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ABSTRACT

This paper presents a deterministic SIS model for the transmission
dynamics of malaria, a life-threatening disease transmitted by
mosquitos. Four species of the parasite genus Plasmodium are known
to cause human malaria. Some species of the parasite have evolved
into strains that are resistant to treatment. Although proportions of
Plasmodium species vary considerably between geographic regions,
multiple species and strains do coexist within some communities.
The mathematical model derived here includes all available species
and strains for a given community. The model has a disease-free
equilibrium,which is aglobal attractorwhen the reproductionnumber
of each species or strain is less than one. The model possesses quasi-
endemic equilibria; local asymptotic stability is established for two
species, and numerical simulations suggest that the species or strain
with the highest reproduction number exhibits competitive exclusion.
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1. Introduction

Malaria is an infectious disease of humans caused by a parasite, Plasmodium, which infects
red blood cells. It is widespread in tropical and subtropical regions, including much of
sub-Saharan Africa, Asia and the Americas. According to theWorld Health Organization,
about 250 million clinical cases of malaria occur globally each year resulting in more
than one million deaths, with sub-Saharan Africa being the worst affected region (WHO,
2013). The four common species of the parasite are: Plasmodium falciparum, Plasmodium
vivax, Plasmodium ovale and Plasmodium malariae. P. falciparum is the most virulent
and potentially lethal species to humans. Infections resulting from the species P. vivax,
P. malariae and P. ovale are generally less serious and are usually not life-threatening. A
relatively new species, Plasmodiumknowlesi, causesmalaria inmacaquesmonkeys but can
also infect humans. Given that more than one species can be found in some locations, it is
not uncommon to be infected withmore than one species of Plasmodium at the same time.
Resistance to antimalarial drugs has been one of the main obstacles in the fight against
malaria. Drug resistance has so far been documented in P. falciparum, P. vivax and P.
malariae (WHO, 2000–2010).
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Mathematical modelling is a powerful tool that has been instrumental in understanding
and combatingmalaria infection (McKenzie, 2000;McKenzie&Samba, 2004). The classical
works of Ross (1910) and MacDonald (1955) have led to various forms of compartmental
models for malaria infection. Since the 1970s, malaria models have been expanded and
brought closer to data (Dietz, Molineaux, & Thomas, 1974; Gosoniu & Vounatsou, 2011).
There are several models of malaria, each of which describes certain aspects of the disease
(Teboh-Ewungkem, Ngwa, & Ngonghala, 2013). Some models consider interacting pop-
ulations of humans and mosquitos (Dietz, 1988; Mandal, Sinha, & Sarkar, 2013). Others
are solely focused on the dynamics within the host (Mitchell & Carr, 2010; Molineaux &
Dietz, 1999) or vector (Ngwa, Niger, & Gumel, 2010; Ngwa, Wankah, Fomboh-Nforba,
Ngonghala, & Teboh-Ewungkem, 2014) and some do consider drug resistance (Agusto,
2014; Aneke, 2002). The few models devoted to multiple species have been limited to two
species (Xiao & Zou, 2013) P. falciparum and P. vivax (Pongsumpun & Tang, 2009) or two
strains of a single species (Esteva, Gumel, & de Leon, 2009).

This paper presents a deterministic model for monitoring the transmission dynamics of
all possible circulatingmalaria parasites in a community. This study ismotivated by the fact
that multiple species and strains of Plasmodium parasite do coexist in some communities
(Gnémé et al., 2013; WHO, 2000–2010; Xiao & Zou, 2013). Our primary objective is to
construct a model with n infectious compartments that includes different species and
strains. For the purpose of simplicity, the model will treat each new strain as a separate
species. The model derived then can be used to study (i) multiple species of plasmodium,
(ii) multiple strains of the same species and (iii) a combination of these two.

2. Mathematical model

We assume that there is no immunity to the disease and every new strain is treated as
another species. The schematics of the SIS model that takes into account all n species
(that includes strains) of malaria in a local community is given in Figure 1. All the
parameters are assumed to be positive: Sh and Sm are the susceptible human and mosquito
populations, respectively; θ and ν are the natural birth/death rates for humans and

Figure 1. Schematic diagram of the SIS model. The solid and dashed lines represent population
movement and interaction, respectively. The transition terms from susceptible to infectious classes
for human and mosquitoes are respectively aρj(Sh/Nh)Imj and aσj(Ihj/Nh)Sm, for j = 1, . . . , n.
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mosquitos, respectively.We assume that all newoffspring are susceptible in all populations.
Ihk and Imk are the infectioushumanandmosquitopopulations respectively for each species
where k = 1, . . . , n; γk and βk are the human recovery and death rates for species k. The
average biting rate of the mosquitos is a, ρj is the probability that a mosquito bite will
lead to an infection in a human and σj is the probability that mosquitos will be infected
as a result of taking blood meals from infectious humans. The total human and mosquito
populations are Nh and Nm, respectively.

The following equations, which summarize the model, are based on the assumptions
provided in the schematic diagram, Figure 1:

Ṡh = θNh −
n∑

j=1

aρj
Sh
Nh

Imj +
n∑

j=1

γjIhj − θSh (1a)

İhk = aρk
Sh
Nh

Imk − γkIhk − βkIhk − θIhk (1b)

Ṡm = νNm −
n∑

j=1

aσj
Ihj
Nh

Sm − νSm (1c)

İmk = aσk
Ihk
Nh

Sm − νImk (1d)

for k = 1, . . . , n. We remark here that in those communities (for example the Americas)
where malaria-induced death is very small, the βk parameters can be set to zero.

In the remainder of this paper, while focusing our analysis on the infective equations
of the system (1), we will assume that the total population sizes for both humans (Nh)
and mosquitos (Nm) are constant and normalized to one. By defining the new variables
uh = Sh/Nh, um = Sm/Nm, xk = Ihk/Nh, and yk = Imk/Nm, for k = 1, . . . , n, the infective
equations of the system become

ẋk = ck[αkuhyk − xk] (2a)
ẏk = ν[δkumxk − yk] (2b)

where ck = γk + βk + θ , αk = (aρkNm)/(ckNh), δk = aσk/ν and for k = 1, . . . , n.
The basic reproduction number R0, is an established epidemiologic statistic that pro-

vides an indication of the average number of secondary infections produced when one
infected individual is introduced into a naive host population. Let R0k denote the
reproductionnumber of secondary infections thatwe expect to be produced by introducing
a single human infected with species (or strain) k. This will lead to the infection of αk cases
in mosquitos, each of which will lead to δk cases in humans. The reproduction number for
each species (or strain) is therefore R0k = αkδk, which is the product of αk and δk. The
basic reproduction number of the model is then given by the sum R0 = ∑n

j=1 R0j.

3. Stability analysis

In this section, we study the long term behaviour of the disease-free equilibrium and
the endemic equilibria of the proposed model. Suppose that no deaths result from the inf-
ections (i.e.βk = 0 for all k). The regionD = {(x1, . . . , xn, y1, . . . , yn) ∈ R2n+ : ∑n

j=1 xj ≤ 1,∑n
j=1 yj ≤ 1} is positively invariant and contains all solutions of the system (2).
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Using that uh = 1 − ∑n
j=1 xj and um = 1 − ∑n

j=1 yj, system (2) becomes

ẋk = ck
[
αk

(
1 −

n∑
j=1

xj
)
yk − xk

]
(3a)

ẏk = ν

[
δk

(
1 −

n∑
j=1

yj
)
xk − yk

]
(3b)

for k = 1, . . . , n. The equilibria of system (3) satisfy the equations

xk = αk

(
1 −

n∑
j=1

xj
)
yk (4)

yk = δk

(
1 −

n∑
j=1

yj
)
xk (5)

for k = 1, . . . , n. Multiply the xk-yk pairs for every k:

xkyk = αkδk

(
1 −

n∑
j=1

xj
)(

1 −
n∑

j=1

yj
)
xkyk. (6)

For any k value, xk = 0 if and only if yk = 0 (this is immediate from (4) and (5)); if this
is the case for all k values, we obtain the disease-free equilibrium. We remark that the
reproduction number for species k is R0k = αkδk. If we assume that R0k �= R0l for k �= l,
then by the previous equation, the only other equilibria are given by the quasi-endemic
states

(0, . . . , 0, x∗
k , 0, . . . , 0; 0, . . . , 0, y∗

k , 0, . . . , 0)
where

x∗
k = δkαk − 1

δk + αkδk
= R0k − 1

R0k + δk

and

y∗
k = δkαk − 1

αk + αkδk
= R0k − 1

R0k + αk

because if we assume that x∗
k �= 0 and y∗

k �= 0 for some k, then from (6) we get

αkδk = R0k = 1(
1 − ∑n

j=1 xj
)(
1 − ∑n

j=1 yj
) ,

which implies the uniqueness of a non-zero pair (x∗
k , y

∗
k ) in case of R0k �= R0l for k �= l.

We called the equilibrium quasi-endemic because only one of the species is present. We
observe that the quasi-endemic equilibria are biologically relevant only when R0k > 1.
Theorem 1: The disease-free equilibrium of system (3) is locally asymptotically stable if
R0k < 1 for all k = 1, . . . , n and unstable if there exists an R0k > 1 for some k.
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Proof: The Jacobianmatrix, J0, of the system (3) at the origin is given by the sparsematrix

J0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c1 c1α1
−c2 c2α2

. . .
. . .

−cn cnαn
νδ1 −ν

νδ2 −ν

. . .
. . .

νδn −ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The characteristic equation associated with J0 is

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c1 − λ c1α1
−c2 − λ c2α2

. . .
. . .

−cn − λ cnαn
νδ1 −ν − λ

νδ2 −ν − λ

. . .
. . .

νδn −ν − λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

which upon manipulation yields

0 = ( − 1)ndet

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

νδ1 −ν − λ

νδ2 −ν − λ

. . .
. . .

νδn −ν − λ

−c1 − λ c1α1
−c2 − λ c2α2

. . .
. . .

−cn − λ cnαn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ( − 1)ndet

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

νδ1 −ν − λ

νδ2 −ν − λ

. . .
. . .

νδn −ν − λ

0 c1α1 − (c1+λ)(ν+λ)
νδ1

0 c2α2 − (c2+λ)(ν+λ)
νδ2

. . .
. . .

0 cnαn − (cn+λ)(ν+λ)
νδn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ( − 1)n(νδ1c1α1 − (c1 + λ)(ν + λ))(νδ2c2α2 − (c2 + λ)(ν + λ)) · · · (νδncnαn − (cn + λ)(ν + λ))

=
n∏

k=1
(λ2 + (ν + ck)λ + ckν − νR0kck).

The matrix J0 therefore has n pairs of eigenvalues given by
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λk = − (ck + ν)

2
±

√(
ck + ν

2

)2
+ νck(R0k − 1).

Clearly, if R0k < 1 for all k = 1, . . . , n, all n pairs of eigenvalues are negative and
therefore the disease-free equilibrium is locally asymptotically stable. If R0k > 1 for some
k, then there is at least one positive eigenvalue and the disease-free equilibrium is unstable.
�

The following result is stronger than Theorem 1 and provides a sufficient condition for
the eradication of the kth species or strain.
Theorem 2: If R0k < 1 for some k, then xk(t) → 0 and yk(t) → 0 as t → ∞.
Proof: Since Sh ≤ Nh and Sm ≤ Nm, then uh ≤ 1 and um ≤ 1. For some k, system (2)
leads to the differential inequality

ẇk(t) ≤ Mkwk(t)

where Mk =
(−ck ckαk

νδk −ν

)
and wk(t) =

(
xk(t)
yk(t)

)
. The eigenvalues of the matrix

Mk are given by the pair λk,1 = −(ck + ν)/2 + √
(ck + ν)2/4 + νck(R0k − 1) and

λk,2 = −(ck + ν)/2 − √
(ck + ν)2/4 + νck(R0k − 1).

If R0k < 1 for a given k, then λk,1 < 0 and λk,2 < 0. Let v1 and v2 be eigenvectors associated
with the eigenvalues λk,1 and λk,2 respectively, then the system

˙̃wk(t) = Mkw̃k(t),

where w̃k(t) =
(
x̃k(t)
ỹk(t)

)
, has a solution of the form w̃k(t) = v1eλk,1t + v2eλk,2t . Clearly, it

can be seen that w̃k(t) → 0 as t → ∞. Observing that xk(t) ≤ x̃k(t) and yk(t) ≤ ỹk(t)
concludes the proof. �

The immediate consequence of Theorem 2 is the following result.
Theorem 3: If αk < 1 and δk < 1 (note that in this case R0k < 1) for all k = 1, . . . , n, then
the disease-free equilibrium of the system (3) is globally asymptotically stable.

We next turn our attention to the quasi-endemic equilibrium. Due to the complexities
involved in the analysis, we will only present the case of two species.
Theorem 4: If n = 2, the quasi-endemic equilibrium (x∗

1 , 0; y∗
1 , 0) of the system (3) is

locally asymptotically stable if 1 < R01 and R02 < R01.
Proof: Jacobian of the system (3) at the equilibrium (x∗

1 , 0; y∗
1 , 0) is

⎡
⎢⎢⎣

−c1 − c1α1y∗
1 −c1α1y∗

1 c1α1(1 − x∗
1 ) 0

0 −c2 0 c2α2(1 − x∗
1 )

νδ1(1 − y∗
1 ) 0 −ν − νδ1x∗

1 −νδ1x∗
1

0 νδ2(1 − y∗
1 ) 0 −ν

⎤
⎥⎥⎦ .

Substituting the values of x∗
1 and y∗

1 , after simplification this yields
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⎡
⎢⎢⎢⎣

−c1δ1 α1+1
δ1+1 −c1 δ1α1−1

1+δ1
c1 α1

δ1
δ1+1
α1+1 0

0 −c2 0 c2 α2
δ1

δ1+1
α1+1

ν δ1
α1

α1+1
δ1+1 0 −να1

δ1+1
α1+1 −ν δ1α1−1

α1+1
0 ν δ2

α1
α1+1
δ1+1 0 −ν

⎤
⎥⎥⎥⎦ .

The eigenvalues of the preceding matrix are given by the conjugate pairs

λ1,2 = − c2 + ν

2
±

√
(c2 − ν)2

4
+ c2ν

α2δ2

α1δ1

and

λ3,4 = −(c1δ1(1 + α1)
2 + α1ν(1 + δ1)

2)

2(1 + α1)(1 + δ1)

±
√
c21δ

2
1(1 + α1)4 − 2c1(1 + α1)2(1 + δ1)2(α1δ1 − 2)ν + α2

1ν
2(1 + δ1)4

2(1 + α1)(1 + δ1)
.

The first pair is negative when

(c2 − ν)2

4
+ c2ν

α2δ2

α1δ1
<

(c2 + ν)2

4
.

This gives

c2ν
α2δ2

α1δ1
< c2ν,

which is the same as α2δ2 < α1δ1, i.e. R02 < R01. The second pair is negative when

c21δ
2
1(1 + α1)

4 − 2c1(1 + α1)
2(1 + δ1)

2(α1δ1 − 2)ν + α2
1ν

2(1 + δ1)
4

< (c1δ1(1 + α1)
2 + α1ν(1 + δ1)

2)2.

This is the same as

−2c1(1 + α1)
2(1 + δ1)

2(α1δ1 − 2)ν < 2c1δ1(1 + α1)
2α1ν(1 + δ1)

2,

which is 2 − α1δ1 < δ1α1, i.e. 1 < α1δ1 = R01. �

4. Results and discussion

In this section, we present numerical simulations to illustrate some of the theoretical results
established in the previous section for the model (3). We apply the model to two different
cases in a given community. The first case simulates the transmission dynamics of two
species, P. falciparum and P. vivax. The second case simulates the transmission dynamics
of two strains of P. falciparum. Note that n = 2 in both cases. In each case, we will study the
effect of varying the density of vectors in relation to human hosts and varying the vector
biting rate. We assumed that there are no disease-induced deaths in all our simulations.
The values of the parameters that we used in our simulations were taken from related
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Table 1. Values of parameters used in the simulations.

Parameter Definition Value

a Average biting rates of mosquitos Variable
1/θ Average lifespan of humans 70 years
1/ν Average lifespan of mosquitos 2 weeks
ρ1 Transmission rate frommosquitos to humans for P. falciparum .05
ρ2 Transmission rate frommosquitos to humans for P. vivax .048
σ1 Transmission rate from humans to mosquitos for P. falciparum .06
σ2 Transmission rate from humans to mosquitos for P. vivax .04
γ1 Recovery rate from P. falciparum 1/30 day−1

γ2 Recovery rate from P. vivax 1/25 day−1

ρ′
1 Transmission rate frommosquitos to humans for resistant P. falciparum strain .05

σ ′
1 Transmission rate from humans to mosquitos for resistant P. falciparum strain .06

γ ′
1 Tecovery rate from resistant P. falciparum strain 1/60 day−1

works (Aron & May, 1982; Esteva, Gumel, & de Leon, 2009; Pongsumpun & Tang, 2009)
and others were chosen to explore the behaviour of the model (see Table 1).

The results reported here are based on the initial conditions: x1(0) = .1 and x2(0) = .1.
We ran the simulation for different sets of initial conditions chosen by giving a small
perturbation to the disease-free equilibrium and the qualitative form of the final finite-
amplitude steady-state solutions was the same for all of them.

The initial and long-term behaviour of the model for infectious populations of the
species, P. falciparum and P. vivax, are shown in Figure 2. The results in Figure 2 show that
the disease dies out in both species. For both population ratios, the calculated reproductive
number for each species was less than one and thus established that the disease-free
equilibrium is a global attractor.

By varying the average biting rate of mosquitos, the results in Figure 3 show that the
disease persists in P. falciparum, but dies out in P. vivax. Let R0f and R0v denote the
reproduction numbers of P. falciparum and P. vivax, respectively. We found that R0f > 1
and R0v < 1 for the results in Figure 3(a), and R0f > R0v > 1 for the simulations in
Figure 3(b). The model clearly predicts competitive exclusion when R0f �= R0v , where the
species with the higher reproduction number eventually displaces the other. This is why P.
vivax does not survive irrespective of the fact that R0v > 1. It is clear that the model has a
quasi-endemic equilibrium that is a global attractor.

The simulations in Figure 4 exhibit the general behaviour of two strains of the species,
P. falciparum (one strain resistant to treatment and the other not). For this example, let
R0r and R0n denote the reproduction numbers of the resistant and non-resistant strains,
respectively. Figure 4(a) shows both strains dying out. This is expected since the calculated
values of R0r and R0n are both less than one. However, when we varied the total mosquito
to human population ratio from 5 to 10 while keeping the average biting rate constant,
we observed that R0r > 1 and R0n < 1 as depicted in Figure 4(b). The outcomes of the
simulations in the cases of the lower and higher mosquito to human population ratio
clearly underscore the fact that controlling the vector population is a key aspect in the fight
against malaria, and also validate the seasonal prevalence of malaria, although the present
model does not incorporate seasonality.

An increase in the average biting rates of mosquitos from .25 to .5 yields R0r > R0n > 1
for bothpopulation ratios as illustrated inFigure 5. Similar to theprevious case, the resistant
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Figure 2.Numerical simulations of twomalaria species: P. falciparum and P. vivax, with averagemosquito
biting rate a = 0.25. The plots given in (a) and (b) are for a total mosquito to human population ratio of
5 and 10, respectively.
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Figure 3.Numerical simulations of twomalaria species: P. falciparum and P. vivax, with averagemosquito
biting rate a = 0.5. The plots given in (a) and (b) are for a total mosquito to human population ratio of 5
and 10, respectively.

strain dominates the non-resistant strain because it has a higher reproduction number.
Figure 5(b) shows that under favourable conditions (high vector population and biting
rates), the non-resistant strain may persist for some time but is eventually displaced by the
resistant strain. Here again, we see that the model possesses a quasi-endemic equilibrium
which is a global attractor.
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Figure 4. Numerical simulations of two strains of P. falciparum with average mosquito biting rate
a = 0.25. The plots given in (a) and (b) are for a total mosquito to human population ratio of 5 and 10,
respectively.
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Figure 5.Numerical simulations of two strains of P. falciparumwith averagemosquito biting rate a = 0.5.
The plots given in (a) and (b) are for a total mosquito to human population ratio of 5 and 10, respectively.

5. Conclusion

In this paper, we have developed a susceptible-infectious model for the dynamics and
transmission of malaria which can be used to study multiple species (and/or strains)
of the disease. The model is based on the assumption that there is no immunity to
the disease. It is formulated mathematically as a system of differential equations for the
proportions of susceptible and infectious individuals in all populations (vector and host).
The existence of a disease-free equilibrium that is globally asymptotically stable under
certain conditions is confirmed. Numerical simulations for two species/strains established
that if the reproduction number of at least one species or strain is greater than one, then
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there is a quasi-endemic equilibrium, which is a global attractor. The model predicts that
a species or strain will be eradicated if its reproduction number is less than one. The
model further predicts that all species or strains may persist for some time if each has a
reproduction number greater than one; however, the species or strain with the highest
reproduction number will eventually displace the others.

There are various factors that we did not consider in this model, such as seasonality,
age structure of both humans and mosquitos, incubation period and spatial distribution.
Some of these are currently under investigation by the authors.
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