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Computational and modelling skills are vital to most fields of biological research, yet
traditional biology majors have no or little opportunity to develop these skills during
their undergraduate education. We describe an approach, which can address this issue by
asynergy of online resources called MathBench modules and Stock and Flow modelling.
Using a step-by-step method starting with a MathBench ‘bootcamp’, we were able to
achieve a significant gain in quantitative skills of students with no previous experience
with model building. At the end of the course, the students were able to construct and
analyse complex models and gained confidence in mathematical skills.
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1. Introduction

Both Vision and Change (American Association for the Advancement of Science, 2011) and
Bio 2010 (National Academies Press, 2003) strongly recommended developing a skillset
for undergraduate biology majors that not only allows students to understand mathematical
models, but also trains them to construct models. Modelling is one of the cornerstones
of establishing a strong foundation in mathematics and information sciences to prepare
students for research that is increasingly interdisciplinary in nature (Bialek & Botstein,
2004; Gross, 1994; Karsai & Knisley, 2009). A better mathematical and computational
foundation is also very important for the students who will enter the workforce, where
interpreting quantitative information (Ewing et al., 2003) and making policy decisions
based on quantitative predictions are becoming a desirable skill.

Although mathematics has had a very important influence on biology (Jungck, 1997,
May, 2004), bridging the disciplines of mathematics and biology has been problematic
(Karsai, Knisley, Knisley, Yampolsky, & Godbole, 2011). In comparison, building inter-
disciplinary bridges between biology and chemistry or biology and physics has been less
difficult because biology shares solid roots and a common language with chemistry and
physics. However, there are profound differences between biology and math in motivations
and epistemological approaches (Karsai & Kampis, 2010). Karsai and Kampis (2010) argued
that simply introducing more mathematics into biology education will not provide a solution.
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To understand the role of mathematics in biology, students need to understand the science
before they can make sense of using mathematics to deepen their understanding of the
science.

New, active pedagogies such as inquiry- and case-based learning increase student
engagement, content retention and knowledge transfer to new situations (Hake, 1998;
Kitchen, Bell, Reeve, Sudweeks, & Bradshaw, 2003; Trempy, Skinner, & Siebold, 2002;
Udovic, Morris, Dickman, Poslethwait, & Wetherwax, 2002). That science is best learned by
doing research is an idea that has been around for decades (Roth, 1995), as has the emphasis
on the importance of undergraduate research (McComas, 1998), but it seems that successful
approaches to educate and mentor biology undergraduates still need to be developed (Karsai
etal.,2011). For example, traditional introductory-level biology textbooks generally do not
support these kinds of pedagogies. Moore et al. (2013) found that the current textbooks serve
to reinforce rote memorization rather than problem solving, and they in fact de-emphasize
quantitative thinking. Instead of a coherent set of unifying principles, biology students will
reach upper level courses with an amorphous collection of ‘facts’. Pedagogically, there
are several approaches that could improve learning transfer, such as improving student’s
metacognitive skills (Davidson & Sternberg, 1998), inductive and deductive reasoning
ability (Lawson, 2005) and providing them challenging assignments or projects (Lawson,
Banks, & Longvin, 2007). However, the integration of inquiry-based approaches into
the curriculum commonly has flaws, and the true nature of inquiry is often forfeited in
this process (Karsai & Kampis, 2010). Collecting data and obtaining results (however
quantitative) are commonly part of science, but are not science itself. Karsai and Kampis
(2010) emphasized that the operative use of the complete scientific method will play a
critical role in providing the necessary underpinning for the integration of math and biology
at various professional levels.

Modelling can be implemented early in biology education and it is also a good tool to
teach the scientific way of thinking and the process of research (Joplin et al., 2013; Karsai
& Kampis, 2010; Weisstein, 2011). Many courses treat equations as ‘black boxes’ into
which one merely plugs numbers and calculates answers (Jungck, 2005). To give meanings
to equations, it is crucial to construct the models. Students need to know why they must
construct models rather than just use them. For practising scientists, modelling helps to
clarify both the conceptualization of system structure and the quantitative relationships
among system components (Laurenroth, Burke, & Berry, 2003). Mathematical models
provide templates where data, mechanisms, simulations and theories are represented in
a uniform and transparent fashion that makes it easy for members of interdisciplinary teams
to collaborate (Karsai & Kampis, 2010). These skills are even more important to students
but traditional teaching practices generally leave out most of modelling and quantitative
reasoning (equations) from biology education.

Here we describe an approach where model making was introduced in an upper level
course to a student body with different backgrounds with the goal of bridging mathe-
matics and biology, theory and policy-making, as well as fostering an understanding of
the scientific method and participating in group projects. These goals were approached
with a synergistic combination of several MathBench Biology Modules (covering the
scientific method, understanding of science and understanding of mathematics for sci-
ence, and basic problem solving) and the application of Stock and Flow modelling
(conceptualization of system structure, predicting, decision-making and quantitative
reasoning).
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2. Material and Methods

East Tennessee State University (ETSU) is a regional state university with about 15,000
undergraduate and 2000 graduate students. ETSU recently became a research intensive
university, and it is in a transitional phase where new challenges related to research ad-
ministration need to be solved. The Department of Biological Sciences has 16 tenure track
faculty members and 2 full-time instructors. The biology major core consists of a three-
semester introductory biology sequence of lectures with labs and a one-semester genetics
course where lab is optional. After the core, the students generally take at least nine credits
of biology electives. While many of the core labs are inquiry based, the student have
limited opportunities to use models. In one of the core courses (Biology III), the students
interact with a few ready-made Netlogo simulations examining the effect of changes of some
parameters to a specific output (Jones & Laughlin, 2010). However, with the exception
of the Systems Ecology course (which is the focus of this paper), students do not have
opportunity to construct their own models or immerse themselves in quantitative biology.
This insufficiency of preparation in lower level courses generates several challenges (Eager,
Pierce, & Barlow, 2014).

In our curriculum at East Tennessee State University, the only biology course where stu-
dents learn to construct models is Systems Ecology (recently renamed Modelling
Biological Systems). Systems Ecology is a three-credit senior-/graduate-level course taught
in a computer classroom for a maximum of 20 students. It provides both biological back-
ground information for the subject matter and training in Stock and Flow and agent-based
modelling techniques. The course requires no mathematical ability beyond calculus I and no
biological knowledge beyond introductory biology. All concepts and skills are developed
during the course. The course uses Ford’s book (Ford, 2010) Modeling the Environment,
technical papers, problem sheets and papers and links for background information. The goal
of the course is to teach students to build models and analyse the predictions of those models.
Beyond describing biological phenomena with models, we emphasize using models to
explain what-if scenarios for decision-makers (non-biologists and non-modellers). Students
also learn to use free model developing tools such as Vensim (Eberlein and Sternbeg,
1992) and Starlogo TNG (http://education.mit.edu/projects/starlogo-tng), which help them
develop skills that are transferable to future graduate study and employment.

Many biology students might feel intimidated to take such a quantitative course as an
elective, particularly if they have had no positive experience with quantitative approaches
before. In practice, this means that the course typically has low enrolment. Because the
course is open to both graduate and undergraduate students, and welcomes students of any
major who have completed basic biology, the backgrounds of the students are very diverse.
To mediate these challenges, we found MathBench Biology Modules (mathbench.umd.edu)
extremely useful. MathBench is a freely available integrated online suite of 40+ modules
with instructor resources (quizzes, tests and summaries). The modules are self-contained and
make possible guided or self-paced learning of quantitative skills and concepts in biology.
Instead of a spookbook or cookbook approach, MathBench uses an intuitive approach and
includes standardized instruments to assess student quantitative skills. We implemented
several MathBench modules to provide a ‘bootcamp’ for the students to sharpen their
quantitative reasoning skills so that they could be successful from the start of the course.
While MathBench was designed primarily for first- and second-year students, it can be
used very effectively for higher level courses. In this course, MathBench was used as a
background skill development tool, followed by background information on the course
content areas. The Systems Ecology course was formally assessed during two successive
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offerings, in Fall 2011 and Fall 2012. Enrolment was 11 in 2011 and 12 in 2012. In each
year, the majority of students were advanced undergraduates, but there were two graduate
students in 2011 and two in 2012.

2.1. Evaluation and Assessment

In each year, students were asked to complete a pre-test at the beginning of the course (before
the first MathBench modules were assigned) and a post-test at the end of the course. The test
of quantitative skill was a slightly modified version of a tool developed to assess the efficacy
of MathBench Biology Modules (Thompson, Nelson, Marbach-Ad, Keller, & Fagan, 2010).
This tool consisted of 18 questions that were designed to measure the acquisition of nine
basic quantitative skills. For each skill, one question was intended to measure a basic level of
understanding, while the second was more difficult to allow discrimination of more advanced
understanding. In addition to the correct answer and three distractors, each question also
contained the option ‘I don’t know how to approach this problem’. Students were instructed
to select this answer if they did not know how to solve the problem, rather than guessing at
an answer. The pre-test consisted of 23 questions, 18 of which measured quantitative skill
as described above. The remaining pre-test questions asked about the students’ previous
math coursework and their attitudes toward the relationship between math and biology.
Specifically, we asked students Likert-style questions probing the extent to which they (1)
liked math and (2) felt it important that biologists know math. The post-test consisted of 31
questions. Eighteen of the questions were isoforms of the pre-test questions, with only slight
numerical and contextual changes to problems. The remaining questions probed students’
attitudes, the degree to which they felt the course had increased their scientific content
knowledge and quantitative skills, and which elements of the course contributed to these
gains.

All students completed both the pre-test and the post-test, and so were included in
subsequent analyses. Changes in quantitative skill were analyzed with a repeated measures
analysis of variance, with main effects of previous math course work (algebra, precalculus,
calculus I, calculus II or higher), concurrent enrolment in a math course (yes or no), and
year of enrollment in the course (2011 or 2012). In addition to analysing the change in raw
scores, we also expressed the difference in pre- and post-test scores as a normalized change
score. This measure was proposed by Marx and Cummings (2007) and is similar to the
long-used normalized gain score (Hake, 1998), but does not have the low pre-test score bias
of the normalized gain score and is preferable in situations where some student’s scores
decrease between pre- and post-test. Normalized change scores can range from —1 to 1. For
students whose score increased across the semester, normalized change was calculated by
subtracting each student’s pre-test score from the post-test score and dividing by the total
increase possible, based on the student’s pre-test score. For students whose scores decreased
across the semester, normalized change was calculated by subtracting each student’s pre-
test score from the post-test score and dividing by the total decrease possible, based on the
student’s pre-test score. Individual student change scores were then averaged to provide a
mean for the population. There were no significant differences between years, so results
are reported combined across years. Attitudinal questions were coded based on whether a
student’s post-test answer reflected a more positive attitude (e.g. higher levels of agreement
with the statement ‘I like math’ or ‘It is important for biologists to know math’), a more
negative attitude, or no change from the pre-test. Attitudinal questions were then analyzed
using a Wilcoxon signed-rank test.
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In an effort to better understand the impact of integrating MathBench modules into the
curriculum, we also asked the students to provide feedback on the value of the modules.
Specifically, we asked “What role did MathBench Biology Modules have in the development
of your scientific content knowledge and quantitative skills?” Student responses to this
question were analysed using an inductive process in which the responses were grouped by
common themes (Maykut & Morehouse, 1994).

3. Results and discussion
3.1. Integration of course content with MathBench

The course generally focused on ecological problems, starting with a population ecology
primer and the introduction of modelling tools. Simple population growth and migration
models (Knisley, Karsai, & Schmickl, 2011) were followed by population interaction models
(competition, predation and microparasitic disease) and then a series of ‘real problem
scenarios’ such as irruption of deer at the Kaibab plateau, water management of Mono Lake,
the tragedy of Easter Island and flu and smallpox epidemics. The course was designed so
that students were able to grow from having minimal skill in modelling to being able to
build their own model and analyse it by the end of the semester. The course required a final
project, which consisted of developing a model that related to the student’s own research (if
possible). The final project could be done as an individual, a pair of students or a team, and
was presented orally to an audience that included students and invited faculty members.

This progression in skill development required a great deal of growth and understanding
from students who typically had no experience with problems of this type. MathBench was
used to establish basic quantitative and problem solving skills. Specific MathBench modules
were selected both for their focus on specific quantitative skills and their biological content,
which resulted in a very good synergy between the content of the modules and the goals of
the course.

The first half of the course consisted of basic preparation for the more advanced
modelling, and it was vital that all students were able to understand the basic concepts
and skills required for the more difficult tasks. The first weeks were especially crucial for
helping students that needed some review or to be brought up to speed with the other students
in the class. MathBench modules on ‘Basic Rules of Probability’ and ‘Sampling’ provided
a review of probabilities and basic quantitative thinking. The models called ‘Exponential
Growth and Decay’, ‘Bacterial Dynamics’ and ‘The Mystery of the Missing Housefly’
provided the foundation for elementary modelling work. The quizzes available through
the MathBench instructor resources were used to monitor students’ progression during the
semester. The second half of the course built on this foundation and focused on advanced
modelling.

3.2. An example for a ‘real-world’ advanced model

After the students learned the basic concepts of modelling, the course focused on real-world
models, which enabled them to gain more advanced skills and a deeper understanding of
complex biological problems. The first of such models built by the students was the Mono
Lake hydrology model (Ford, 2010). First, the students learned about the lake’s hydrology
and biology, and the effect of the use of Sierra Gauged Runoff (the most important water
source for the lake) by Los Angeles. The history and the data gave the students a timeline
and parameters to use for the model. Then we discussed two goals for building a model:
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Figure 1. Simple Stock and Flow model of Mono Lake. Rates of inflow and outflow determine the
dynamics of water quantity in the lake.

providing a quantitative, accurate description of the past trend and serving as the basis for
future management plans of conservation biologists.

Stock and Flow modelling is a very natural approach for this problem, because there
is a single stock (the quantity of water in the lake) and in and outflow of water from
this lake. Using Vensim, the first step for the student is to draw a simple sketch of the
logical relationships of the components of the biological system. The box in the model
represents the stock or level where the water is stored (Figure 1). Double arrows represent
flow of materials. In case of Mono Lake, water comes in from the Sierra and leaves through
evaporation. Variables with single arrows show dependencies in the system. In this case,
water entering the lake depends on how much of this water is exported to Los Angeles, and
the evaporation rate is dependent on the surface area of the lake (Figure 1).

This sketching phase requires no mathematical knowledge, only logical thinking, but
if done correctly the largest part of the model is already accomplished. The next step is
implementing the functions into the model. With Stock and Flow modelling, we do not
need to use complete equations; the students just need to understand rates. The MathBench
modules prepare the students for this independently of their mathematical background. It
is easy for students to understand that the amount of water flow into the lake will be the
difference between the quantity that comes down from the Sierras (which is assumed to
be constant) and the amount that is exported to Los Angeles. This export amount will be
an experimental parameter later for decision-making. Precipitation must also be taken into
account as some constant (water amount/surface unit), which needs to be multiplied by
the actual surface area of the lake. The students also need to fill the lake at t+ = 0 with
the amount of water as a starting condition of the model. We explain to the students that
the stock actually mathematically integrates the results of the flows, and it means that this
is the amount we need to follow and compare with the historical data.

Students will realize that the model does not provide realistic predictions (e.g. after a
while they have a negative amount of water in the lake), and step by step they can add more
complexity and realism to the model including dynamical surface area, the dependence
of evaporation on salinity and so on. Also, from the volume of water they will calculate
the elevation of the lake surface, which can be used as a proxy for ecological turning
points (Figure 2). It is very useful to translate quantitative data to simple turning points
for decision-makers. For example, if the elevation falls below 6363 feet, then the lake’s
salinity level goes above the critical level that kills even salt tolerant organisms in the lake.
With this model, the students can predict the future of Mono Lake, and they also can do
experiments by changing the water exported to Los Angeles and trying to save the lake or
finding some compromise between lake health and water use of Los Angeles. Students can
use the model to explain to decision-makers the quantitative and qualitative consequences
of different management practices.
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Figure 2. Complex Stock and Flow model of Mono Lake. The box in the model represents the stock
or level where the amount of water is followed. Double arrows represent flow of materials. Variables
with single arrows show dependencies in the system.

Using Vensim to construct the Mono Lake model is an excellent way to ease students
into quantitative modelling. Sketching the visuals (tubes, valves and stocks), which in this
case mimics the real situation very closely, makes the modelling a logical effort instead of
an exercise of coding or solving differential equations. After the students gain confidence
with rates, they are ready to translate their equations into a Vensim model (generally Lotka
Volterra prey-predator model) or later translate Vensim models to equations. Their final
project requires a model that is at least as complex as the Mono Lake model (Figure 2).

3.3. Evaluation of student learning

When asked about the degree to which the course enhanced their scientific content knowl-
edge, 20 of 23 (87%) students indicated moderate or a great deal of improvement (Figure
3(A)). They reported similar gains in quantitative skill as a result of the course. Sixteen
of 23 (69%) students indicated moderate or a great deal of improvement in quantitative
skill (Figure 3(B)). These gains were corroborated by the MathBench test of quantitative
skill, which showed that scores improved significantly between the pre-test and the post-
test (Repeated measures ANOVA, within subjects effect of time: F = 17.20, df = 1, 18,
p = 0.0006, Figure 4). This corresponded to a normalized change score of about 37%.
This gain was substantially larger than that observed in previous analyses of the effect of
MathBench on students in first-year introductory biology (with normalized change scores of
about 25%) and second-year organismal biology and genetics courses (normalized change
scores of about 10%) (Thompson et al., 2013).

The probability of a student answering ‘I don’t know how to approach this question’
decreased significantly between pre-test and post-test (Repeated measures ANOVA, within
subjects effect of time: F = 9.54, df = 1,18, p = 0.0063). This indicates a greater
willingness of students to attempt to solve quantitative problems, whether or not they
ultimately arrive at the correct answer. We found no significant effect of year, students’
math background, or whether students were concurrently enrolled in a math course on
either gains in quantitative skill or probability of answering ‘I don’t know’.
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Table 1. Categorization by emergent themes for student responses to the question “What role did
MathBench Biology Modules have in the development of your scientific content knowledge and
quantitative skills?” Responses sum to more than 100% because an individual response could be
classified into multiple thematic categories.

Theme Number (%) of Representative quotes
responses

Relevant to real life or 11 (48%)

biological sciences MathBench modules were helpful in present-
ing simplified but relevant situations in which
math skills can be applied logically.
[MathBench] taught me new methods of
quantitative analysis of models and systems
that will be useful inside and outside of
biology.
MathBench presents statistics in an easily
understandable way that is also biologically
relevant.

Refreshed math skills 7 (30%)
[MathBench] refreshed my memory on a
good number of computational skills.
The modules benefited me most simply by
giving access to many examples and practice
questions that help to refresh and round out
my current understanding of mathematics.

Interactive or 4 (17%)

engaging nature of [MathBench] helped me improve [my

modules quantitative] skills by incorporating extra
practice and tutorials with explanations.

Reinforcement of 4 (17%)

lecture content [MathBench] helped to reinforce what we
learned in the lecture because it gave practical
applications for the material.

Systematic and 3 (13%)

progressive nature of [MathBench modules] individualized each

modules individual portion of the content, building
upon prior knowledge.

Enhanced critical 3 (13%)

thinking skills

MathBench both increased and challenged
my scientific knowledge and quantitative
skills. It required me to use both my math-
ematical background and critical thinking to
solve biological issues and examples.
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Figure 3. Student assessment of the degree to which their scientific content knowledge (A) and
quantitative skills (B) improved during the Systems Ecology course at East Tennessee State University
and to which course elements they ascribed this gain (C and D). Course elements responsible for
improvements sum to more than 100% because students could select more than one option.
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Figure 4. Change in scores on a pre- and post-test of quantitative skill administered at the beginning
and end of the systems ecology course at East Tennessee State University.

Students indicated that labs were the element of the course that were most helpful
in improving their scientific content knowledge, with course lectures ranked second
(Figure 3(C)). With respect to quantitative skills, students cited labs and MathBench tutorials
as being equally important for their perceived gains, with lectures being a close third
(Figure 3(D)). This fairly even distribution across three course elements is indicative of
the well-integrated nature of the course design in helping students hone their quantitative
skills.

There was no change from pre- to post-test in the degree to which students felt math
was important to biologists or the degree to which they liked math, although this may be
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due to students’ very high level of appreciation for the link between math and biology from
the start of the course. All students agreed or strongly agreed with the statement that ‘It is
important for biologists to know math’.

Students’ open-ended responses indicated that the main contribution of MathBench to
their learning was the way in which it imbedded quantitative material in biological contexts
(Table 1). A significant fraction of students indicated that MathBench helped them refresh
their existing quantitative skills. This is not surprising, given that MathBench content largely
focuses on the application of algebra and pre-calculus mathematics, while biology majors
have typically completed more advanced math coursework such as calculus. The generally
positive feedback on MathBench’s ability to refresh their existing skills and illustrate their
application to biological contexts shows the need for supplementing traditional mathemati-
cal training; math courses alone are insufficient for many biology students to feel confident
in applying mathematical approaches to biological problems. Smaller fractions of students
indicated that they value the interactive nature of the MathBench modules and the way they
progressed from intuitive explanations to more sophisticated mathematical approaches.
This is consistent with the fundamental design elements that underpin MathBench (Nelson,
Marbach-Ad, Fagan, Thompson, & Shields, 2009).

4. Conclusions

Biological processes provide a compelling context for teaching mathematical modelling.
For example, compartmental models of migratory dynamics are a very attractive way of
introducing derivatives, integrals and the fundamental theorem of calculus (Knisley et al.,
2011). However, because mathematical biology and mathematical modelling courses are
most often taught by mathematicians within mathematics departments, these courses are
frequently overlooked by biology majors. One solution is a course co-taught by faculty
members from mathematics and biology that is cross listed within both departments. Karsai
co-taught Systems Ecology several times with Jeff Knisley from the Department of Mathe-
matics and Statistics (Karsai et al., 2011). Although this can be an ideal scenario, it presents
logistical challenges. An alternative solution, using MathBench modules to provide some
of the quantitative content, worked well due to the large selection of modules and the robust
instructor support resources. This created a strong synergy between the disciplinary and
quantitative content. The students were able to achieve significant gains both in quantitative
skills and in biology content knowledge as they progressed from having no modelling ability
to being able to build their own model related to their own research interest.

The gains achieved by Systems Ecology students on the MathBench test of quantitative
skill are larger than those reported previously for introductory-level courses (Thompson
et al., 2010, 2013), which is somewhat unexpected because the modules were designed
specifically to help shore up basic skills necessary for success in first- and second-year
biology courses. MathBench is typically used as a self-contained platform for students
to practice their quantitative skills, and in many cases these skills are not reinforced
through subsequent course content. The Systems Ecology course, in contrast, continually
engaged students in the application and refinement of these skills. The deep integration of
MathBench content into the Systems Ecology curriculum represents a key difference in
the implementation of MathBench and undoubtedly contributed to the large learning gains
observed.

Modelling contributes to a deeper understanding of biological systems, especially with
regard to the nature of the relationships between components, comparisons of different
predictions of alternative conceptualizations and identification of general principles across
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different scientific fields (Turner, 2003). This promotes mathematical and equation literacy.
The Systems Ecology course at ETSU provides students with these general outcomes, and
in addition helps students learn to connect knowledge within and between disciplines,
understand the importance of precise statements and initial conditions for quantitative
work, communicate with audience and decision-makers using models as tools, recognize
the importance of informed quantitative decisions, and balance biological complexity with
computational feasibility.
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