hand. In this case, the risk of
modelling will be a larger portion of the overall risk due to the incorrect specification of
the model. In fact, the correct specification of the model is a necessary but by no means a
sufficient condition for it to be selected. For a given model family, the risk of estimation is
encountered while we estimate the true parameter(s). When the true parameter values are
not included in the search space, then a bias is caused. Our goal in model selection is to
minimize the overall risk, and this is where model assessment measures are used.

2.1. Formulation of the AIC for deterministic model comparison

In the following paragraphs, we will introduce the AIC for model selection. Before we
explore the details, let us view the numerical value assigned to the AIC intuitively:

AIC = lack of fit + penalty for model complexity. (1)

The lack of fit term, as the name implies, decreases when the model is more likely to
describe the data. In comparison, the penalty for complexity, determined by the number of
free parameters within the model, increases for more complicated models. The number of
free parameters is considered to be a measure of complexity, and is a compensation for the
bias in the lack of fit when the maximum likelihood estimates are used. Note that a poor
model choice (risk of modelling) will increase the lack of fit if it describes the data poorly,
or may instead/additionally have a high penalty for complexity. If a model’s parameters
are poorly estimated (risk of estimation), this would cause the lack of fit to increase as
well. Thus, AIC demands a compromise between the maximized likelihood (the lack of fit
component) and the number of free parameters estimated within the model (the penalty
component). Hence, when AIC is applied to models from the same family, the penalty for
complexity has no variability. On the other hand, the number of parameters become an
important factor when comparing models with varying numbers of parameters.

Whenwe are comparingmodels by the simple expedient of fitting them to data, wemust
first accept that there are no true models. Indeed, models only approximate reality. The
problem is then to determine which model would best approximate reality, given the data
we have recorded. In other words, the best we can do is tominimize the loss of information.
In itself, the value of the AIC for a given data-set has nomeaning. It becomes useful when it
is compared to the AIC of a collection of predeterminedmodels, the model with the lowest
AIC being the best model among all models specified for the data at hand. If only poor
models are considered, then AIC will select the best of the poor models. For family of non-
deterministic models, as the sample size gets large, the ability to choose ‘good’ parameters
improves, and first term in the AIC formulation – the likelihood – increases but the penalty
term does not, since the penalty only depends on the (fixed) number of parameters. This
means that the penalty term has little effect if n, the number of points in the data-set, is
large. On the one hand, it is intuitively clear that a complex model cannot be justified
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to describe a small amount of data; however, as the size of the data increases, objections
have been raised that minimizing AIC may not point to the correct model (Bhansali &
Downham, 1977; Schwarz, 1978; Woodroofe, 1982). Therefore, critics say, the importance
of AIC as a model selection criterion should not be exaggerated (Forster, 1999; Hannan,
1986).

We now wish to investigate the AIC methodology from a statistician’s point of view so
that we may derive how AIC may properly be applied in a deterministic setting. Suppose
that we have a random sample Y1, . . . ,Yn from the true unknown model g(y). Given this
random sample of size n from the true distribution defined by g and a specific family of
candidate models f (y; θ), we may calculate the AIC. The work begins by making statistical
inferences about the parameters for the model family f . Hence, we proceed by fitting the
candidate model f (y; θ) by maximizing the conditional probability that f describes the
data, given that the parameter is θ ; i.e. we maximize the likelihood L(θ) = ∏

f (yi; θ).
Now, let θ̂ denote the corresponding value of θ that maximizes the likelihood L(θ). With
the optimal parameter θ̂ for the family f selected, an assessment of the quality of the
constructed model needs to be made. The form that the AIC described first in Equation
(1) takes in this context is

AIC = −2 lnL(θ̂) + 2p, (2)
where L(θ̂) is the maximized likelihood function and p is the number of free parameters
in the model. We note that in this formulation, the coefficients in front of the terms in the
summation simply weight the terms equally; however, in the following formulation (3),
equal weighting would result in the selection of an overly-simple model. At this point of
the modelling process, we have simply considered a single family of models, and, as we
described previously, AIC is not yet a valuable measure. When the AIC value is calculated
for multiple model families, the chosen model is the model-parameter combination with
the minimum AIC. The negative sign in Equation (2) ensures that higher likelihood
contributes to a smaller AIC, while an increased penalty contributes to a higher AIC and
the factor 2 puts the differences for AIC on the same scale as ‘likelihood ratio statistics’,
another method for model comparison.

In biomathematics settings, where compartmental models such as Susceptible-Infected-
Removed (SIR) are prevalent, the implementation of AIC as a model ‘quality’ measure
fundamentally differs from its implementation in describing statistical models, where the
variation is partially due to the randomness inherent in data being drawn fromapopulation
(distribution). In the latter setting, the probability density function (pdf), and hence the
likelihood function, specifies the probability of observing the true data vector given a
particular parameter vector. Given a set of parameter values, the corresponding pdf will
show that some data are more probable than other data. In reality, however, we have
already observed the data, and hence we are faced with the inverse problem: given the
observed data and amodel of interest, find one pdf, among all the probability densities that
the model describes, that is most likely to have produced the data. To solve this inverse
problem, we define the likelihood function by reversing the roles of the data vector and the
parameter vector. The principle of maximum likelihood estimation states that the desired
probability distribution is the one that makes the observed data ‘most likely’.

However, when fitting a deterministic compartmental model, the very idea of drawing a
random sample from a prespecified distribution is no longer applicable. The basic founda-
tion of a compartmental model selection process is the determination of the parameters of
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a model based on how well they estimate the response variable of interest, and not on the
likelihood of observing the parameters. In the light of our earlier discussion on how AIC
works, consider a given family of deterministic models, such as the epidemiological SIR
family, and a given data-set which the family is to describe when paired with appropriate
parameter choices. Given the data-set, and a particular set of parameter estimates, model
fitness then corresponds to the prediction error of the response variable (the output variable
of interest). Clearly, different sets of parameter estimates will result in different prediction
errors.

Thus, referring to our intuitive AIC definition in Equation (1), the lack of fit for a
deterministic model can be measured by the residual sum of squares (RSS) between the
model prediction and the observed data. Our goal in parameter estimation is to minimize
the error of fit, and this is certainly different from the traditional likelihood approach,
where we try to maximize the joint probability of a sample being drawn from a particular
statistical population.

Now, let us assume that we are comparing several deterministic model families, such
as SIR versus SIRB (containing an environmental reservoir) from Section 3 below, so
that each model may potentially have a different number of parameters. We then add the
penalty for model complexity to the AIC formulation similar to the original formulation
given in Equation (2). When measuring the error of fit from a deterministic model, the
AIC can be computed by Burnham and Anderson (2002)

AIC = n ln
(
RSS
n

)
+ 2K . (3)

Again, RSS is the sum of the model prediction squared errors for a particular candi-
date model that was the winning member of its respective family, and K is the total
number of estimated parameters p plus 1, because the variance of the observed error is
considered to be an additional parameter for the penalty term. The division by n is by
convention and clearly the deletion of this term would simply translate all results equally.
As we mentioned following Equation (2), a different coefficient is needed for the lack of fit
term in Equation (3) versus in the likelihood formulation given in
Equation (2). First, since the minimum AIC should select the preferred model and a
decreased RSS already indicates an improved model, a negative sign would not
be appropriate. Second, the ‘balancing term’ must now be the number of observations,
and not 2 as in the previous AIC equation. As we will discuss in Sections 4 and 5, while
there is a mathematically equivalent ‘likelihood’ derivation to the measure of lack of fit in
Equation (3) above, the interpretation of likelihood in a traditional manner is not
supported.

In Section 5, we will compare several implementations of the formulation given in
Equation (3) with varying approaches to measuring the lack of fit. In the same manner,
we will consider a likelihood formulation similar to that in Equation (2). Finally, we
will examine an altogether different comparison measure that is briefly described in the
following section.
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2.2. AIC versus BIC for biological models

In the previous section we explained the framework for the AIC. Another tool too may
prove useful in model comparison is the BIC. BIC was derived to provide a consistent
estimator of the order/dimension of the true model. While the AIC seeks to measure
the amount of information lost when a function f is used to approximate the true data
generating function g , BIC assumes that one, true, fixed model exists within the set of
candidate models, and that as the sample size n increases, the probability of selecting the
true model approaches 1. However, oftentimes the sample size required for the consistent
criteria to point to the true model with a reasonably high probability must be very large
(in the thousands) (Burnham & Anderson, 2002). Thus, Burnham and Anderson explain
that the primary assumptions needed for BIC comparisons do not apply in biological
sciences or any other ‘noisy’ science (Burnham & Anderson, 2002). Nonetheless, some
in mathematical ecology do consider the BIC in evaluating models. We will discuss a
contrasting viewpoint to the utility of BIC in Section 4.4 by presenting equations for BIC
in several contexts, and investigate the value of BIC results in Section 5.

3. Case study: multiple models for a cholera outbreak

3.1. Amechanistic consideration of the spread of cholera

The inspiration for the current investigation has its origins in a desire to improve and val-
idate several mechanistically-driven models for cholera. With recent significant outbreaks
in Zimbabwe and later Haiti, there has been much progress in the development of useful
cholera models. The ultimate goal of these modelling efforts is, of course, to understand
the dynamics of a cholera outbreak better so that we can greatly reduce the morbidity to
be incurred in future outbreaks.

Much is known about the complex microbiological and ecological details that underlie
a typical cholera outbreak (Anh et al., 2011; Durham et al., 1998; Glass et al., 1982; Kaper,
Morris, & Levine, 1995; Longini et al., 2002; Merrell et al., 2002; Naficy et al., 1998; Nelson,
Harris, Morris, Calderwood, & Camilli, 2009; Pollitzer, 1959; Qureshi et al., 2006; Reyburn
et al., 2011; Shultz et al., 2009;World Health Organization, 2010b). At the same time, these
outbreaks keep occurring in developing nations, where careful disease surveillance is not
possible. Possibly due to the limited data available to modellers, it is difficult to justify the
mathematical use of a complexmechanistically-drivenmodel, because accurate and unique
parameterizations for thesemodels cannot be obtained. Themodelling literature contains a
spectrum of deterministic models from very simple to more complex structures (Andrews
& Basu, 2011; Eisenberg, Robertson, & Tien, 2013; Hartley, Morris, Jr., & Smith, 2005;
King, Ionides, Pascual, & Bouma, 2008; Mukandavire et al., 2011; Miller Neilan,Schaefer,
Gaff, Fister, & Lenhart, 2010; Rinaldo et al., 2012; Tien & Earn, 2010; Tuite et al., 2011).
We note that some researchers complement a relatively simple deterministic model with
complex spatial considerations and migration.

Thus, due to our limitations in obtaining accurate data, there is some disconnect
between our mechanistic understanding of how cholera spreads and the models we use
to describe the spread. There is tremendous disagreement throughout both kinds of
research, biological and mathematical, about what parameter values are realistic and what
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modelling assumptions are important. We will explore some of these disagreements, and
then introduce several candidate models for cholera.

Generally, cholera enters a human population through the ingestion of food or water
that has been contaminated by the bacteriumV. cholerae. The vibrios colonize in the small
intestine for 12–72 h, and those humans who experience symptomatic infections then shed
an enormous number of vibrios through diarrhoea which can last 1–2 weeks. The infection
leads to rapid death without hydration therapy, which is inexpensive and easily applied in
all but the most under-developed settings (Nelson et al., 2009). Initial cases of cholera in
a population can be caused by the chance ingestion of vibrios that lurk indefinitely in the
environment ofmany affected regions, or that are imported from asymptomatic visitors, as
may well be the case in Haiti with the Nepalese peacekeepers (Piarroux et al., 2011). After
the vibrios enter the human population, there is a human-environmental amplification of
the disease in regions without adequate sanitation, as vibrios that have been shed from
humans in turn contaminate the water that is used for drinking and cleaning (Nelson et al.,
2009). This amplification is additionally powered by a 700-fold increase in the virulence
of the bacteria in its first five or so hours after leaving the human intestine (Merrell et al.,
2002). It is thus compelling to consider a model for cholera that attempts to describe the
human-environmental disease amplification, as well as one that addresses the importance
of freshly shed bacteria in the spread of the disease.

As we mentioned earlier in this section, only some humans will have symptomatic
infections, and the proportion of humans with severe infections depends on the bacterial
biotype (Kaper et al., 1995) and perhaps other possible factors. It is known that the degree
of susceptibility depends on genetic factors (Nelson et al., 2009) and probably on nutrition
aswell (Glass et al., 1989;Nelson et al., 2009). Additionally, it is believed that prior exposure
to the disease causes short-term complete or partial immunity (Longini et al., 2002; Nelson
et al., 2009), and Glass et al. (1982) in particular suggest that recovery from a symptomatic
cholera infection shouldprotect an individual froma subsequent severe infection. It is noted
that in areas with endemic disease, there are a smaller number of symptomatic cases than in
areas that are immunologically naïve (Nelson et al., 2009), and from this wemight infer that
in countries with frequent cholera outbreaks, residents may enjoy some partial immunity
if they re-encounter the bacteria. Even if one had accurate data representing the fraction
of infections that are asymptomatic, then the extent to which asymptomatic infections
result from a physiological predisposition versus prior exposure to cholera would not be
clear, except, of course, in an outbreak for which the existing populations have no prior
exposure. This latter point makes data from Haiti, whose residents had not experienced
cholera prior to 2010, especially important for a model study.

In addition to the lack of quantification available as to the cause of asymptomatic infec-
tions, additionally there is wide disagreement regarding the proportion and importance
of asymptomatic infections in any given cholera outbreak. There are excellent studies that
suggest the per cent of symptomatic individuals might be quite small (Centers for Disease
Control, xxxx; Glass et al., 1982; King et al., 2008), about 20% (Rinaldo et al., 2012; World
Health Organization, 2010a), or possibly 50% (Nelson et al., 2009). Thus, the proportion
of asymptomatic infections in an outbreak is not well understood, and additionally the
contribution of asymptomatic individuals to disease amplification is a subject of dis-
pute. Some researchers believe that the ‘silent shedders’ who are typically undocumented
in data collected during an outbreak are driving the disease spread (King et al., 2008;
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Table 1. Summary of all model variables used in one or more of the five models.

S(t) Susceptible humans
Ŝ(t) Susceptible with partial immunity
I(t) Cholera-infected humans
IS(t) Symptomatic infected humans
IA(t) Asymptomatic infected humans
R(t) Recovered humans
RS(t) Humans recovered from symptomatic infection
RA(t) Humans recovered from asymptomatic infection
N(t) Total population in all human compartments
B(t) Concentration of cholera vibrios in environment
BH(t) Concentration of high-infectious vibrios in environment
BL(t) Concentration of low-infectious vibrios in environment

Rinaldo et al., 2012), while others think that these shedders are of less consequence (Nelson
et al., 2009). For those with asymptomatic infections, does the lack of disease awareness
cause an increased contribution to the environmental and human-to-human spread of
the bacteria during the first one to two days of asymptomatic illness? Are those with
symptomatic infections effectively quarantined due to the evident need to observe strict
sanitation? Models may thus need to consider a range of bacterial contact rates for each
type of individual (symptomatic and asymptomatic) in order to account for the full range
of possible outcomes.

Another parameter which requires attention is the rate of bacterial non-viability. We
have observed that a majority of cholera models assume that the bacteria will not be viable
after 30 days in the environment; however, a recent commentary on cholera modelling
suggests that in fact persistence in the water may last anywhere from 3 to 40 days, and that
this change in assumption can cause an enormous difference in model predictions (Grad,
Miller, & Lipsitch, 2012).

With the discussion of disagreements within the literature in hand, we now explore
several model options.

3.2. Fivemodels for cholera

3.2.1. Model 1: SIR
We begin by suggesting a simple SIR model, depicted in Figure 1. The model assumes that
disease spread is density-dependent, and hence the transmission term includes division by
the total population size N . The SIR model is given by the system

dS
dt

= bN − dS − βI
SI
N

+ ωR

dI
dt

= −dI + βI
SI
N

− γ I

dR
dt

= −dR + γ I − ωR, (4)

where the meanings of the variables and parameters are given in Tables 1 and 2.We would
claim that this model has little mechanistic merit in its description of cholera transmission,
and we include it as a check of ourmodel comparison technique. In Section 5, we will show
that in some cases, the fit of this quite possibly inappropriate model to the data we have
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Table 2. Model parameters and range assumptions used in at least one of the five models described in
Sections 3.2.1–3.2.5. Section 3.3 provides some discussion about the values considered.

Parameters with fixed values
b Natural birth rate of humans .000072
d Natural death rate of humans .000044
κ Half-saturation constant of vibrios 106

κL Half-saturation constant of low-infectious vibrios 106

κH Half-saturation constant of hyperinfectious vibrios 106
700

Parameters chosen using Genetic Algorithms approach (Akman & Schaefer, 2015)
h Proportion of (symptomatic) infected hospitalized 0 − 1
p Prob. of new infected from S to be asymptomatic .001 − 1
βB Ingestion rate of vibrio from environment .001 – 0.5
βI person-to-person infectivity .001 − 0.5
βIS infectivity from symptomatic infected contact .001 − 0.5
βIA infectivity from asymptomatic infected contact .001 − 0.5
γ Cholera recovery rate for infecteds 1

14 − 1
7

γIS Cholera recovery rate for symptomatic infecteds 1
14 − 1

7
γIA Cholera recovery rate for asymptomatic infecteds 1

2 − 1
ω Rate of waning immunity from R to S .00001 − 1

190
ωRA Rate of waning immunity from RA to Ŝ .00001 − 1

90
ωRS Rate of waning immunity from RS to Ŝ .00001 − 1

360
ωŜ Rate of waning immunity from Ŝ to S .00001 − 1

1000
η Rate of infected contribution to environmental vibrio concentration .0001 − 10
ηIA Rate of contribution by asymptomatic infecteds .0001 − 10
ηIS Rate of contribution by symptomatic infecteds .0001 − 10
δ Death rate of vibrios from HI to non-HI state 1

40 − 1
3

init Initial proportion of κ in the environment .001 − 1

Figure 1. The possibly too-simple SIR model is included in our analysis as a control and is described in
Section 3.2.1.

is good, particularly from the model selection viewpoint that favours models with few
parameters.

3.2.2. Model 2: SIRB
The SIRB model is pictured in Figure 2 and consists of the differential equations

dS
dt

= bN − dS − βB
BS

κ + B
− βI

SI
N

+ ωR

dI
dt

= −dI + βB
BS

κ + B
+ βI

SI
N

− γ I

dR
dt

= −dR + γ I − ωR

dB
dt

= ηI − δB, (5)

with variable and parameter meanings given in Tables 1 and 2. This model includes an
environmental class for bacteria,which canbe interpreted as the concentrationof infectious
cholera bacteria in the drinking water. Varying formulations of this simple model, with
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Figure 2. The SIRBmodel is used bymany researchers tomodel the spread of cholera, though the precise
mechanisms included, in particular two pathways of infection and the inclusion of waning immunity,
differ within the references. See Section 3.2.2 for the model equations.

or without waning immunity or person-to-person infectivity as included in Equations (5),
have been used for decades (Capasso & Serio, 1978; Codeço, 2001). Recently, the SIRB
model was applied to cholera quite effectively, especially when used in combination with
spatial considerations, to model the outbreaks in Zimbabwe (Mukandavire et al., 2011)
and Haiti (Bertuzzo, Casagrandi, Gatto, Rodriguez-Iturbe, & Rinaldo, 2010; Rinaldo et al.,
2012; Tuite et al., 2011). In other model comparison efforts for cholera, a variation of the
SIRB formulation is often selected as the most appropriate to model the available data.

3.2.3. Model 3: SIIRBB
The SIRB model considered in Section 3.2.2 ignores the hyperinfectious state for bacteria
as well as the role of asymptomatic infected individuals that we discussed in Section 3.1.
First published in 2010 (Miller Neilan et al., 2010), the SIIRBB model

dS
dt

= bN − dS − βBL
BLS

κL + BL
− βBH

BHS
κH + BH

+ ωR

dIS
dt

= −dIS + (1 − p)
[
βBL

BLS
κL + BL

+ βBH
BHS

κH + BH

]
− γIS IS

dIA
dt

= −dIA + p
[
βBL

BLS
κL + BL

+ βBH
BHS

κH + BH

]
− γIAIA

dR
dt

= −dR + γIS IS + γIAIA − ωR

dBH
dt

= ηIAIA + ηIS IS − χBH
dBL
dt

= χBH − δBL (6)

adds a hyperinfectious bacterial class as well as an asyptomatic infected human class to the
SIRB model. The SIIRBB structure is pictured in Figure 3. This model expanded a 2006
model that first introduced the hyperinfectious class to cholera modelling (Hartley et al.,
2005), and similarly did not include the person-to-person infectivity term that we see in the
SIRBmodel in Section 3.2.2. A model similar to the one in Equations (6) was has also been
used Andrews and Basu (2011) to consider control measures for the outbreak in Haiti.

3.2.4. Model 4: SIIRB
Shortly after the publication of the first cholera model to include hyperinfectivity
(Hartley et al., 2005), a short note was published (Pascual, Koelle, & Dobson, 2006),



LETTERS IN BIOMATHEMATICS 103

Figure 3. The diagram is an illustration of the SIIRBB model, which includes a hyperinfectious class
of bacteria and also differentiates between the dynamics for symptomatic and asymptomatic infected
individuals. See a full description in Section 3.2.3.

suggesting that the inclusion of a hyperinfectious class of bacteria is only a different
way to show a faster mode of transmission, and that epidemic data can therefore be
modelled equally well by inclusion of person-to-person transmission rather than through
a hyperinfectious class of bacteria. In the context of the SIIRBB model of the previous
section, we consider replacing the hyperinfectious bacterial class with person-to-person
transmission. The resulting model is

dS
dt

= bN − dS − βIS
ISS
N

− βIA
IAS
N

− βB
BS

κ + B
+ ωR

dIS
dt

= −dIS + (1 − p)
[
βIS

ISS
N

+ βIA
IAS
N

+ βB
BS

κ + B

]
− γIS IS

dIA
dt

= −dIA + p
[
βIS

ISS
N

+ βIA
IAS
N

+ βB
BS

κ + B

]
− γIAIA

dR
dt

= −dR + γIS IS + γIAIA − ωR

dB
dt

= ηIAIA + ηIS IS − δB, (7)

where again variable and parameter values are provided in Tables 1 and 2. We add
the above SIIRB model to our comparisons to check just this idea: can the data be
described equally well by a model that includes person-to-person transmission in lieu
of a hyperinfectious class of bacteria? Our model comparison results, if we jump ahead a
little to Section 5, suggest ‘not quite’. The model is diagrammed in Figure 4.

3.2.5. Model 5: SSIIRRB
Finally, we consider a so-called SSIIRRB model that is expanded to allow the possibility
that the capacity to obtain partial immunity may drive cholera dynamics. A similar model
appears in an age-structured partial differential equations model for cholera with several
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Figure 4. Above is an illustration of the SIIRB model that is described in Section 3.2.4.
Note: Thismodel ismotivated by a desire to see if the hyperinfectious class of the SIIRBBmodel described
in Section 3.2.3 can be replaced by person-to-person transmission.

collaborators (Fister et al., 2016). The model equations are given by

dS
dt

= bN − dS − βB
BS

κ + B
− βIS

ISS
N

− βIA
IAS
N

+ ωŜŜ

dŜ
dt

= −dŜ − βB
BŜ

κ + B
− βIS

ISŜ
N

− βIA
IAŜ
N

+ ωRARA + ωRSRS − ωŜŜ
dIS
dt

= −dIS + (1 − p)
[
βB

BS
κ + B

+ βIS
ISS
N

+ βIA
IAS
N

]
− γIS IS

dIA
dt

= −dIA + βB
BŜ

κ + B
+ βIS

ISŜ
N

+ βIA
IAŜ
N

+ p
[
βB

BS
κ + B

+ βIS
ISS
N

+ βIA
IAS
N

]
− γIAIA

dRS
dt

= −dRS + γIS IS − ωRSRS
dRA
dt

= −dRA + γIAIA − ωRARA
dB
dt

= ηIAIA + ηIS IS − δB (8)

with variable and parameter values given in Tables 1 and 2. The inclusion of a partially
immune class may lead to interesting results for long-term dynamics in Haiti, where ini-
tially the class with partial immunity would have been empty since the Haitian population
had no prior exposure to cholera. Although this more complex model may be justifiable
from amechanistic point of view, and is certainly relevant in age-based considerations, the
number of parameters needed for this model is extensive. Are there enough data to justify
the use of this model? See Figure 5 for graphics describing the model.
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Figure 5. The SSIIRRB model is described in Section 3.2.5.
Note: The model does not include a hyperinfectious class and, thus, is an extension of the SIIRB model
described in Section 3.2.4.

3.3. Further parameter discussion

One reason that model choice is tricky for the study of cholera is the disagreement
surrounding parameter choice. We will highlight some of the discordance within the
literature for the parameter values, and use the parameter discussions from the literature
to choose biologically-reasonable ranges (see Table 2) for our parameter search. As we
will discuss in more detail in Sections 3.4 and 5 following, we intend for the models to
describe surveillance data from Haiti which provides the number of hospitalizations from
the beginning of the cholera epidemic there. With data that only suggests the number of
reported infections, it is quite difficult to discover the transmission route (Eisenberg et al.,
2013). Thus, it is not only difficult to recover specific parameter values related to person-to-
person or bacterial infectivity (the β∗ values in Table 2); as we parametrize the five models
considered using the hospitalization data, it is also unlikely that we could determine the
relative importance of βIA versus βIS . Similarly, as discussed earlier, there is disagreement
between the CDC and WHO websites (Centers for Disease Control, xxxx; World Health
Organization, 2010a), a Nature Reviews Microbiology overview (Nelson et al., 2009), and
severalmodelling articles (King et al., 2008; Rinaldo et al., 2012) regardingwhat proportion
of infections may be asymptomatic, which suggests that we should allow a wide range of
values for our parameter p. Recall also that for the SSIIRRB model (Section 3.2.5), which
allows for partial immunity, the parameter p assumes a slightly different meaning than in
the SIIRBB and SIIRBmodels (Sections 3.2.3 and 3.2.4), in which all susceptible individuals
are considered equivalent.

Finally, we observe that bacterial parameter valuesmay be quite difficult to determine. In
models that include the human-environment amplification, the contributions by humans
to the bacterial load in the environment (η∗) cannot be estimated outside of numerical
model simulations, because of the impossible-to-classify volume and location of water in
the environment, as well as the reality that much of the spread of the disease is due to
bacterial contamination of household objects (Nelson et al., 2009).
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3.4. Initial conditions for all models

The model parameters and assumed ranges for the five models described here are given in
Table 2. Each model is parametrized using surveillance data from the Haitian Ministries
of Public Health for approximately the first fifteen months following the 2010 earthquake
(Republique d’Haiti, xxxx). We have considered this data separately for each of the ten
Haitian departments as well as its capital city, as we will elaborate in Section 5. For each of
the five models, the initial conditions depend on the demographics of the specific region
considered.

For all models and all Haitian data-sets, we considered those living in poverty to be the
only individuals who would be susceptible to cholera.We used poverty (Verner, 2007) and
population (Wikipedia, xxxx) data to obtain initial values for the number of susceptible
humans in each department. Where relevant, we assumed that initially all susceptible
humans would carry no partial immunity (since Haiti had not been exposed to cholera
prior to the epidemic in this study). For eachmodel/data-set combination, we assumed that
Day Zero was the first day with hospitalized infected humans as recorded by the Haitian
Ministries of Public Health (Republique d’Haiti, xxxx). In all models, we assumed that only
a proportion h of infected humans are hospitalized (see Table 2). Thus,

h · I(0) = I∗ ≡ number of hospitalizations on Day Zero.

We assumed for the models with symptomatic and asymptomatic populations that only
symptomatic individuals would be hospitalized, so that

IS(0) = I∗

h
.

If I(0) were to represent the true number of infected inclusive of asymptomatic infections,
then IS(0) = pI(0), and IA(0) = (1 − p)I(0). It follows that

IA(0) = 1 − p
p

IS(0).

The precise numerical values chosen for the initial conditions above are summarized in
Table 3.

We assumed that there were no recovered individuals at the start of the epidemic, and
(where relevant) no hyperinfectious bacteria onDay Zero.We did assume an environmen-
tal concentration of low-infectious bacteria that is somemultiple of theMichaelis constant
κ (or κL for the models that consider hyperinfectious bacteria). Depending on the chosen
model, this amounts to one of the following (see Table 2):

B(0) = init · κ , BL(0) = init · κL.

4. Prior results in model selection applied to cholera

As we will highlight in the following discussion, there have been a number of interesting
studies considering model selection for cholera in recent years. No two research groups
seem to be considering model comparison through the same lens.
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Table 3. Initial assumptions.

Department/city Population size Poverty rate Init. Inf. in data

Artibonite 1,168,000 .59 460
Centre 564,200 .56 6
Grand’Anse 337,516 .63 7
Nippes 263,000 .63 5
Nord 972,200 .63 1
Nord-Est 300,500 .80 2
Nord-Ouest 445,080 .65 16
Ouest 2,943,200 .29 3
Sud-Est 518,200 .57 2
Sud 745,000 .63 1
Port au Prince 942,000 .57 7

See Section 3.4 for references. Note that initial infections are estimated from data given in graphical form.

4.1. Model comparison applied to choleramodels using data fromHaiti

A thoughtful look at multiple models for cholera is shared by Rinaldo et al. (2012). The
authors consider four structural models to describe the spread of cholera through Haiti,
which include similar terms to those in our study but also include detailed geographic infor-
mation and rainfall intensity as well as human mobility patterns. The models consider the
data throughout Haiti as a whole, connected by multiple systems of differential equations
that are linked through migration and that are parametrized with local information. This
is truly an impressive undertaking in its realistic parametrization of several key details.

On the other hand, the model comparisons do not include all structures that interest us,
and additionally, some assumptions of constant parameter values given in their Table S2
are based on assumptions used by or derived within previous cholera modelling articles.
As an example, the length of immunity after acquiring cholera is based on a simulation
outcome in one researcher’s work (Koelle, Rodó, Pascual, Yunus, & Mostafa, 2005). The
length of immunity was based on data from Matlab, Bangladesh. We might hypothesize
that this population with partial immunity might be quite different from that in Haiti,
since Haitians had not received prior exposure to cholera. Another example of different
parameter assumptions is in the consistent use of the contact rate with infected waters to be
βB = 1. Our previous discussion in Section 3.3 explains our concern with this assumption.

Thus, ourworkdiffers fromRinaldo et al. (2012) in thatwe assume that fewer parameters
are known, and in that we desire to explore a greater array of mechanistic possibilities in
various models. We are limited by our resources to consider only individual departments
in contrast to a model with spatially-connected departments (Rinaldo et al., 2012). At the
same time, we find the question of model selection when the departments are separated
interesting. If the data from different departments show support for differing models, then
how might one choose an overall model for the region? This question is of interest to
other researchers who lack the resources to consider fine GIS-based detail, and hence, a
comparison between the viewpoints is valuable.

The form ofmodel comparison in the work by Rinaldo et al. (2012) is in agreement with
the form that we discussed in Section 1 and provided in Equations (3). For this article, the
authors used one data point for each of 49 weeks spread across 10 Haitian departments
and thus considered n = 490 data points. Referring to Equation (3), this Rinaldo et al.
also use K = p + 1 parameter values; that is, the number of model parameters p plus a
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residual variance parameter. The references cited for this approach to model comparison
are a 1998 version of Burnham and Anderson (2002) that is discussed in the Introduction,
and an article by Corani and Gatto (2007), who cite the work of Burnham and Anderson
(2002) and extend the idea to demographic ecological (regression) models.

4.2. Model selection applied to choleramodels in Bengal

King et al. (2008) engage in a highly stochastic study comparing compartmental models
for cholera against data from Bengal that is rich in time and space. They draw likelihood-
based inferences and refer the reader to certain textbooks (Casella & Berger, 2002; Cox
& Barndorff-Nielsen, 1994; Rice, 2006) for a background for inference. They provide a
detailed algorithm explaining how they find the maximum likelihood via iterated filtering.
For model comparison, the authors refer to Akaike’s article (Akaike, 1974) as well as the
Burnham and Anderson text (Burnham & Anderson, 2002) to explain their application
of AIC, as well as AICc which is intended for small sample sizes and is introduced in
the following section (Burnham & Anderson, 2002; Richards, 2005). The Akaike article
considers the comparison of autoregressive and moving average models, and since King
et al. do not specifically write the form of AIC used it is not clear how the AIC references
are applied.

4.3. Model selection applied to cholera data fromAngola

Eisenberg et al. (2013) perform an interesting experiment of testing whether parameters
can be identified using perfect data in an SIRB model for cholera (this discussion replaces
the article’s notation with our own for the reader’s convenience). The authors then ask,
using a small data-set froma cholera outbreak inAngola, whether it is possible to determine
the mode of transmission for the disease (person-to-person, water-borne, or both). For
this task, they apply a corrected AIC (AICC) method for small sample sizes, and they
cite Hurvich and Tsai (1991). Hurvich and Tsai explain that the AICC method is for a
‘normal linear regression, or autoregressive, model with p regression or autoregressive,
parameters’, and is given by

AICC = n log (2πσ̂ 2) + n
1 + p

n

1 − p+2
n

= n log (2πσ̂ 2) + n
n + p

n − p − 2
,

where σ 2 is given in terms of the derivation for variance in a least squares estimate for
linear regression. We note that as described in Section 1, the AICC would be defined by

AICC = AIC + 2K(K + 1)
n − K − 1

= n ln
(
RSS
n

)
+ 2K + 2K(K + 1)

n − K − 1

= n ln
(
RSS
n

)
+ 2Kn

n − K − 1
,
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where K is the number of model parameters plus one for the variance of the error in the
fit and n is the number of observations from the data in Angola. The authors do not share
the details of the model comparison, and we do not know the precise form of AICC that
they use.

4.4. A new approach formodel comparison involving seasonal epidemics

A different approach for model comparison can be derived if one assumes a certain
probability distribution for the number of hospitalized cases in an epidemic. Ponciano
and Capistrán (2011) show in detail how the problem of model selection and parameter
estimation can be approached if one assumes that the number of new hospitalizations
follows a Poisson distribution. With this viewpoint, the AIC can be determined based on
a likelihood function that parameter choices allow the new infections to follow a scaled
Poisson distribution. We appreciated this derivation and viewpoint, but also felt that in
our case, where the epidemic data shows epidemic waves, a Poisson distribution approach
would not be a good basis for parameter fitting or model comparison.

The authors also explain a derivation for AIC in the case of parameterizing the model
using weather data. In either case (the Poisson-derived likelihood for a compartment-
based model for the number of infections or a more statistically-motivated model for the
weather), the authors use the formula for AIC given by

AIC = −2 ln L̂ + 2p, (9)

where L̂ is the maximum likelihood estimate for the given model and p is the number of
parameters, and as we read the article p is not increased by the parameter for the variance
of the fit errors. The likelihood function derived for the error in the weather data in the
article is

L(θw) =
q∏

j=0

1√
2πσ

exp

{
− (wj − ωtj)

2

2σ 2

}
, (10)

where wj is the jth weather observation and ωtj is the weather model prediction, which
they explain is equivalent to minimizing the expression

SSQ(θ)ω =
q∑

j=0

(wj − ωtj)
2.

Although the model for weather in this article is not a compartmental model, the equiva-
lence of maximizing likelihood in Equation (10) to our goal of minimizing the RSS values
caused us to consider the output of the form of AIC given in Equation (9) in our analysis
in the following section.

The authors do not stopwith anAIC exploration ofmodels considered; rather, they state
that one should also check the BIC values. They also state, in contrast to the discussion in
Section 2.2, that if there is disagreement betweenAIC and BIC recommendations, then this
is a signal that there is not sufficient data to choose the best model (Ponciano & Capistrán,
2011). We examine this claim for our case study in Section 5.
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5. Methods and results

We applied several formulations of model comparison criteria to the five models for
cholera that were described in Section 3. Thus, we sought the model that best described
the data giving hospitalizations in each Haitian department and its capital approximately
during the first fifteen months of the recent outbreak following the 2010 earthquake.
This data is available in chart form from the Haitian Ministries for Public Health (Haiti
Institute of Statistics, 2011), and we used the freely available software Plot Digitizer to
convert that data to numeric form (SourceForge, xxxx). Hence, in addition to the expected
surveillance errors given the setting, there were surely additional errors in representing the
data numerically. We believe that these errors are typical, and that the data will have noise
in any large-scale cholera study. As a result, if there were a ‘true’ model that could describe
the surveillance data in such an epidemiological setting, then that ‘true’ model would not
be a ‘true’ representation of the actual disease dynamics. This is simply unavoidable, and
we assume that the model which best describes the noisy data would be the best model to
describe the actual data if it were possible to discover that data.

The first step in performing model comparison is to choose the best parameter set for
each of the fivemodels listed in Section 3, so that the data is optimally described using each
model.We chose the parameter sets independently for each of the tenHaitian departments
and for the capital (eleven data-sets) for each of the fivemodels. There aremany approaches
to parameter selection. In this work, we first found twenty best-fit parameter sets for each
of the 55 data-set?-model combination using genetic algorithms (GA) (Akman& Schaefer,
2015). As explained in the reference, each single run is the result of the evolution over
many generations of 5000 randomly chosen parameter sets from the biologically feasible
parameter space. Due to the stochasticity of the parameter fitting method, we observed
variation in the goodness of fit and in the selected parameter values through multiple
GA runs, and, as we explain further below, this variation is the reason for considering
twenty parameter sets for each combination considered. We also used Matlab’s lsqcurvefit
(MATLAB and optimization toolbox release, 2012a) as a tool for parameter estimation;
we note that other researchers are using a Markov Chain Monte Carlo (MCMC) approach
which uses a random walk through the parameter space and a method for evaluating
proposed moves to find optimal parametrization (Rinaldo et al., 2012). In a future article,
we will explore the use of particle swarm optimization as an efficient and effective tool for
parameter estimation.

Since the model’s fit to the data is a cornerstone of an assigned AIC or BIC value,
we worried about the impact that stochasticity might play in model selection. For each
of the 5 × 11 = 55 model–data-set combinations, we found the lowest RSS/n value
(where, again, n is the number of data observations for the given data-set). However, our
work in exploring methods for parameter selection have convinced us that it is unlikely
that differing parameter estimation approaches, or even repeated approaches, are likely
to retrieve the same parameter values or goodness of fit (this was explored further in a
previous article of ours (Akman & Schaefer, 2015)). Thus, we observe that if we might get
‘lucky’ in finding a strongly performing data-set for model A, but ‘unlucky’ for model B.
Should we be cautious about the limitations of any parameter fitting method for its ability
in a single run to truly find the best parameter set? As a result of this concern, we considered
two values in each model comparison effort – one for the minimum value observed over
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the 20 parameter sets chosen for each of the 55 model–data-set combinations and another
for the average value observed over the 20 parameter sets chosen. The former makes a
comparison based on the best result obtained for each parameter set, and the latter makes
a comparison based on the average over all parameter fitting efforts.

In the light of the prior results explored in Section 4, we studied several formulations
for model comparison. We first considered the AIC formulation given in Equation (3)
in Section 2, which is also the formulation suggested by Burnham and Anderson (2002)
and by Rinaldo et al. (2012) (Section 4.1). However, to explore our concerns about the
consistency and quality of parameter fitting efforts, we calculated this AIC value using
both the minimum and average RSS values found for each model–data-set combination.
Thus, for each of the 55 model–data-set combinations, we calculated

AIC1,min = n ln
(
RSSmin

n

)
+ 2(p + 1),

AIC1,avg = n ln
(
RSSavg

n

)
+ 2(p + 1),

where n is the number of data points for a given department and p is the number of
parameters in a given model.

We also considered the AIC development used for weather that was described in
Section 4.4 above, but with the use of epidemic data. We believe a likelihood formulation
should provide consistent results, and thus as an illustration we also considered the likeli-
hood function L given in Equation (10) for each of the 55 model–data-set combinations,
and calculated, following Equation (9), the values

AIC2,min = −2 ln
(Lmin

) + 2p,
AIC2,avg = −2 ln

(Lavg
) + 2p,

where n is the number of data points for a given department and p is the number of
parameters in a given model. To be precise, for each model–data-set combination we
calculated the RSS between our scaled data (h · I(j) or h · IS(j) for j = 0, 1, . . . , n − 1) and
the surveillance data (I∗(j) for j = 0, 1, . . . , n − 1), and we defined

σ 2 = RRS
n

.

Then we define the likelihood function as

L =
n−1∏
j=0

1√
2πσ

exp
{
− (hI(j) − I∗(j))2

2σ 2

}
.

We now note that

ln (L) =
n−1∑
j=0

ln
(

1√
2πσ

exp
{
− (hI(j) − I∗(j))2

2σ 2

})
. (11)
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Finally, despite our comments in Section 4 above, we follow the recommendation of
Ponciano and Capistrán (2011), Section 4.4 and we consider the measure for BIC in both
the least squares and likelihood cases. This allows us to consider the perhaps controversial
point (Ponciano & Capistrán, 2011) that if AIC and BIC do not agree, then further study is
warranted. For the least squares case, we suggest the form given byHansen (2007)modified
for the framework that we described in Section 2 to be

BIC = n ln
(
RSSmin

n

)
+ p · ln (n),

where n and p are the number of data points and parameters, respectively, considered for
the given model. The likelihood formulation given for BIC is

BIC = −2 ln (L) + p · ln n,

where L is the likelihood function, p is the number of parameters, and n is the number
observations (Burnham & Anderson, 2002). Thus, we also consider the formulas

BIC1,min = n ln
(
RSSmin

n

)
+ p ln n,

BIC1,avg = n ln
(
RSSavg

n

)
+ p ln n,

as well as

BIC2,min = −2 ln
(L) + p ln n,

BIC2,avg = −2 ln
(L) + p ln n,

as we make our comparisons.
Thus, we have defined eight model comparison methods. For each of these, we are

seeking the minimum AIC and BIC values, and we can only declare a clear victor if there
are no close runners-up. Following Burnham and Anderson (2002), Rinaldo et al. (2012),
we measure the difference between each model’s AIC/BIC value and the minimum value;
these values are recorded by columns in Figure 6 and labelled �. The standard approach
to interpreting the differences � assumes criteria that we cannot meet (independent obs-
ervations, large sample sizes and nested models) (Burnham & Anderson, 2002; Richards,
2005); however, we presume, as did Rinaldo et al., (2012), that the guidelines of the levels
of support for eachmodel vary similarly to the levels suggested by Burnham and Anderson
(2002). Thus, referring to our results in Figure 6, the model selected has � = 0 (dark
shading), and we presume that there is substantial to moderate support for a runner-up
model when 0 < � ≤ 5 (moderate shading). Finally, there is weak support for a runner-up
model when 5 < � ≤ 10 (light shading). (The criteria in Burnham and Anderson (2002)
are slightly different, but do not include all possible differences.)

Consider first our ‘inadequate’ SIRmodel fromSection 3.2.1, forwhich results are shown
in the top-left block in Figure 6. We note that the AIC1 and BIC1 criteria never select this
model, but in Nippes, which experienced far fewer infections than in other departments
(Date et al., 1994), the likelihood formulations AIC2 and BIC2 select the SIRmodel. We do
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Figure 6. The results of our model comparison formulation investigations are summarized in this chart
and discussed in Section 5.
Notes: Each model is considered separately, with individual data-sets given as rows and model
comparison technique given as columns. Dark shading represents the model is selected by the criteria
in the corresponding column. Light to moderate shading indicates support for the runner-up model as
an alternative to the selected model.

note that while the RSS and likelihood formulations are in disagreement, the AIC versus
BIC values are consistent between the formulations.

We now consider the SIRB model described in Section 3.2.2 and view the results in the
top-right block within Figure 6. We observe that the SIRBmodel is almost always selected,
and this result is in agreement with most conclusions drawn in Section 4. There are four
exceptions, and a small ‘blip’ (Nord-Est). The first exception is Artibonite, which was hit
very early with cholera and whose cases in the period were considered dwarfed by those
in other departments. In Artibonite, all selection criteria chose the SIIRBB model (see the
next paragraph). Second, Nippes, which was discussed in the previous paragraph and had
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very few infections, selected the SIR model. The third region which did not select the SIRB
model is Nord-Ouest, and here only BIC formulations choose the SIRB model. While the
number of hospitalized in Nord-Ouest does not stand out as did the number for Nippes,
the particular shape of the surveillance data (Republique d’Haiti, xxxx) is rather unusual
for Nord-Ouest in that there is a rather sharp, brief peak in hospitalizations several months
into the epidemic. Finally, while the individual data-sets generally justify the choice of the
SIRB model, when the data are considered in total, most formulations do not select this
model. The ‘Total’ rows in Figure 6 shows the result when the RSS values or the terms
in Equation (11) are summed over all points in all data-sets, and n is taken to be the
total points in all data-sets (similar to Rinaldo et al. (2012) but without their complex
geographical setup). Thus, there is a disconnect between our intuitive idea that ‘clearly
the SIRB model is the appropriate model to select given the criteria’ and the model that is
actually selectedwhen the data are considered as a whole.Where Rinaldo et al., considering
a different subset of models, connected the Haitian departments rather than consider them
separately, they did select an SIRB formulation (Rinaldo et al., 2012). The question that
remains in this study is, ‘When the data are considered as a whole, is a complex model
truly able to describe the data better, or is our method of considering the data as a whole
allowing too much weight for a ‘deviant’ data set?’

The SIIRBB model, described in Section 3.2.3, has results pictured in the middle-left
block of Figure 6. Several Haitian departments’ data were best described by the SIIRBB
model. In particular, the hard-hit Artibonite selects this model across all criteria. Three of
the four AIC criteria selected the ‘spiky’ data fromNord-Ouest, and the� values suggested
that the SIIRBBmodel has support from all criteria.With the exception of one BIC criteria,
the SIIRBB model is selected as the best model to describe the aggregate data. However,
outside of these departments, there is weak or, more likely, no support for this model.
We note that where there is a difference between the AIC and BIC choices, the � values
generally suggest that there is evidence for choice between the two differing models.

We included the SIIRB model to check the hypothesis that the variation of the SIIRBB
model could describe the data equally well (see Section 3.2.4). Results are summarized
in the right-centre block of Figure 6. It was surprising to us that the SIIRB showed
consistently weaker performance than SIIRBB in all but isolated cases. On the other hand,
for some departments, and particularly thosewith fewer hospitalizations (Date et al., 1994),
we see that the choice of person-to-person infectivity over the use of a hyperinfectious
bacterial class has some merit. Our multiple comparison approaches suggest that the two
models cannot be interchanged so easily, thus suggesting that models which include a
hyperinfectious class of bacteria may be more appropriate than those substituting person-
to-person infectivity in regions with high morbidity from cholera.

Finally, the SSIIRRB model – see Section 3.2.5 and the lower-left block of Figure 6 –
only enjoyedweak support in a single department.Wewonder if the SSIIRRBmodel would
perform more strongly in a longer timeframe. The complexity in the model is intended to
uncover long-time dynamics. We did not check this hypothesis. Certainly for the data-sets
considered, the addition of multiple unknown parameter values would cause this model
to perform poorly in for the comparison metrics, but in reality, the complicated SSIIRRB
rarely outperformed other models in describing the data-sets even without penalty from
additional parameters.
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6. Conclusions and remarks

The initial motivation for this study was to explore the settings in which mechanistically-
complexmodelsmight be needed or justified to explain the dynamics of a cholera outbreak.
We find that within the majority of the individual Haitian departments, for the time-
frame of about 15 months, the simple SIRB model enjoys the most support. However,
in describing areas that experience larger numbers of cholera infections, or in describing
the region as a whole, there is evidence for a model that includes the complexities of
asymptomatic infections and a hyperinfectious bacterial state. Finally, we observe that the
modelling choices of ahyperinfectious bacterial state versus person-to-person transmission
are not interchangeable.

Modelling is an art. Comparison methods select between models by balancing the
complexity and performance of eachmodel; however, themore subjective step of choosing
appropriate models and parameter spaces cannot be under-valued in this process. The
decisions of howmany data-sets and which time steps should be used to inform the model
selection process are critical to the outcome of a model selection process, while choice
across correct formulations of the comparison approaches is less important.

In our study, we focused on the commonly used model assessment metrics RSS and
likelihood AIC, both of which yielded similar results, and for the most part these compar-
ison metrics were consistent whether we used the minimum or average RSS values for the
data-set in question. Further, we observe that while some authors discount the value of BIC
in this setting (Burnham & Anderson, 2002), the BIC results do seem similar to the AIC
results (Ponciano & Capistrán, 2011), and where there were differences there were other
disagreements that also suggested that more information would be helpful in selecting an
appropriate model. Finally, we believe that there are hurdles in interpreting composite
model recommendations obtained by combining multiple data-sets. In particular, we
observe that more complex models seem to enjoy support as the number of observed
infections (not the number of data points) increases.

In conclusion, we would urge that increased transparency about the parameter selection
process and the particular format of AIC/BIC chosen by modellers would be a service to
our community, with the understanding that often these longer discussions may need to
be provided in supplementary materials so that they do not distract from the researchers’
immediate goals.
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