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1.  Introduction

In Population dynamics, demographic stochasticity and the evolution of cooperation (Doebeli, 
Blarer, & Ackermann 1997) investigate the role of demographic stochasticity in the evo-
lution of cooperation. In that work, they interpret the pay-offs of the Iterated Prisoner’s 
Dilemma as Darwinian fitness and numerically show that conditions exist under which a 
small number of mutants using an inherently cooperative strategy can invade a population 
of pure defectors (i.e. individuals who never cooperate). They show that in the absence of 
demographic stochasticity the mutant cooperators can never invade, but that if stochasticity 
is incorporated in the model then invasion is possible.

Two strategies for the Iterated Prisoner’s Dilemma are discussed by Doebeli et al. The 
first is the Always Defect (AD) strategy which is inherently non-cooperative. The second 
strategy, known as Tit-for-Tat (TFT), is cooperative in the sense that individuals adopting 
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this strategy will cooperate with an opponent until that opponent chooses not to cooperate. 
In each successive meeting against that opponent, players adopting the TFT strategy will 
also defect. The authors investigate conditions under which invasion occurs and conjecture 
that cooperators ‘can invade a population of defectors when their dynamics exhibit short 
episodes of high population densities with subsequent crashes and long low density periods 
with strong genetic drift’.

The purpose of this paper is to explain this conjecture and to show that the most salient 
feature of the model is not the population dynamics of the defectors, but rather the relationship 
between these dynamics, the location of a threshold dividing two basins of attraction and the 
variability of the cooperating population. In particular, we will show that this threshold is an 
increasing linear function of the defector population. Thus, invasion is more likely when the 
defector population is small. Moreover, the slope of this threshold can be expressed in terms 
of the Iterated Prisoner’s Dilemma pay-off matrix. Thus, conditions for an increased likelihood 
of invasion can be expressed in game theoretic terms independent of population dynamics.

Section 2 discusses the basic deterministic model. This model is the foundation for 
all that follows and a thorough investigation of it provides a basis for understanding the 
more complex stochastic models. We will show that the line connecting the origin and a 
non-trivial fixed point is invariant and that this line forms the boundary between the two 
basins of attraction in the deterministic model.

In Section 3, we discuss a slightly simplified model of the one presented in Doebeli  
et al. (1997). We will examine several scenarios that illustrate the connections between the 
defector dynamics, the threshold and the variability of cooperating population. In particular, 
we compute how the probability of crossing the threshold changes with respect to both the 
slope of this threshold and the AD population size.

2.  The deterministic model

We begin by summarizing the construction of the mathematical model as presented 
in Doebeli et al. (1997). However, we will relax the restriction made in that work that 

Figure 1. The lines �
M
(p) and �

N
(p).

Note: The p-coordinate of the intersection of these lines is denoted p̄.
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populations take only non-negative integer values; allowing non-negative real values for 
these variables.

The Prisoner’s Dilemma is a two-player game where players can adopt either a cooper-
ative strategy (C) or a non-cooperative strategy, denoted D for ‘defect’. The pay-offs of this 
game are expressed in a pay-off matrix of the form 

where the pay-offs are received by the player in the first column playing against a player 
in the first row. For example, the pay-off to a player of type C playing against an opponent 
of type D is S. In the Prisoner’s Dilemma, the pay-offs are chosen so that S < P < R < T. 
It is well known that in this game the evolutionary stable strategy is to defect (strategy D) 
(Axelrod & Hamilton, 1981).

The Iterated Prisoner’s Dilemma game is built from this game by assuming that there 
is some non-zero probability that opponents will meet again. This repetition allows for 
more complex strategies that build upon the basic strategies of the Prisoner’s Dilemma. 
The first strategy we will consider is AD. A player using this strategy always chooses option 
D. A more cooperative strategy is known as TFT. In this strategy, the player cooperates in 
the first round and then chooses the strategy that their opponent used previously in each 
subsequent meeting of the two. In a TFT vs AD matchup, TFT would cooperate in the first 
meeting and then defect in each subsequent meeting. However, in a TFT vs TFT matchup, 
each individual would cooperate in every round.

We consider a discrete-time model of two populations whose population growth depends 
upon both population density and the pay-offs of an Iterated Prisoner’s Dilemma game. 
Let Mt denote the AD population at generation t and Nt the TFT population at generation 
t. Because the Iterated Prisoner’s Dilemma is played repeatedly, the pay-offs of this game 
depend on both the standard Prisoner’s Dilemma pay-offs and the frequency at which 
opponents encounter each other. Axelrod and Hamilton (1981) and Doebeli et al. (1997) 
use a geometric series calculation to show that if the probability of repeated encounters is 
sufficiently large, then the pay-offs are given by 

Figure 2. The (M,N) plane and the line separating the two basins of attraction.
Notes: Orbits starting below the threshold converge to an attracting orbit on the M-axis while orbits 
starting above the threshold converge to an attracting orbit on the N-axis.
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where ANM < AMM < AMN < ANN. Note that the order of these inequalities is different 
from the standard Prisoner’s Dilemma. In particular, the highest pay-off is in a TFT vs TFT 
match up where both players repeatedly cooperate. This is due to an assumption in Doebeli 
et al. (1997) that demands that the frequency of repeated encounters be relatively large. A 
consequence of this condition is that both AD and TFT are evolutionarily stable strategies 
(Axelrod & Hamilton, 1981).

We interpret the pay-offs of the Iterated Prisoner’s Dilemma as reproductive success. 
Because the population is heterogeneous, the average pay-off depends on the population 
frequency p = N∕Q where Q = M + N is the total population. The average pay-offs are 
given by

The graphs of these functions are shown in Figure 1.
In addition to the game theoretic aspect of the model, we incorporate density dependence 

via a viability function V (Q) that depends on the total population size. We assume that V (Q) 
is a differentiable and monotone decreasing function with V (0) = 1 and limQ→∞

V (Q) = 0. 
In the simulations discussed below, we will take V (Q) = e−cQ where c > 0.

Using these assumptions to construct our model, we get

This is essentially the same model discussed in Doebeli et al. (1997).
We begin our analysis by noting that if N0 = 0, then Nt = 0 for all t and the system 

reduces to the one-dimensional map

The dynamics and bifurcations of this family of maps are understood and similar to the 
dynamics of the logistic map xn+1 = �xn(1 − xn). In this case, the dynamics depend on the 
parameter AMM and the density dependence function V (M). As AMM increases, the dynamics 
range from a stable equilibrium, through the standard period-doubling cascade, to chaos 
and other stable periodic dynamics. Similar dynamics can occur when M0 = 0 and in this 
case depend on the parameter ANN.

Of special interest to us is that both of these orbits are transversally stable as well. This 
reflects the evolutionary stability of these two strategies. Thus, for example, if we have an 
initial condition of (M0,N0) with N0 sufficiently small, then limt→∞

Nt = 0. To see this, let 
us consider a period T orbit

�M(p) = AMNp + AMM(1 − p)

�N (p) = ANNp + ANM(1 − p).

(1)
Mt+1 = �M(pt)V (Qt)Mt

Nt+1 = �N (pt)V (Qt)Nt .

Mt+1 = AMMV (Mt)Mt .

{(M0, 0), (M1, 0),… , (MT−1, 0)}
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and linearize about it. To compute the stability of this periodic orbit, we need to find the 
eigenvalues of the T-fold product of the Jacobian matrices of system (1) evaluated at each 
of these points. Each of these matrices is triangular so the product is also triangular and 
the eigenvalues are simply the diagonal elements of this product. In this case, the relevant 
eigenvalue is

Periodicity implies that

which implies that

Substituting (3) into (2) implies that

since ANM < AMM. Thus, this orbit is asymptotically stable transverse to the M-axis. A similar 
calculation reveals that a periodic orbit on the N-axis is also asymptotically stable. We note 
that the periodicity assumption is not necessary but the proof requires the use of ergodic 
theory. For a similar proof, see LoFaro and Gomulkiewicz (1999).

Regardless of the axial dynamics, there also exists a non-zero equilibrium point (M,N) 
with M = Q(1 − p̄) and N = Qp̄. To compute p̄, we note that the Equations (1) imply that 
if there exists a fixed point, then 𝜆M(p̄) = 𝜆N (p̄) and thus from (1) it follows that

The inequalities describing these parameters imply that p̄ > 0. We note that Q̄ can also be 
expressed in terms of these parameters (and the function V) but this will be irrelevant to 
what follows.

Linearization implies that the fixed point (M,N) is a saddle and it is this structure that 
separates orbits that tend to the M-axis from those that converge to the N-axis.

Proposition 2.1:  Let w̄ = p̄∕(1 − p̄). The line N = w̄M is invariant. Moreover, if N
0
< w̄M

0
 , then

Similarly, if N
0
> w̄M

0
, then

(2)� = �N (0)
T

T−1
∏

t=0

V (Mt) = AT
NM

T−1
∏

t=0

V (Mt).

M0 = AT
MM

[T−1
∏

t=0

V (Mt)

]

M0

(3)
T−1
∏

t=0

V (Mt) =
1

AT
MM

.

𝜇 =

(

ANM

AMM

)T

< 1

p̄ =
ANM − AMM

AMN − ANN + ANM − AMM

.

lim
t→∞

Nt = 0.

lim
t→∞

Mt = 0.
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Proof:  Suppose that N
0
= w̄M

0
. Then Q

0
= M

0
∕(1 − p̄) and p

0
= p̄. This implies that

since 𝜆M(p̄) = 𝜆N (p̄). Thus, the line N = w̄M is invariant.

We prove the second part of this proposition by showing that if N
0
< w̄M

0
, then pt → 0 as 

t → ∞. The equations in (1) imply that

If Nt <
p̄

1−p̄
Mt, then pt < p̄ and thus 𝜆N (pt) < 𝜆M(pt). Therefore

This implies that if 0 < p
0
< p̄, then the sequence {pt}

∞

t=0 is a strictly decreasing sequence 
and limt→∞

pt = 0. Thus, in the original equations if N
0
<

p̄

1−p̄
M

0
 then limt→∞

Nt = 0.

An identical argument is used to prove the second limit.� □

Figure 2 summarizes the dynamics of the deterministic model. The M- and N-axes are 
invariant and on each of these axes there exists an attracting orbit. These orbits may be 
periodic or chaotic. Moreover, these orbits are also transversally stable and so initial condi-
tions off the axes that also converge to these orbits. The line N = w̄M is also invariant and 
orbits with initial conditions on this line converge to the fixed point (M̄, N̄). Proposition 2.1 
tells us that this line also serves as the boundary between the basins of attraction of the 
attracting orbits on the M- and N-axes. Orbits with initial conditions below this threshold 
line converge to the attracting orbit on the M-axis, while orbits starting above this line 
converge to the N-axis.

N
1

M
1

=
𝜆N (p̄)N0

𝜆M(p̄)M0

=
N

0

M
0

(4)pt+1 =
�N (pt)V (Qt)ptQt

Qt+1

.

pt+1

pt
=

𝜆N (pt)

pt𝜆M(pt) + (1 − pt)𝜆N (pt)
<

𝜆N (pt)

pt𝜆N (pt) + (1 − pt)𝜆N (pt)
= 1.

Figure 3. Deterministic and stochastic iteration.
Notes: In each figure, the horizontal axis is t  and the vertical axis is population with blue representing 
M and red representing N. The same initial conditions were used to generate each figure. The figure on 
the left is the deterministic model. Note that the sequence {Mt} converges to a non-zero value while the 
sequence {Nt} converges to zero. The figure on the right is the stochastic model. In this example, the 
sequence {Mt} becomes negligible.
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3.  A stochastic model

With a complete understanding of the deterministic model in hand, we can now begin 
investigating a similar model that incorporates stochasticity. We consider a model in which 
the only randomness is in the dynamics of the N variable representing the TFT population. 
This is a simplification of the model discussed in Doebeli et al. (1997) where stochasticity 
affected the dynamics of both populations. We make this simplification so that we can better 
elucidate the factors that allow for the evolution of cooperation.

In the deterministic model, the growth rate at generation t is the deterministic function 
�N (pt)V (Qt). In this section, we assume that the growth rate at generation t is drawn from 
a continuous probability distribution on the interval (0,∞) with mean �N (pt)V (Qt).

The basic idea is that stochasticity allows for an orbit that would deterministically converge 
to the M-axis to cross the threshold (i.e. the line N = w̄M). This might occur, for example, 
if the birth rate is unusually high in some generation. Once the threshold has been crossed, 
then it is possible that this orbit will then converge to the N-axis instead of the M-axis.  
Thus, stochasticity has provided an opportunity for cooperators to prevail in the face of 
competition. Figure 3 shows examples of the deterministic and stochastic model using the 
same parameter values and initial conditions. On the left is the deterministic model. Note 
that the sequence {Nt} (in blue) converges to a non-zero value while the sequence {Mt} (in 
red) converges to zero. Thus, TFT does not spread against AD. By contrast, the stochastic 
model with the same initial conditions has a markedly different behavior. In this example, 
the sequence {Mt} does not converge to 0 and thus the TFT strategy persists. We note that 
because this model is stochastic, each run is different. In particular, we have observed runs 
using the same model where TFT does not invade in the 100 iterations shown here.

There are two main factors that facilitate the crossing of the threshold. The first is the 
variance of the probability distribution. A large variance will increase the likelihood that 
the threshold will be crossed.

The second and more fundamental factor is the location of the threshold relative to the 
attracting orbit on the M-axis. If the threshold is close to points on this orbit, then there is 

Figure 4. The probability of crossing the threshold as a function of the fixed point location (M∗
, 0) (left) 

and of the slope w̄ (right).
Notes: Left: Parameters were chosen so that there is an attracting fixed point on the M-axis and the slope 
of the threshold is w̄ = 0.1. An initial condition of (M∗

, 0.1) was used in all trials. Right: Parameters were 
chosen so that there is an attracting fixed point on the M-axis. An initial condition of (3.219, 0.02) was 
used for all trials. This initial condition has the same M-coordinate as the fixed point and is below the 
threshold for all values of w̄.
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an increased probability that the stochasticity will push the N orbit across the threshold. 
Since the threshold is the line N = w̄M which passes through the origin, one way that 
the threshold can be near to points on the attracting orbit on the M-axis is if points on 
the attracting orbit are close to the origin. This will allow relatively small deviations from the 
deterministic model to push orbits across the threshold and into the basin of attraction of the 
attracting orbit on the N-axis. In terms of the model, this means that if the AD population 
experiences periods of low populations then there is an increased likelihood that the TFT 
population could invade. This is the mechanism suggested by Doebeli et al. (1997). Note 
that this mechanism does not require the M dynamics to be chaotic or even periodic; it 
only requires that there be periods when this orbit (i.e. the AD population) is very small.

Another way to have a small distance between the attracting orbit on the M-axis and the 
threshold is for the slope of the threshold to be small. But this slope is

which is solely a function of the IPD pay-offs. The numerator of this fraction is the differ-
ence in pay-offs in games against AD, while the denominator is the difference in pay-offs 
in games against TFT. Thus, if the pay-off differential between AD and TFT in matches 
against AD (the numerator) is small relative to the pay-off differential between TFT and 
AD in matches against TFT (the denominator), then there is an increased likelihood that 
TFT ‘mutants’ will spread and ultimately cooperation will prevail. In other words, if it is 
only slightly advantageous to defect relative to the benefits of cooperating then cooperation 
may spread.

We now make these claims more specific. Recall that we have made the simplifying 
assumption that the M dynamics are deterministic, while the N dynamics are stochastic 
with a random growth rate having a mean of �M(pt)V (Qt). Let r

�
 denote a random variable 

chosen from a continuous probability distribution R
�
 on [0,∞) with mean �. Then, the 

model equations become

with �t = �N (pt)V (Qt).
Proposition 3.1:  Let P denote the probability of the next iterate of (Mt ,Nt) under (6) crossing 
the the threshold line N = w̄M. Then 𝜕P∕𝜕w̄ < 0 and 𝜕P∕𝜕Mt+1 < 0.

Proof:  Using the notation above, we can express the probability of crossing the threshold 
in the next iteration for (Mt ,Nt) below the threshold. The next iteration crosses the threshold 
if and only if

Equivalently, if

(5)w̄ =
p̄

1 − p̄
=

AMM − ANM

ANN − AMN

(6)
Mt+1 = �M(pt)V (Qt)Mt

Nt+1 = r
�t
Nt .

Nt+1 > w̄Mt+1.

r
𝜇t
>

w̄𝜆M(pt)V (Qt)Mt

Nt
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then the threshold is crossed. Thus, the probability P that the threshold will be crossed in 
the next iteration is given by

Since w̄ is the slope of the threshold, we can determine how this affects the probability of 
crossing the threshold by taking the derivative of equation (7) with respect to w̄. This yields

Therefore, the probability of crossing the threshold increases as w̄ (or equivalently p̄) 
decreases.

It is more difficult to determine how P changes with Mt since the dynamics of this variable 
may not be monotonic. However, we can easily compute the rate of change of P with respect 
to Mt+1 (the image of Mt). The probability of crossing the threshold is

Thus, the rate of change of P with respect to Mt+1 is

Thus, as the value of Mt+1 decreases the probability of crossing the threshold increases. In 
other words, if the AD population crashes, then the probability of crossing the threshold 
increases and hence there is an increased likelihood that the TFT population will become 
established.� □

Explicit computations and simulations can be made when the probability distribution 
R is assumed to be the exponential distribution. This is a natural distribution to use in this 
work given that the stochasticity is assumed to play a role in determining the growth rate 
of the TFT population. A Poisson distribution was used in this context in Doebeli et al. 
(1997) since they restricted the values of M and N to the positive integers. Recall that the 
exponential distribution is a one-parameter probability distribution defined on the interval 
[0,∞) and for a fixed parameter �

The mean of this distribution is �−1 and its variance is �−2.

We begin with a pair of numerical simulations (see Figure 4) using Mathematica (Wolfram 
Research, Inc., 2015) to illustrate how the location of the asymptotic orbit on the M-axis 
and the threshold slope affects the probability of crossing the threshold. To highlight the 
effect of the threshold slope and to eliminate the other factors we have discussed, we have 

(7)P = ∫
∞

w̄𝜆M (pt )V (Qt )Mt

Nt

R
𝜇t
(x) dx.

𝜕P

𝜕w̄
= −R

𝜇t

(

w̄Mt+1

Nt

)

Mt

Nt

𝜆M(pt)V (Qt) < 0.

(8)∫
∞

w̄Mt+1

Nt

R
𝜇t
(x) dx

𝜕P

𝜕Mt+1

= −R
𝜇t

(

w̄Mt+1

Nt

)

w̄

Nt

< 0.

(9)Pr(x > A) = ∫
∞

A

𝜆e−𝜆x dx = e−𝜆A.
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chosen model parameters so that there is an attracting equilibrium (M∗, 0) for all trials. This 
fixed point is given by M∗ = ln(AMM)∕c and is attracting for 1 < AMM < e2.

In the first simulation (left panel of Figure 4), we fixed the slope w̄ = 0.1 and increased 
AMM from 1 to e2 in steps of 0.1. An initial condition of (M∗, 0.1) was used in all trials. We let 
AMN = 14, ANN = 15, c = 0.5 and ANM = AMM − 0.1. In all simulations, we conducted 200 
trials allowing a maximum of 100 iterations per trial. We plot the number of trials in which 
the threshold was crossed at least once divided by the number of trials. Figure 4 suggests 
that the probability of crossing the threshold decreases as M∗ increases as discussed above.

In the second simulation (right panel of Figure 4), we fix the location of the fixed point 
throughout the trials and we change the slope w̄ by changing the IPD pay-off ANM while leav-
ing AMM , ANN and AMN fixed. For Figure 4, we let AMM = 5, AMN = 14, ANN = 15, c = 0.5 
and ANM = AMM − � with � ranging from 0.01 to 1.0 in steps of 0.01. Note that these choices 
of parameters imply that M∗ ≈ 3.219 and w̄ = 𝛿. An initial condition of (3.219, 0.02) was 
used for all trials. In all simulations, we conducted 200 trials allowing a maximum of 100 
iterations per trial. We plot the number of trials in which the threshold was crossed at least 
once divided by the number of trials. Again we see that the probability of crossing the 
threshold decreases as w̄ increases as is predicted by Proposition 3.1.

While we can explicitly compute the derivatives described in Proposition 3.1 using the 
exponential distribution, the simplicity of Equation (9) allows for the direct computation of 
both �P∕�Mt and �P∕�Nt for which we do not have results in general. For ease of notation, 
we will drop the subscript t in what follows. First note that when using the exponential 
distribution the probability of crossing the threshold is

Using this, a straightforward computation yields

and

Equation (11) is not surprising as it says that as we increase N towards the threshold the 
probability of crossing the threshold increases. Equation (10) is less obvious since the 
dynamics when N = 0 may be non-monotone. It says that as M increases the probability 
of crossing the threshold in the next iteration decreases.

4.  Conclusion

Two simplifications of the original model were made to facilitate mathematical analysis. The 
first modification, allowing M and N to assume real values instead of integer values, allowed 
the use of tools and techniques of differentiable dynamical systems. In particular, when 

P = exp

(

−
M(AMMM + AMNN)

N(ANMM + ANNN)
w̄

)

.

(10)
𝜕P

𝜕M
= −w̄P

AMNANNN
2 + 2AMMANNMN + AMMANMM

2

N(ANMM + ANNN)2
< 0

(11)
𝜕P

𝜕N
= w̄P

AMNANNMN2 + 2AMMANNM
2N + AMMANMM

3

N2(ANMM + ANNN)2
> 0.
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studying the discrete model in Section 2, it allowed us to compute the stability of orbits on 
M- and N-axes, compute the invariant threshold line and ultimately to determine basins of 
attraction. The second simplification, allowing only the N dynamics to vary stochastically, 
was done to simplify the calculation of the probability of crossing the threshold and the 
related rates of change. These simplifications provide a more complete mathematical and 
theoretical explanations of the phenomena originally described in Doebeli et al. (1997) and 
thus provide a foundation for pursuing a more complete mathematical description of the 
results described there.

A next step in understanding the simplified model is to describe the interplay between 
the asymptotic dynamics on the M-axis (the AD dynamics) and the stochastic dynamics 
of the N variable (the TFT dynamics) in a neighborhood of the M-axis especially when 
the M-dynamics are periodic or chaotic. Ergodic theory tells us that there is an invariant 
probability measure associated with the invariant dynamics on the M-axis. Thus for the 
deterministic model, we can essentially ‘compute’ the asymptotic frequency (i.e. probability) 
that an orbit spends in some measurable set S including a measurable invariant set on the 
M-axis. On the other hand, for each point in S, we can compute the probability of crossing 
the threshold using Equation (7). That suggests a possible mechanism for understanding 
how the underlying dynamics of the AD population affects the probability of the TFT 
population becoming established.

We have shown that in this model a small population of TFT mutants can become estab-
lished when there is a stochastic component to their population growth rate. Moreover, we 
have explained why this invasion is more likely when, in the absence of a TFT population, 
the AD population is small and at equilibrium or experiences periods of low population 
densities. The explanation of this phenomenon in terms of the threshold line justifies the 
results presented in Doebeli et al. (1997).

By explicitly computing this threshold, we have also shown that invasion by TFT mutants 
is more likely when the relative advantage of defecting is small compared to the benefits of 
cooperating. We note that these two factors can act in concert to increase the likelihood 
of invasion.

It is worth noting that the density-dependent viability term included in this model is 
necessary. Without density dependence, both the TFT and AD strategies are evolutionary 
stable. In the deterministic model without density dependence, orbits near one of the axes 
still converge to that axis. However, the absence of density dependence causes the orbits on 
each axis to increase without bound. Thus, when stochasticity is incorporated in the model, 
there is little chance for the TFT mutants to become established. If the TFT population 
fails to cross the threshold in one generation, then the AD population will increase in the 
next generation and the probability of crossing the threshold diminishes. In the limit the 
probability of escape tends to zero.

Thus it seems that the evolution of cooperation depends critically on density dependence 
and randomness. Without either of these factors, it is impossible for cooperation to become 
established in the framework of this model.
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