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ABSTRACT

We study the equilibrium dynamics of a Lur’e system modelling a
structuredpopulation,where adult conspecifics are assumed tohave a
negative density-dependent feedback on the recruitment of possible
recruits. We find that, depending on the model’s parameter values,
the population either goes extinct or has a positive equilibrium that
is asymptotically stable, globally attracting or globally asymptotically
stable. We apply our results to an integral projection model for the
Platte thistle (Cirsium canescens) and highlight open aspects of this
problem for future work.
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1. Introduction

Population dynamics is the area of science which attempts to explain the time variations
of the size and structure of biological populations in a simple, mechanistic way (Bacaer,
2011). When modellers drop the assumption of homogeneity within the population, a
structured population model is used. Structured population models describe the evolution
and distribution of populations of individuals throughout different classes, categories
or characteristics through modelling the contributions of, and/or interactions between,
individuals within and throughout these stages. For example, the categorization of in-
dividuals can be based upon age, measure of body size, life cycle stage, spatial location
and gender or genetic differences (Caswell, 2001; Cushing, 1998; Easterling, Ellner, &
Dixon, 2000). Structured models have the advantage of being able to create a link between
the individual level and the population level, accounting for dynamical behaviours that
simple, unstructured models cannot.

It is common for population biologists to use discrete-time models to model stage-
structured populations, which generally take the form of difference equations. Population
projection matrix (PPM) models, which assume that the population is structured with
respect to a discrete stage, are commonly used for predicting the dynamics of structured
populations in discrete time (for a survey of PPMs, see Caswell, 2001). In many cases,
however, the stage used to structure the population is continuous (size, for example).
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Instead of discretizing the stage variable so that one can use a PPM population modellers,
beginningwithEasterling et al. (2000), have started using integral projectionmodels (IPMs),
which assume that continuous stages (but still consider time as discrete). Despite the
different modelling assumptions, the mathematical properties of PPMs and IPMs are very
similar (Lubben, 2009). In this paper, we study discrete time models of the form

nt+1 = M(nt), (1)

where the sequence {nt}∞t=0 evolves in a Banach space X (which is often called the pop-
ulation’s state space) and M is a non-negative operator from X to itself. The Banach
spaces X we will explicitly consider will be L1(L,U), for some continuous set of stages
(L,U) (in the IPM case), or R

m (in the PPM case). Provided the operatorM is linear (the
ecological processes involved are density independent), the long-term populations grow
(or decline) exponentially at a rate of λ, the leading eigenvalue of M (Lubben, 2009).
Many processes in population biology are density dependent, however, which cause the
operatorM to be nonlinear. WhenM is nonlinear the population usually does not exhibit
exponential growth as t → ∞. In deterministic, density-dependent models one usually
sees the population converge an equilibrium, a cycle, invariant loop or a strange attractor
(Caswell, Takada, & Hunter, 2004).

Many modellers break the operatorM into two operators

M = A + B,

where the operator Amodels survival and movement between stages and Bmodels repro-
duction (Cushing, 1998; Rebarber, Tenhumberg,&Townley, 2012; Townley, Tenhumberg,
& Rebarber, 2012). The authors Rebarber et al. (2012) and Townley et al. (2012) assume
thatA is a linear operator, withB a nonlinear (density-dependent) operator and decompose
B by assuming that a juvenile’s stage variable is independent of its mother’s stage variable,
and is also independent of population size. This allows B to be written as

B = bF,

where F is a nonlinear functional from X to R
+ that gives the density of new recruits

created by the population each time-step, and b is the juvenile stage distribution. The
authors in Rebarber et al. (2012) and Townley et al. (2012) also assume that F can be
written as

F(nt) = g(cTnt)cTnt = f (cTnt),

where f is a scalar function from R
+ to itself and cT is a linear functional from X to R

+.
Here, cTnt is the density of possible recruits at time t (for example, seeds or seedlings),
while g(cTnt) is the establishment probability of a possible recruit, given a density of cTnt
of possible recruits. The establishment probability g is generally a decreasing function
of its argument, as an increase in, for example, seed density is assumed to decrease the
establishment probability of a any given seed. With these, one can write (1) as

nt+1 = Ant + bf (cTnt), (2)
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which is referred to as a Luré system. Luré systems have been used frequently to study the
dynamics of plant and fish populations (see, for example, Eager et al., 2012, 2014a, 2014b;
Eager & Rebarber, 2016; Rebarber et al., 2012; Rose et al., 2005; Townley et al., 2012).

As long as the triple (A, b, cT) satisfies realistic ecological assumptions and f (y) = g(y)y
is increasing, concave down, with f (0) = 0, the long-term dynamics of (2) are determined
by the stability radius of (A, b, cT), which we will call pe. pe is the smallest positive number
p such that the linear operator

A + pbcT

has spectral radius equal to 1. Notice that A + pbcT is just the operator in the model (2)
with f (y) = g(y)y replaced with the linear function f (y) = py. Thus, pe is simply the
establishment probability that would cause stasis in a density-independent setting.

It is proved in Hinrichsen and Pritchard (2005) that

pe = (cT(I − A)−1b)−1.

If we define g0 := supy>0 g(y) and g∞ := inf y>0 g(y) to be the highest and lowest possible
density-dependent establishment probabilities, respectively, then it is proven in Rebarber
et al. (2012) and Townley et al. (2012) that if the stability radius pe < g∞, the the spectral
radius of the operator

A + g(y)bcT (3)

will be greater than unity for all y, meaning the population will eventually blow up. On the
other hand, if pe > g0, the spectral radius of (3) is smaller than unity for all y, causing the
population to eventually go extinct. If pe ∈ (g∞, g0), the establishment probability is in a
regionwhere the population eventually settles down to a globally stable equilibrium vector.
The results can be summarized in the following theorem from Rebarber et al. (2012) and
Townley et al. (2012):
Theorem 1.1:

(1) If pe > g0, then the zero vector is a globally stable equilibrium for (2) in the sense that
for every n0 in the positive cone K of X,

lim
t→∞ nt = 0.

Furthermore, for every ε > 0, there exists δ > 0 such that ‖n0‖ < δ implies ‖nt‖ < ε

for all t ∈ N.
(2) If pe ∈ (g∞, g0) then there exists y∗ which satisfies the equation f (y∗) = pey∗. The

vector n∗ ∈ X given by
n∗ = pey∗(I − A)−1b

is a globally asymptotically stable equilibrium of (2) on K \ {0}, i.e.

lim
t→∞ nt = n∗,

and for every ε > 0, there exists δ > 0 such that ‖n0 − n∗‖ < δ implies ‖nt − n∗‖ < ε

for all t ∈ N.
(3) If pe < g∞, then there exists n0 ∈ K such that limt→∞ ‖nt‖ = ∞.
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One may notice that pe is the inverse of the inherent net reproductive number (see
Cushing, 1998, p. 7) for the linear operator

A + 1bcT , (4)

the operator from (2) when one assumes that all possible recruits establish (i.e. g(y) = 1
for all y). The inherent net reproductive number, which we will denote with nR, is the
expected number of offspring per newborn during the duration of its lifetime, and for the
operator (4) it is the expected number of possible recruits per newborn during the duration
of its lifetime. Notice, in this formulation, it follows that penR = 1 is the average number of
newborns produced during the lifetime of the average newborn once the population is at
equilibrium. From this perspective, the population modelled by (2) blows up if nRg∞ > 1,
goes extinct if nRg0 < 1 and has a globally stable equilibrium if nRg0 < 1 < nRg∞.
Biologically, the first case depicts the situation where the average newborn has at least one
offspring in its lifetime, even when the establishment probability is at its lowest, while the
second depicts the case where the average newborn has fewer than one offspring, even
when establishment probability is at its highest, and the third case posits the existence
of an establishment probability such that the average number of offspring per newborn
will be equal to one. While the results in this paper can be reformatted in the context of
nR, we prefer to work with pe, since it provides a clear threshold for which the density-
dependent establishment probability g( · ) can be related as it pertains to existence and
stability/attractivity of positive equilibrium populations.

A key assumption in (1) is that density dependence only enters in via competition from
possible recruits with other possible recruits (e.g. seeds vs. seeds). However, in many cases
adult conspecifics can impose a negative density-dependent feedback on the establishment
of recruits (Pico&Retana, 2008; SilvaMatos, Freckelton,&Watkinson, 1999). For example,
in perennial plant populations adult conspecifics can elicit a negative density-dependent
feedback on seedling establishment through resource-limiting mechanisms such as shad-
ing. Therefore, in this paper we discuss the theoretical implications of weakening the
assumption that density-dependent feedbacks are limited to feedbacks between possible
recruits. To incorporate a negative feedback from adult conspecifics on recruitment we
will assume that f is a function of both the density of possible recruits, y = cTnt , and of
some measurement of the amount of resources that are used by the adult population at
time t, which we will call z = dTnt . Here, dT is a functional from X to R

+ modelling the
amount of resources that a possible recruit would use for establishment that is taken up by
the adult population. The units of dT are those of the possible recruits (e.g. seeds) divided
by those of the adult population (e.g. number or density of adult plants), so that y + z can
be added together. To incorporate the effect of adult conspecifics, we will assume that f
now takes the form

f (y, z) = g(y + z)y,

where g is the same establishment probability as before. It follows that f (·, z) is increasing,
concave down in y with f (0, z) = 0 for each fixed z and that f (y, ·) is a decreasing function
in z for each fixed y. Examples of functions that incorporate these assumptions are a
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modified power function of the form

f (y, z) = βy
(z + y)1−a with a ∈ (0, 1) and β > 0,

or a modified Michaelis–Menten-type function of the form

f (y, z) = αy
β + z + y

with α > 0 and β > 0.

With these new assumptions, (2) becomes

nt+1 = Ant + bf (cTnt , dTnt). (5)

In the coming sections we study the asymptotic properties of the unique positive equi-
librium population n∗ of this Luré system, and show the effects of including density
dependence from adult conspecifics. We find that, for some (cT , dT) combinations n∗
is globally attracting and/or globally asymptotically stable, but for other combinations the
global properties of this equilibrium are still an open question. We apply these results to a
published model from Rose et al. (2005).

2. Abstract formulation

We call X the Banach space in which our population nt evolves. That is, the population
nt ∈ X for all t. In the population project matrix case, X = R

m, where m is the number
of discrete life-history stages. In the integral project model case X = L1(L,U), where the
interval (L,U) is the range of the population’s continuous life-history stage variable. We
only consider the cases where X = R

m or X = L1(L,U). Since nt is a population for each
t, we wish to work with non-negative vectors in X and non-negative operators on X. Let
K ⊂ X be a reproducing cone inducing a partial order ≥ on X, where x ≥ y means that
x − y ∈ K . If x ≥ 0, i.e. x is in K , we say that x is a non-negative vector. An example of
a nonnegative vector in R

m is a vector with all nonnegative elements and an example of a
nonnegative vector in L1(L,U) is a function that is nonnegative for almost every element
in (L,U).

An operator onX is considered a non-negative operator if it maps non-negative vectors
to non-negative vectors. For example, whenX = R

m, anm×mmatrixM is a non-negative
operator on X if and only if all of its entries are non-negative.

For our model (5) we need some assumptions on the triple (A, b, cT), as well as dT and
f . These assumptions are natural when modelling structured population dynamics. These
assumptions are given by the following:

(A1) A ∈ L(X) is a non-negative operator with spectral radius r(A) < 1;
(A2) b is a non-negative vector in X;
(A3) If X = L1(L,U), cT : X → R is a non-negative functional in the sense that

cTn ≥ 0, for all n ≥ 0

or, if X = R
m, the matrix A + pbcT is a primitive matrix for all p > 0;
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(A4) dT : X → R is a non-negative functional in the sense that

dTn ≥ 0, for all n ≥ 0.

Additionally,
dT (I − A)−1b > 0.

(A5) The function g : R
+ → R

+ is a C1 and strictly decreasing function such that
limy→∞ g(y) = 0. The the function f (y, z) = g(y + z)y is increasing and concave
down in y for each z.

Biologically, (A1) prevents the existence of immortal individuals (i.e. individuals with
infinite life expectancy). (A2) states that the distribution of newborns’ lives in the same
space as the population itself. (A3) states that the production of possible recruits is
nonnegative in the X = L1(L,U) case, while in the R

m case such that there exists a t > 0
where the matrix (A + pbcT)t is a strictly positive for all p > 0. The former assumption is
the minimum assumption necessary for a population model, while the latter is one that is
imposed on many of the linear matrix models in the literature (Stott, Townley, Carslake,
& Hodgson, 2010). The positivity of (A + pbcT)t for some t ensures that individuals in
every stage can eventually contribute individuals to every other stage. (A4) States that the
equilibrium stage distribution (I−A)−1b elicits somenegative density-dependent feedback
on recruitment, and that this density-dependent recruitment is nonnegative. Finally, (A5)
guarantees that the establishment probability decreases as the density of possible recruits
and/or adult conspecifics increases, and as the possible recruits/adult conspecifics becomes
arbitrarily large, the probability of any one of the possible recruits establishing will become
arbitrarily small. The assumptions on g imply also that f (0, z) = 0 for each z and f is a
decreasing function of z for each y.

What distinguishes the setting in this paper from that in Rebarber et al. (2012) and
Townley et al. (2012) is that the nonlinear feedback

g(y + z)y = f (y, z)

is not a monotone increasing function in population size: certain increases in the popula-
tion nt will elicit population decline while others will elicit population increase. This is in
great contrast to the results in Rebarber et al. (2012), Townley et al. (2012), and subsequent
work (Eager et al., 2014a; Smith & Thieme, 2013). In the next section we show how this
non-monotonicity alters the stability results we see in those references.

3. Equilibrium results

In this section, we present results on the persistence, global asymptotic stability, global
attractivity and asymptotic stability of the population nt modelled by (5). Theorem 3.1
shows that if the stability radius pe exceeds the largest possible establishment probability
g0, the extinction state nt = 0 is globally asymptotically stable, and the population dies out
regardless of initial population. Biologically, thismeans that if the establishment probability
in the best-possible, density-independent scenario is not enough to push the spectral radius
of the operator A+ pbcT above unity, than the population will decay at a rate less than the
spectral radius of A + pebcT
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Theorem 3.2 shows that, if g0 > pe and the functional dT modelling competition from
adult conspecifics is a constant multiple of the functional cT modelling the production of
possible recruits, then (5) has a globally asymptotically stable equilibrium population n∗.
When pe < g0 the equilibrium population n∗ and the stability radius pe solve the system of
equations

n∗ = An∗ + pebcTn∗ (6)
pe = g(cTn∗ + dTn∗),

yielding

n∗ = peg−1(pe)
1 + pep−1

d
(I − A)−1b, (7)

where pd = (dT(I − A)−1b)−1 is the stability radius of the triple (A, b, dT) and g−1 is the
inverse of the function g , which exists due to its monotonicity.

Notice the the equilibrium population in (7) can be understood in a straightforward
way ecologically: the vector (I − A)−1b = b + Ab + A2b + · · · is the full evolution of
the stage structure of a population that is initially distributed via the newborn distribution
vector b. The constant pe, as previously stated, is the long-term establishment probability
for possible recruits, while

g−1(pe)
1 + pep−1

d

is the long-term production of possible recruits. The only difference between n∗ in (7) and
that from Theorem 1.1 is the production term. The two become equal when dT = 0, and
n∗ → 0 as dT increases (and pd subsequently decreases), as expected.

Theorem 3.3 states that if g0 > pe and

r

(
A + pebcT + b(dT + cT)g ′(g−1(pe))

g−1(pe)
1 + pep−1

d

)
< 1, (8)

then n∗ given by (7) is an asymptotically stable population. The linear operator in (8) can
be thought of as the operator

A + pebcT ,

which has spectral radius equal to unity, minus the operators

−bdTg ′(g−1(pe))
g−1(pe)
1 + pep−1

d
,

and

−bcTg ′(g−1(pe))
g−1(pe)
1 + pep−1

d
,

which is the sum of the density-dependent influences on recruitment from a) density of
adult conspecifics and b) the density possible recruits.
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Additionally, if pd > pe then the population n∗ given by (7) is also a globally attracting
equilibrium population, which coupled with (8), makes it a globally asymptotically stable
equilibrium population. Biologically, pd > pe means that

dT (I − A)−1b < cT(I − A)−1b,

which implies that competition from the equilibrium distribution v = (I −A)−1b of adult
conspecifics is weaker than the equilibrium production of (and competition elicited by)
possible recruits. If this is the case, then n∗ from (7) is globally attracting, and globally
asymptotically stable if (8) additionally holds. We present these results formally below.
Theorem 3.1: Suppose (A1), (A2), (A3), (A4) and (A5) hold and pe > g0, then the zero
vector is a globally asymptotically stable equilibrium for (5) in the sense that, for every
n0 ∈ K,

lim
t→∞ nt = 0.

Futhermore, for every ε > 0, there exists a δ > 0 such that ||n0|| < δ implies that ||nt || < ε

for all t ∈ N.
Proof: If pe < g0, then

nt+1 = Ant + bg(cTnt + dTnt)cTnt ≤ Ant + pbcTnt

for some p ≤ pe which, by induction, means that

nt ≤ (A + pbcT)tn0.

Since r(A + pbcT ) < 1 we have that limt→∞ nt = 0. The boundedness of (A + pbcT)

implies the last statement of the result. �
Theorem 3.2: Suppose (A1), (A2), (A3), (A4) and (A5) hold and pe < g0. Assume further
that there exists a γ such that dT = γ cT . Then the vector n∗ from (7) is a globally
asymptotically stable equilibrium of (5) in K \ {0} in the sense that

lim
t→∞ nt = n∗

for any n0 ∈ K \ {0}, and for every ε > 0, there exists a δ > 0 such that ||n0 − n∗|| < δ

implies that ||nt − n∗|| < ε for all t ∈ N.
Proof: The result followsdirectly fromTheorem3.3 inRebarber et al. (2012) andTheorem
1.1 in Townley et al. (2012), since if f (y) = g(y)y is increasing and concave down in y with
f (0) = 0, then so is f (y, γ y) = g((1 + γ )y)y. �
Theorem 3.3: Suppose (A1), (A2), (A3), (A4) and (A5) hold and pe < g0. If the specral
radius of the operator

A + pebcT + b(dT + cT)g ′(g−1(pe))
g−1(pe)
1 + pep−1

d
(9)

is less than unity, the vector n∗ from (7) is a locally asymptotically stable equilibrium of (5)
in K \ {0}.
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If pe < pd, then the vector n∗ from (7) is a globally attracting equilibrium of (5) in K \ {0}
in the sense that

lim
t→∞ nt = n∗

for any n0 ∈ K \ {0}.
If pe < pd and the spectral radius of the operator (9) is smaller than unity, then n∗ from

(7) is a globally asymptotically stable equilibrium of (5) in K \ {0} in the sense that

lim
t→∞ nt = n∗

for any n0 ∈ K \ {0}, and for every ε > 0, there exists a δ > 0 such that ||n0 − n∗|| < δ

implies that ||nt − n∗|| < ε for all t ∈ N.
Proof: To prove the first part we know that, for any pe, pd such that pe < g0, linearizing
(5) about the equilibrium population n∗ from (7) yields the following operator

A + bg(cTn∗ + dTn∗)cT + bg ′(cTn∗ + dTn∗)(cTn∗)(cT + dT ),

which reduces to the operator (9). The local asymptotic stability of n∗ is achieved when the
spectral radius of (9) is smaller than unity (Townley et al., 2012), completing the proof.

To prove the second part we start by successive approximation using the results from
Rebarber et al. (2012) and Townley et al. (2012), which covers the X = L1(L,U) case and
Townley et al. (2012), which covers the X = R

m case. In both cases, the fact that g is
decreasing means that, for any t ∈ N,

nt+1 = Ant + bf (cTnt , dTnt) ≤ Ant + bf (cTnt , 0). (10)

The rightmost part of (10) is the right-hand side of the model (2), whose global asymptotic
stability is the subject of Theorem 1.1. Thus, we define nt to be the population with the
same initial condition as that modelled with (5) solving

nt+1 = Ant + bf (cTnt , 0). (11)

Since g0 > pe, we have that

n∗
0 = peg−1(pe)(I − A)−1b

is the globally asymptotically stable equilibrium vector of (11). Additionally, we know that,
for every ε > 0 we have, for large enough t,

nt ≤ n∗
0 + ε

0 + 1
1,

where 1 is the vector with a 1 in every component (in the R
m case), or the function that’s

equal to 1 everywhere (in the L1(L,U) case). Thus, by the monotonicity of g we have

nt+1 = Ant + bf
(
cTnt , dTnt

)
≥ Ant + bf

(
cTnt , dT

(
n∗
0 + ε

0 + 1
1

))
. (12)
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The right-hand side of (12) is simply another version of the model (2), with g(y) =
g(y + dTn∗

0 + ε
0+11)), since dT (n∗

0 + ε
0+11) is simply a constant and f (y, dT(n∗

0 + ε
0+11))

is increasing, concave down, with f (0, dT(n∗
0 + ε

0+11)) = 0. Theorem 1.1 states that the
population nt that solves

nt+1 = Ant + bf
(
cTnt , d

T
(
n∗
0 + ε

0 + 1
1

))
(13)

has a non-zero, globally asymptotically stable equilibrium vector if

g
0

= g
(
0 + dT

(
n∗
0 + ε

0 + 1
1

))
> pe,

which can be rewritten as

g
(
peg−1(pe)dT(I − A)−1b + ε

1 + 0
dT1

)
= g

(
peg−1(pe)p−1

d + ε

1 + 0
dT1

)
> pe,

which reduces to
pe +

(
pddT1

g−1(pe)

)
ε < pd.

Since ε > 0 was arbitrary, in the case where pe < pd , (13) has a positive, globally
asymptotically stable equilibrium vector n∗

0. Additionally, we know that, for every ε > 0
we have, for large enough t

nt ≥ n∗
0 − ε

0 + 1
1.

From n∗
0 we can create a new model

nt+1 = Ant + bf
(
cTnt , dT

(
n∗
0 − ε

0 + 1
1

))
, (14)

with the same initial condition as that modelled with (5). This is simply another version of
the model (2) which, by the monotonicity of g , is also larger than nt from (5) for all t. The
globally stable equilibrium n∗

1 of this new model is such that n∗
1 < n∗

0, by the fact that, for
sufficiently small ε, dT (n∗

0 − ε
0+11) > 0 (by A4) and g is decreasing. We can then use n∗

1 to
create another new model

nt+1 = Ant + bf
(
cTnt , d

T
(
n∗
1 + ε

1 + 1
1

))
, (15)

which is smaller than nt from (5) for all t, and whose globally stable equilibrium n∗
1 is such

that n∗
1 > n∗

0, by the fact that n
∗
1 < n∗

0 and g is decreasing. If we continue in this way, we
can build two sequences {n∗

j }∞j=0 and {n∗
j }∞j=0, where the former sequence is decreasing in

and the latter is increasing. Additionally, for each j we have that, for sufficiently large t:

n∗
j − ε

j + 1
1 ≤ nt ≤ n∗

j + ε

j + 1
1.

Since {n∗
j }∞j=0 and {n∗

j }∞j=0 are monotone sequences, they both have a limit, which we will
name n∗∗ and n∗∗, respectively. By the continuity of g , the former limit solves the following
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fixed-point equation

n∗∗ = An∗∗ + bg
(
cTn∗∗ + dTn∗∗) cTn∗∗,

while the latter solves

n∗∗ = An∗∗ + bg
(
cTn∗∗ + dTn∗∗) cTn∗∗.

Solving for n∗∗ and n∗∗ yield

n∗∗ = pe
(
g−1(pe) − dTn∗∗) (I − A)−1b, (16)

and
n∗∗ = pe

(
g−1(pe) − dTn∗∗) (I − A)−1b. (17)

As we discussed previously in the introduction, the only way the models (11) and (13) and
their subsequent modifications equilibrate is if

g
(
cTn∗∗ + dTn∗∗) = pe

and
g
(
cTn∗∗ + dTn∗∗) = pe,

respectively. Since g is monotone, this can only happen if

cTn∗∗ + dTn∗∗ = cTn∗∗ + dTn∗∗,

or, using (16) and (17),

g−1(pe)−dTn∗∗+pep−1
d

(
g−1(pe) − dTn∗∗) = g−1(pe)−dTn∗∗+pep−1

d

(
g−1(pe) − dTn∗∗) ,

or
dTn∗∗ = dTn∗∗. (18)

It follows that the models

nt+1 = Ant + bf
(
cTnt , dTn∗∗)

and
nt+1 = Ant + bf

(
cTnt , d

Tn∗∗)
both have n∗ from (7) as its unique, positive, globally stable equilibrium population.
Therefore,

lim
t→∞ nt = n∗,

as sought.
To prove the third part we note that, if pe < pd and the spectral radius of (9) is less than

unity, the global asymptotic stability of n∗ follows from the previous two proofs. �
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4. Example

We now apply our results to the Platte thistle (Cirsium canescens) model found in
Rose et al. (2005) and reformulated in Eager et al. (2012). Let n(x, t) be the function
such that

x+δx∫
x

n(x, t) dx

gives the total number of individuals in the thistle population with stage variable in the
interval [x, x + δx]. In Rose et al. (2005), the stage variable x models the natural log of
the root crown diameter of the thistle, at time t, which is in years. We assume that x is
in the interval ( − 2, 5.5), and thus X = L1( − 2, 5.5) is our state space. The survival and
growth kernel consists of the probability sp(x) that an individual of size x survives a given
time-step times the probability g(x, y) that an individual of size x grows to an individual
of size y in one time-step. Finally, since the Platte thistle is a monocarpic plant, we also
need to include the probability that a given thistle does not flower, which we denote with
1 − fp(x). If survival, growth and reproduction are probabilistically independent, we can
give the operator A as

Au =
5.5∫

−2

k(·, x)u(x) dx =
5.5∫

−2

(1 − fp(x))sp(x)g(·, x)u(x) dx,

for u ∈ L1( − 2, 5.5). The vector b is given by the normal probability distribution J(x)
in Rose et al. (2005) modelling the distribution of juveniles in their first year. Finally, to
create the functional cT we assume that an individual needs to survive to reproduce. We
thus multiply this survival probability sp(x) by the probability of reproduction fp(x) times
the density of seed created S(x) to make the functional cT , which has the representation

cTu =
5.5∫

−2

c(x)u(x) dx =
5.5∫

−2

sp(x)fp(x)S(x)u(x) dx,

for u ∈ L1( − 2, 5.5). If follows from Rebarber et al. (2012) that the triple (A, b, cT), using
the functions given in Rose et al. (2005) satisfy the assumptions (A1), (A2) and (A3). For
additional biological background onCirsium canescens, includingmodelling assumptions,
please see pages 454–455 in Rose et al. (2005).

In Eager et al. (2012) we discussed the implications of using a power function

f (y, z) = βy
(z + y)1−a

for the nonlinear fecundity function in (5) in lieu of a more realistic function like a
Michaelis–Menton function. Due to the pathological biological implications of using a
power function, which include allowing for unbounded establishment probabilities, we
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will use the Michaelis–Menton function

f (y, z) = αy
β + y + z

for f in this example.Here,whenα,β > 0, the establishmentprobability g(y) = α(β+y)−1,
as well as the total recruitment function f , satisfy the assumption (A5). We assume that α
and β are the same parameter values found in Eager et al. (2012).

To account for competition from adult conspecifics, we assume that the functional dT

is modelled by the integral

dTu =
5.5∫

−2

d(x)u(x) dx =
5.5∫

−2

sp(x)(1 − fp(x))D(x)u(x) dx.

Thus, we are assuming that only the adult plants that survive and don’t reproduce compete
with possible recruits in their path towards establishment. We assume that D is an
increasing function of x. That is, the larger the root crown diameter of the thistle, the
stronger the competitive feedback. Assume for simplicity that D is a linear function of x:

D(x) = δ(x + 2).

For δ > 0, dT satisfies the assumption (A4), and we can apply the results in Theorems 3.1
and 3.3. Using a convex function for D would cause pd to decrease and hence lower our
chances of being able to use Theorem 3.3 to analyse the stability/attractivity of n∗. The
opposite would be true if we used a concave function for D, as pd would increase in that
case. Since dT is not a constant multiple of cT , it follows that we cannot use the result from
Theorem 3.2.

For the parameter values from Rose et al. (2005) and Eager et al. (2012), we have that

pe = .0216 and g0 = α

β
= 219.6

756.7
= .2902.

Since g0 > pe, the population n(x, t) is persistent in the sense of Smith and Thieme (2013)
(also see Theorem 6.8 in Wen, Smith, & Thieme, 2015), and thus the population does not
go extinct as t → ∞. Additionally, the stability radius of the linear data (A, b, dT) is, as a
function of δ, equal to

pd = .7155 δ−1.

Figure 1 displays the spectral radius of

A + pebcT + b(dT + cT)g ′(g−1(pe))
g−1(pe)
1 + pep−1

d

as a function of δ. Notice that the spectral radius appears to be bounded above by unity,
implying at least the asymptotic stability of the equilibrium population n∗(x), whose
distribution is given by Figure 2. Theorem 3.3 implies the global attractivity (and thus
the global asymptotic stability) of n∗(x) if δ < 33.1173. Thus, it would appear that the
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Figure 1. The spectral radius of the linear operator (9) found from linearizing the model (5) applied to
the Platte thistle (Cirsium canescens), using data from Rose et al. (2005) and Eager et al. (2012), as a
function of the strength δ of density-dependent feedback from adult conspecifics.
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Figure 2. The size distribution of the equilibrium population n∗ from (5) applied to the Platte thistle
(Cirsium canescens), using data from Rose et al. (2005) and Eager et al. (2012). This distribution is
proportional to the function (I − A)−1b and is scaled to integrate to unity.

average thistle would need to have a substantial competitive feedback on establishing seeds
for the global asymptotic stability of the equilibrium population n∗ to be in question.

Figure 3 displays trajectories of the total population size ||n(x, t)||1 under the following
scenarios for δ: 1, 25, 50, 100. Notice that, even in the case where δ ≥ 33.1173, it appears
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Figure 3. Above are trajectories of the model (5) applied to the Platte thistle (Cirsium canescens), using
data from Rose et al. (2005) and Eager et al. (2012). We assumed that the initial population n0 = N0b,
where b is the newborn distribution function and N0 ranges from 50 to 500 in increments of 50. Values
of the strength of density-dependent feedback from adult conspecifics were (a) δ = 1, (b) δ = 25, (c)
δ = 50 and (d) δ = 100.

that the population size still converges to ||n∗(x)||1, independent of initial population
n0(x), with substantial transient dynamics in each case.

5. Discussion

In this paper, we studied the equilibriumdynamics of a Lur’e systemmodelling a structured
population, where adult conspecifics were assumed to have a negative density-dependent
feedback on the recruitment of newborns. The assumption of feedback from adult con-
specifics elicits models that do not have the monotonicity exploited in Rebarber et al.
(2012), Townley et al. (2012), Smith and Thieme (2013), Eager et al. (2014a), with the
stability results (at least for now) subsequently weakened. In cases where the population
is persistent (g0 > pe), we are only able to obtain global attractivity of the non-zero
equilibrium population when the strength of density-dependent feedbacks from adult
conspecifics are less than that from possible recruits themselves. When the relationship is
flipped, i.e. pe > pd , the first lower approximation in the proof of Theorem 3.3 will always
be 0, leaving the upper approximation equal to

n∗ = peg−1(pe)(I − A)−1b
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for all successive iterations of the approximation scheme, which will not yield eventual
convergence to the equilibrium population n∗. In Wen et al. (2015) they showed that
population models like (5) are uniformly strongly persistent for all pe < g0 (including
pe > pd). However, only the existence of a uniform lower bound is given, which is not
enough to ensure that the successive approximations in the proof of Theorem 3.3 converge
to each other, which is necessary to obtain global attractivity using this technique. Thus,
while a clear extinction/persistence bifurcation occurs when g0 passes through pe (or
nRg0 passes through 1), the presence of persistence does not always help in the proof of
attractivity or global asymptotic stability of positive equilibria.

To obtain asymptotic stability we needed to assume that the spectral radius of the
operator (9) was less than unity. In exploratory simulations, we have yet to find a scenario
where g0 > pe and this spectral radius is larger than unity. The fact that g is decreasing
means that the operator (9) is not always positive, which keeps us from using the powerful
techniques generally exploited by theoretical ecologists (Caswell, 2001; Cushing, 1998;
Lubben, 2009). Additionally, the presence of both cT and dT in (9) do not allow for a
simple implementation of results like Theorem 2.4 in Smith and Thieme (2013). Such
results are generally necessary but not sufficient, meaning that there are (A, b, cT), dT and
f such that the spectral radius of (9) is less than unity, but the methods in theorems like
Theorem 2.4 in Smith and Thieme (2013) are unable to prove it. Despite our inability to
prove the global asymptotic stability of n∗ in these cases, we conjecture that it holds for all
(A, b, cT), dT and f such that pe < pd , a conjecture we will continue to investigate.

While the extinction/persistence thresholddoes not change, the inclusionof competitive
feedbacks from adult conspecifics always decreased equilibrium populations, which can
be seen by comparing the formulas for n∗ found in Theorems 1.1 and 3.3. A closed-form
formula for the equilibrium population, as in (7) has the benefit of being easily analysed
using sensitivity and elasticity techniques. In Eager and Rebarber (2016) we rigorously
derive sensitivity and elasticity formulas for Lur’e systems like (2). The model in this paper
is only different in the reproduction term, and thus the only additions to the sensivity
and elasticity formulas in Eager and Rebarber (2016) involve the derivatives of algebraic
functions of pe and pd , which amount to a straightfoward calculus exercise, as well as the
derivative of pd with respect to (A, b, cT) and dT , which are analogous to those for pe.

Extensions of this work include the inclusion of competition from adult conspecifics
in models accounting for multiple nonlinearities. For example, the model in Eager et al.
(2014a) is a plant-seed bank model that has one nonlinear term for the establishment of
of possible recruits and another for the production of possible recruits. While we were
able to prove the global asymptotic stability of equilibirum populations for the models in
that paper, investigations into the stability of equilibria when one includes feedbacks from
adult conspecifics has thus far proven unfruitful due to the existence of multiple nonlinear
equations more difficult than those in (6).

Another extension of this work includes the inclusion of stochasticity into models
accounting for feedbacks from adult conspecifics. In Eager et al. (2014b), we show that a
stochastic Lur’e systemhas a globally stable equilibriummeasure either completely concen-
trated on the zero population or completely excluding the zero population. However, the
results in that paper are tailored specifically to an integral projectionmodel for disturbance
specialist plants, and do not consider the extistence of density-dependent feedbacks from
adult conspecifics. Other papers, for example Benaïm and Schreiber (2009), Schreiber,
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Benaïm, and Atchadé (2011), Schreiber (2012), provide exciting results regarding the
population persistence, permanence and stability of equilibrium measures for stochastic
models under relatively broad assumptions for the nonlinear terms modelling density
dependence, albiet only for finite-dimensional models. Subsequent work will attempt to
extend these persistence, permanence and stability results for stochastic analogues of (5),
specifically accounting for feedbacks from adult conspecifics.
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