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ABSTRACT

We will first provide a brief introduction to models of disease
transmission on so-called contact networks, which canbe represented
by various structures from the mathematical field of graph
theory. These models allow for exploration of stochastic effects
and incorporation of more biological detail than the classical
compartment-based ordinary differential equation models, which
usually assume both homogeneity in the population and uniform
mixing. In particular, we use an agent-based modelling platform to
compare theoretical predictions from mathematical epidemiology to
results obtained from simulations of disease transmission on a regular
tree graph. We also demonstrate how this graph reveals connections
between network structure and the spread of infectious diseases.
Specifically, we discuss results for how certain properties of the tree
graph, such as network diameter and density, alter the duration of an
outbreak.
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1. Introduction

Infectious diseases in populations of hosts pose a significant risk to humans, animals and
plants. In turn, the spread of such diseases threatens the economic and ecological health
of society. Growing populations increase the likelihood – as well as the consequences – of
a major outbreak. The shape of a community, including factors such as distance between
individuals and number of connections, greatly influences the outbreaks that occur. The
ability to model various scenarios is valuable in helping prepare societies and prevent
further harm, as we can develop a better understanding of the disease dynamics and, in
turn, explore the most effective control measures, such as quarantine or vaccinations
(Just et al., 2015a).

There are several approaches to such models, the most common of which is through
compartment-based ordinary differential equation models. A typical compartment-based
model includes three possible states: Susceptible, Infectious and Removed. Fittingly, this
is called an SIR model and was originally proposed by Kermack and McKendrick (1927).
In diseases forwhich an SIRmodel is appropriate, we beginwith a population of susceptible
hosts and introduce an index case (the first infectious host). As a pathogen is spread from
that initial case to other susceptible hosts, the newly infected hosts move to an infectious
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state (and hence the infectious compartment) and lastly to the removed state, at which
they remain permanently. For more information about such models, refer to Allen et al.
(2008), Hethcote (2000).

Contact networks can be used to offer evenmore realistic results by adding complexity to
the possible interactions modelled in a compartment-basedmodel. Often these models are
idealized networks representing different facets of a community such as physical proximity
or other forms of contact (Keeling & Eames, 2005). These contact networks, which can
be described as mathematical graphs, provide a network of interaction for diseases that
satisfy the assumptions of the contact network being imitated. Here, two individuals in the
population (two nodes on the graph) are connected by an edge in the graphwhenever there
is a potential for these two individuals to interact. For example, a grid-shaped graph could
represent a crop field, and using this grid contact network, one could model the fungal
infections or insect swarms plaguing the crop. Indeed, various types of contact networks
have been used throughout the infectious disease modelling literature (Eubank et al., 2004;
Grijalva et al., 2015; Miller & Volz, 2013; Riley, 2007).

Here,wewish to focus on contact networks that take the formof regular tree graphs. Tree
graphs have been used for specific outbreaks such as the SARS cases in Hong Kong, in part
because they contain no loops Riley et al. (2003). Although other types of tree graphs, such
as random tree graphs, may better represent a wider variety of real world contact networks,
our aim is to first develop an understanding of the implications of disease spread on regular
tree graphs, which are simpler to analyse Shapiro & Delgado-Eckert (2012), in hopes that
these results can inform future study of more realistic network structures.

To further improve upon the traditional SIR compartment-based model, which is
often modelled using deterministic differential equations, we investigate the effects of
stochasticity in disease dynamics on contact networks through the use of an agent-based
modelling approach. Agent-based modelling provides a framework within which we can
assign probabilities of infection and recovery to individuals andmonitor the effects of such
probabilities over time and across multiple simulation runs.

Our primary research question relates to how outbreak duration of a given disease is
affected by the size of a given contact network whose structure resembles a regular tree
graph. We will elaborate on how connections between network structure and outbreak
duration are not straightforward for such a contact network, and we will approach this
problem from several different angles for amore complete analysis of relationships between
network structure and disease duration. Additionally, we provide various means by which
one can calculate the probability of a specific duration, given certain disease parameters
and a known size of regular tree graph contact network.

2. Model and simulation details

To perform our simulations, we use a software tool called IONTW Just et al. (2015b)
which was built from NetLogo Wilensky (1999), an agent-based programming language
and modelling environment. IONTW, which stands for Infections On NeTWorks, allows
users to run simulations on various network models of disease transmission. A sample
interface is shown in Figure 1. IONTW offers a variety of adjustable parameters such
as the type of contact network, initial number of hosts in the susceptible, infectious, or
removed states, type of model (SIR, SEIR, SIS, etc.), probabilities of infection and recovery,
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Figure 1. IONTW interface for modelling a disease whose contact network is such that each node is
connected to every other node, known as a complete graph.

and much more. See Just et al. (2015a, 2015b), for further details. The software also has
the capability to simulate both discrete and continuous time models. Our work in this
paper uses variations of the discrete-time simulation option since we are dealing with
probabilities of infection or recovery over the course of a specified time unit instead of
rates of infection or recovery.

As mentioned above, IONTW allows the user to simulate the spread of a variety of
diseases by allowing for control of values of the infection probability, pinf , and end infection
(recovery) probability, prec . In IONTW, these parameters are given the names infection-
prob and end-infection-prob. These are the probabilities that a node will move from the
susceptible to infectious state, or infectious to removed state, respectively. Here, we assume
homogeneity of hosts, that is, the probabilities of infection are identical for all hosts in the
population, as are the probabilities of recovery.

Currently, we also assume a fixed contact network; that is, the probability of effective
contact between two nodes is fixed and positive – or 0 if there is no edge – over a given
time interval, and the network itself does not change over the desired time course.We refer
to units of time as ticks, so that the outbreak duration can be measured as the number of
ticks from the introduction of the index case until the last infectious host has transitioned
into the removed state. We elect to keep time units general so that results are applicable to
diseases modelled on any time scale. Currently, the IONTW software is unable to simulate
diseases where populations interact on multi-time scales.

As mentioned above, we seek to use IONTW to explore disease duration on the rooted
regular tree graph, which we will refer to as simply the tree graph. The tree graph is
centred on a root node, and contains no closed loops (or cycles). The regular tree graph
is a tree graph with the same number of branches connected to every non-terminal node.
Examples of trees are found in river deltas, subway systems, the cardiovascular system and
the namesake plants. Although few cases of regular tree graphs exist in nature, analysis
of disease on this type of graph is a first step in providing greater understanding towards
other types of contact networks of similar structure, such as other types of tree graphs.

The IONTW application constructs a tree graph using two parameters, λ and d. The
first, λ, is equivalent to the height of the tree, i.e. the largest distance between any node and
the root, the node from which all other nodes emerge. The parameter d is the degree of the
root, the number of nodes connected to the root by an edge. Once λ and d are selected, a
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Figure 2. Number of nodes in a regular tree graph generated in IONTW for various values of λ and d.

Figure 3. Semi-log plot of number of nodes in a regular tree graph generated in IONTW for various
values of λ and d.

degree of d + 1 is automatically assigned to all other nodes except the leaves, which have
a degree of 1. A unique property of this type of tree graph is that there are n − 1 edges for
the n nodes; any additional nodes added would create a loop and would break the required
properties of tree graphs.

3. Size scaling with λ and d

Since we are interested in analysing the relationship between network size and disease
duration, we must note the dependency of tree graph size on the network parameters λ

and d. For fixed values of d, as λ grows larger, observe how the number of nodes appears to
grow exponentially in Figure 2. To see this more clearly, Figure 3 shows a semi-log plot of
the same data. We see that the total number of nodes, N , does indeed exhibit exponential
growth as a function of λ, yet different values of d produce different rates of growth.

We write the number of nodes, N , as a function of λ and d as follows:
Theorem 1: Let N be the number of nodes in a regular tree graph. Then

N =
λ∑

i=0

di.
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Figure 4. Regular tree with d = 3 and λ = 5. Node 0 is the root.

Proof: Using induction on λ, the base case is λ = 0, where there exists only the root,
therefore N = 1 = d0.

Induction Step: Assume Nk = ∑k
i=0 d

i for some k ≥ 1. The total includes all nodes a
distance of k away from the root. The number of leaves is dk by our assumption. Therefore,
the k+1 stepwill have d nodes attached to each previous leaf. There are dk∗d new leaves, or
dk+1 nodes added to the previous structure.Hence,Nk+1 =

(∑k
i=0 d

i
)
+dk+1 = ∑k+1

i=0 di.
�

4. Diameter scaling with λ

The network diameter is defined as the size of the largest of all the shortest paths between
every two nodes in a graph. In IONTW, the regular tree graph is constructed such that
when d > 1, the root – labelled node 0 in IONTW – acts as the centre and is exactly half
the diameter from all leaves (see Figure 4). In the case when d = 1, the root is an endpoint
on a contiguous line of nodes (see Figure 5). Hence, we can calculate the diameter, L, of
the regular tree from λ as follows:

L =
{

λ : d = 1
2λ : d > 1

(1)

5. Determining duration of an outbreak

5.1. Using a next-generationmodel

The next-generation model in IONTW is created from a simplified discrete-time model
measured with time�t. In this type of model, after exactly one time step, it is assumed that
any infectious hosts cease to be infectious and move into the removed category. Hence,
since there is a 100% chance of infectious hosts becoming removed at the next time step,
the recovery probability, prec , is set to 1. Thus the simplest case for determining disease
duration in a next generation model would be when the infection probability, pinf , is also
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Figure 5. Regular tree with d = 1 and λ = 5. Node 0 is the root.

Figure 6.Disease duration in a next-generationmodel with pinf = 1 on a regular tree graph as a function
of population size, as determined by varying values of λ (with corresponding duration) and d = 2. Note
that here we are setting the root to be the index case.

set to 1. This case will be our initial focus, and we discuss additional cases in subsequent
sections.

5.1.1. Duration scaling with population size
We know d changes the number of nodes, yet for SIR models on a regular tree graph, it
has no effect on duration when the root is the index case. It is interesting, however, to
observe the relationship between disease duration and network size (as defined by number
of nodes and determined by λ and d). Figure 6 displays the duration as a function of size
(for 1 ≤ λ ≤ 5) in the next generation model with pinf = 1.

5.1.2. Duration scaling with d
As we just noted, when the root is the index case, the outbreak will have the shortest
duration regardless of d, since the root is on average the shortest distance from all other
nodes. In other words, the maximum distance from the root to any given node is λ. This
creates a lower bound for an outbreak’s duration: λ + 1. The extra 1 tick accounts for
the additional time step required for the last infectious nodes to become removed. Figure
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Figure 7.Disease duration in a next-generationmodel with pinf = 1 on a regular tree graph as a function
of tree height, λ, for various values of d. Note that here we are setting the root to be the index case.

7 provides a reference for observing these results with varying tree heights, λ, providing
another view of the results depicted in Figure 6. We see that the duration will persist for
λ + 1 ticks regardless of d.

If a random node is introduced as the index case, and if d > 1, the diameter of the graph
is 2λ. Therefore, in a next-generation model with pinf = 1, duration is bounded above by
2λ + 1. The case when d = 1 is more unique; the graph is created such that the root will
be the furthest node from the single leaf. A random index case will on average be close to
halfway between the root and the leaf. The bounds of duration, δ, are therefore given by

λ

2
≤ δ ≤ λ + 1 : d = 1 (2)

λ + 1 ≤ δ ≤ 2λ + 1 : d > 1 (3)

Figure 8 provides a picture of how duration scales with λ, for various values of λ and d,
when the index case is chosen at random.

5.1.3. Duration scaling by index case location
As mentioned in subsection 5.1.2, there is a notable difference in duration between
instances where the index case is the root and when the index case is a randomly selected
node in the body of the tree graph. The duration difference between when an index case
is a root or a leaf is depicted in Equation 3. In a next generation model with pinf = 1, the
duration will always equal 1 plus the maximum distance between the index case node and
any other node in the network. For example, a leaf, whose maximum distance to any other
node is 2λ, will produce an outbreak with duration = 2λ + 1.

In a model where pinf = prec = 1 and with a random index case, the mean duration
equals the weighted average of the duration for each node multiplied by the number of
nodes with that duration. There are various ways to categorize these nodes, one of which
is by location. A tree graph can be visualized as a series of levels, the root makes up level 0,
adjacent nodes are contained in level 1, and so on, until the leafs make up level λ. Nodes
in each level have in common a maximum distance to all other nodes and hence, when
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Figure 8.Disease duration in a next-generationmodel with pinf = 1 on a regular tree graph as a function
of tree height, λ, for various values of d. Here the index case is chosen randomly by IONTW. Data points
represent averages from 100 simulations.

these nodes are chosen as an index case, they produce the same duration: Maximum
distance + 1. The maximum distance is the distance between the current level to the root,
plus the height of the tree. Therefore, the mean duration equals a weighted average of the
nodes in each level multiplied by the duration they would produce.

Demonstrated below, there are three parts to the sum that make up the mean duration,
δλ, for random index cases. The first term seen in the equations below is the total number
of nodes (refer to Theorem 1). The second sum multiplies the number of nodes at each
level (dj) by the duration for outbreaks occurring at that level. In the case where d = 1,
λ is equal to the diameter of the graph, and the duration is one more than the maximum
distance possible, either between the leaf and j (λ − j) or the root and j (j) . All other cases
of d > 1 have a more predictable distance of λ + j.

δλ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1∑λ
i=0 di

λ∑
j=0

(
(dj)(Max(λ − j, j) + 1)

) : d = 1

1∑λ
i=0 di

λ∑
j=0

(
(dj)(λ + j + 1)

) : d > 1

(4)

Results of expected and observed durations are shown in Figure 9. Each data point
for the observed results is the mean duration of 1000 trials. For all data, the deviation
between expected and observed is less than 2%, and 84% of results have a deviation smaller
than 1%.

5.2. Using a general discrete-timemodel with a random index case

In general discrete-time models, outbreaks are specified in terms of varying transition
probabilities (pinf and prec) and size of time step�t. Here, we use a unitless time step equal
to 1 tick. These models are similar to next-generation models except that pinf and prec can
take values between 0 and 1. For instance, pinf = 0.5 means that adjacent node(s) to an
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Figure 9. Expected and observed mean duration in a next-generation model with pinf = 1 on a regular
tree graph as a function of tree height, λ, for various values of d. Note that we are setting the index case
to be random and calculating the observed duration upon the possible index case locations. Error bars
show one standard deviation above and below the mean duration computed from 1000 runs.

infectious node will have a 50% probability of becoming infectious at the next time step.
When pinf decreases, some hosts may escape infection; likewise, as prec decreases, hosts
will, on average, stay infectious for a longer time.

When pinf is closer to 0 than 1, the likelihood of adjacent nodes acquiring infection
is lower, leading to a smaller final size, defined to be the total number of hosts that
experience infection throughout the time course of the disease; in turn, this leads to fewer
opportunities for the infection to stay active. Hence the average duration will approach 0
as pinf approaches 0. A higher prec value will also reduce the average duration by removing
infectious nodes sooner.

When pinf is closer to 1 than 0, nodes are more likely to become infected from contact.
With a greater proportion of nodes infectious, the duration is largely affected by prec . For
prec close to 1, the duration approaches 2λ + 1, the value found in the next generation
model. At low prec , nodes will stay infectious for a very long time, therefore duration values
increase much faster. These results are shown in Figures 10, 11, and 12 using a randomly
assigned index node. Notice the leftmost side of each figure. When pinf is close to 0 (in
these trials the lowest value was 0.1), the mean duration is closer to 0. Larger values of pinf ,
combined with a high prec value result in a duration close to λ + 1. For all values of pinf ,
duration grows rapidly as prec decreases.

6. Calculating probabilities of duration when pinf �= 1

The infection probability, pinf , and the end-infection (or recovery) probability, prec , greatly
influence not only average duration but also its variability. However, if we know these
probabilities for a given disease, there is a systematic approach to calculating the chances
that the duration will last any given number of ticks. The average duration will be a
weighted average of all the possible durations.

Let us consider an outbreak with the root as an index case. Initially, we shall hold
prec = 1 and d = 2. The probability of one node getting infected is equivalent to the
infection probability, pinf . If there are two nodes connected to the infectious root node,
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Figure 10. Results for duration as a function of pinf and prec on a regular tree graph with d = 2. An
initial case with λ = 1 is shown, as well as the average change as a network increases in height up until
λ = 5. Trials were conducted with a random index case. Each data point represents the average over
100 simulation runs.

Figure 11. Results for duration as a function of pinf and prec on a regular tree graph with d = 3. An
initial case with λ = 1 is shown, as well as the average change as a network increases in height up until
λ = 5. Trials were conducted with a random index case. Each data point represents the average over
100 simulation runs.

there are three possible options for infection at the next time step, one of which can happen
in two different ways: 1) neither node becomes infected with probability (1 − pinf )2; 2)
one of the two nodes becomes infected with probability 2(pinf ∗ (1− pinf )); 3) both nodes
become infected with probability pinf 2.

Each node will either contribute to the spreading infection with probability pinf or not
contribute with probability (1 − pinf ). Since we are adding up all the possible events, we
will account for all possible combinations of infectious nodes. For instance, the root has
d adjacent nodes so it can infect

(d
0
)
,
(d
1
)
,
(d
2
)
, …, or

(d
d
)
nodes. For any 0 ≤ r ≤ d, there

is probability pinf r that r nodes are infected at the next time point. Additionally, there is
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Figure 12. Results for duration as a function of pinf and prec on a regular tree graph with d = 4. An
initial case with λ = 1 is shown, as well as the average change as a network increases in height up until
λ = 5. Trials were conducted with a random index case. Each data point represents the average over
100 simulation runs.

a probability (1 − pinf )d−r that all other adjacent nodes are not infected at the next time
point.

For nodes at different distances, i, from the root, we look at how many nodes there
are within that corresponding distance (i.e.

∑i
j=0 d

i) and then count the ways they could
be infected (using the above method of combinations). The number of infectious nodes
at distance i will influence the number of nodes that could be infected at distance i + 1.
For instance, if two nodes are infected by the index case, there are 2d nodes which could
possibly become infectious at the next time point. The probability that the duration is
equal to 3 is equivalent to the probability of the outbreak reaching nodes two edges away
from the index and not continuing any further. That is calculated as the probability that
the outbreak ends at the nodes at a distance of 3, multiplied by the double sum of the
probability that nodes at a distance of 2 are infected, respectively, by nodes adjacent to the
index case.

When prec = 1, outbreak duration will stop one time step after the moment when no
additional nodes are infected. The probability of a duration of δ is equal to the sum of the
probability that some node–or nodes–a distance of δ − 1 from the index case are infected
and the probability that none of the nodes at a distance δ from the index case are infected.
Therefore, consider k infected nodes and d ∗ k adjacent susceptible nodes. (1− pinf )d∗k is
the probability that none of the adjacent nodes will become infected.

With the previous work, we can continue to multiply our sums for each probability: Let
Pi denote the probability that the duration is i ticks.We can use the fact that all probabilities
must add to 1 to find the Pλ+1 term. Remember λ represents themaximumdistance a node
could exist from the root.

From above, we know that when prec = 1 and the index case is the root, the maximum
duration is λ + 1. The expected average duration, δλ, of a graph with height λ and a root
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index case is a weighted average of each of the possible durations:

δλ = 1 ∗ P1 + 2 ∗ P2 + · · · + (λ + 1) ∗ (Pλ+1) =
λ+1∑
i=1

i ∗ Pi (5)

Using the reasoning provided above, each of the respective probabilities is calculated as
follows:

P1 = (1 − pinf )d (6)

P2 =
d∑

r=1

(
d
r

)
pinf r(1 − pinf )d−r(1 − pinf )d∗r (7)

P3 =
d∑

r=1

[(
d
r

)
pinf r(1 − pinf )d−r ∗

[ d∗r∑
s=1

(
d ∗ r
s

)
pinf s(1 − pinf )d∗r−s(1 − pinf )d∗s

]]
(8)

P4 =
d∑

r=1

[(
d
r

)
pinf r(1 − pinf )d−r ∗

[ d∗r∑
s=1

(
d ∗ r
s

)
pinf s(1 − pinf )d∗r−s

∗
[d∗r∗s∑

u=1

(
d ∗ r ∗ s

u

)
pinf u(1 − pinf )d−u(1 − pinf )d∗u

]]]
(9)

...

Pλ+1 = 1 − (P1 + P2 + ... + Pλ) (10)

A Pi term will contain an i− 1 amount of nested sums. The outermost sum refers to the
nodes directly adjacent to the root, the innermost sum refers to the nodes that experience
infection and are at a distance of i − 1 from the root.

IONTW allows us to easily test these predictions against the simulations. As shown in
Figure 13, for various tree degrees, d, tree heights, λ, and for a wide range of pinf values,
our expected durations are in strong agreement with the observed mean durations.

7. Future work

The final size offers a different measure of the severity of an outbreak. The trials conducted
in Section 5 can be replicated for random or set index cases to collect data for final
size. A final size of 0.3, meaning 30% of the population experienced infection, is the
threshold at which point outbreaks are commonly classified as major outbreaks. For each
λ and d there will exist a value of pinf and prec that allow the final size to reach this
threshold. Consider how an increasing infection probability leads to larger outbreaks by
spreading infection quicker, and a decreasing recovery probability leads to larger outbreaks
by keeping infection active for longer. Let the point (x0, y0) be the coordinate pair for the
final size to reach this threshold for major outbreak on a given regular tree graph, with prec
on the x-axis and pinf on the y-axis. Then x ≤ x0 and y ≥ y0 will on average cause a major
outbreak. Consequently, x > x0 and y < y0 will on average cause a minor outbreak with
final size less than 0.3. Future work will include a detailed investigation of how contact
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Figure 13. Expected and observed mean duration in a discrete model with prec = 1 and values of pinf
ranging from 0.1 to 1 in increments of 0.1, for several values of λ and d. Note that we are setting the root
to be the index case and calculating an expected duration based upon Equation 5.

network size and structure, pinf , and prec all work together to affect the final size of an
outbreak.

In this paper, all studies were conducted with unchanging parameters within each
individual trial. In reality, control measures attempt to delay or reduce an outbreak by
altering parameters before a major outbreak occurs. For instance, pinf can be reduced
through behaviourmodification such aswashing hands, and prec can be increased by caring
for infected individuals. The threshold of values that cause a major outbreak provides the
first step towards directing efforts of control measures. Consider a disease whose initial
infection probability, pinf , is very close to y0, while the respective recovery probability,
prec , is much smaller than x0. Control measures that are focused on shifting the infection
probability below y0 will prevent major outbreaks much more efficiently than similar
attempts to change the probability of recovery.

We have already begun to conduct trials to observe the x0, y0 threshold for regular tree
graphs. For graphs of various λ and d, there are patterns emerging as to the influence of
the size on the threshold. Initially, we observe that d has minor effects while λ increases the
infection probability necessary for major outbreaks, at a decreasing rate of change. This
opens more opportunities not only to predict the threshold for regular tree graphs, but
also to predict the threshold on irregular tree graphs.

We would also like to further our investigations on irregular tree graphs, since these
graphs aremore realistic due to the fact they are able to represent contact networks that are
missing the symmetry of a regular tree graph. Irregular tree graphswill contain fewer nodes
than a regular tree graph with the same λ and d, where here d would denote maximum
degree of any node in the tree. With fewer nodes and edges, the spreading infection on
an irregular tree graph will likely follow tendencies of an infection spreading on a regular
tree graph with smaller λ and d. The observations of a regular tree graph could be a bound
on the maximum duration and final size of an outbreak on an irregular graph. Our initial
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efforts will involve a comparison of the differences in number of nodes and resulting
outbreak duration and final size between the two types of graphs.

8. Conclusion

A regular tree graph provides one type of simplified structure to observe patterns in the
movement of outbreaks on a contact network. The outbreaks that fit this network are
not necessarily those of pathogens and infectious hosts. One example is the information
flow in the military or a large business, where the secretary of defense or a CEO is the
root and has connections to several departments who are not directly in contact with each
other. Each department has a director who shares the message with the next person in
the chain of command. In general, military structure can be represented by a tree graph
because personnel only pass orders to those directly below them in their respective unit.
An ‘outbreak’ of an order in themilitary would respond similarly to an outbreak beginning
at the root and following a very high infection probability (because orders are very likely
to be followed).

Other examples are seen in networks such as subway systems, water channels, hereditary
trees or plant networks. Infectious diseases can be traced through public transportation on
land through buses and subway systems, or on water through ships that transport infection
in the form of humans, rats or even contaminated cargo. Hereditary (genetic) disorders
such as colour blindness, cystic fibrosis or ALS also represent outbreaks of a different
variety on tree networks. Plants pass xylem and other molecules through tissue from the
roots to all parts above ground, in a pattern similar to a tree network.

Although these scenarios may result in loops, as individuals can be infected multiple
times, the tree network creates a simplified situation for observations. The height of the
graph is greatly influential in determining the duration of an outbreak, even more so than
the number of branches which has minimal effect after the root is infected. Duration can
be calculated for next generation models where pinf = prec = 1. In more general discrete
models, the duration can be calculated when the index case is the root, but becomes
an increasingly complicated sum of sums. The distance between the index case and the
furthest nodes becomes the most important factor with both scenarios.
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Appendix 1. Next generationmodel duration equation
Code used to calculate Equation 4 in Python and results shown in Figure 9.

http://www.ohio.edu/people/just/IONTW/
http://www.ohio.edu/people/just/IONTW/
http://www.sciencemag.org/content/300/5627/1961.abstract
http://www.sciencemag.org/content/300/5627/1961.abstract
http://dx.doi.org/10.1126/science.1086478
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/


74 C. SEIBOLD AND H. L. CALLENDER

Appendix 2. Discrete model duration equation
Code used to calculate Equation 5 in Python and results shown in Figure 13.
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