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competition model with Allee effects and stocking

Mihiri De Silva∗ and Sophia R.-J. Jang

Department of Mathematics, Texas Tech University, Lubbock, TX, USA

(Received 10 April 2015; accepted 27 April 2015)

We propose a Lotka–Volterra competition model of two populations where one
population is subject toAllee effects and is also under stocking to investigate competition
outcomes.The resulting model is analysed by studying its global asymptotic dynamics. In
some cases, the endangered population can drive the other population to extinction, while
in other cases, the endangered population cannot survive. Coexistence of both competing
populations is possible in some parameter regimes. It is concluded that considerable care
must be taken before implanting the population that is subject to Allee effects.
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1. Introduction

The Allee effect, referring to the reduced fitness or the decline in population growth at
low population densities or sizes, was first observed by Allee in the 1930s (Allee, 1938).
It has significant impact on population survival when the population is at low level. There
has been a rebound of interest in Allee effects recently due to fragmentation of habitats,
invasions of exotic species, biological control of pests, etc. all involving small populations
(Courchamp, Berec, & Gascoigne, 2008).

White abalone (Haliotis sorenseni) is the first marine invertebrate protected under
the Endangered Species Act (Hobday & Tegner, 2000). At low population density, the
population is subject to Allee effects due to failure of external fertilization (Hobday &
Tegner, 2000). Natural recovery without intervention is unlikely to occur for the population,
while strong degree of spawning synchrony and high fecundity of white abalone make
captive breeding and stocking feasible (Stierhoff, Neuman, & Butler, 2012). A Leslie
matrix model of white abalone is proposed in Li and Jiao (2015) to study different stocking
strategies. Since populations in a natural environment are unlikely to be isolated, we propose
a two-species competing model to investigate the effects of stocking when one of the
populations is subject to Allee effects.

Many single-species and predator–prey models incorporating Allee effects
have appeared in the literature, including Allen, Fagan, Hognas, and Fagerholm (2005),
Cushing (1988), Dennis (2002), Hilker (2010), Morozov, Petrovskii, and Li (2004), Thieme,
Dhirasakdanon, Han, and Trevino (2009), Voorn, Hemerik, Boer, and Kooi (2007), Zhou
and Wang (2004) and Zhou, Liu, and Wang (2005). In each of these deterministic models,
a critical threshold is observed below which the population will inevitably become extinct.
Competition models with Allee effects on the other hand have not received much attention.
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The earliest research dates back to Wang, Liang, and Wang (1999), where a continuous-
time Lotka–Volterra competition system with Allee effects occurring in both populations is
studied.

Discrete-time competition models are proposed and analysed by Kang (2013) and
Livadiotis and Elaydi (2012), where each population in the absence of the other population
follows the growth of the Ricker model and is also subject to Allee effects. Chow and Jang
(2014) study a discrete-time competition system based on the Leslie–Gower equation, where
both populations are also subject to Allee effects. These competition models are discrete-
time systems of difference equations (Chow & Jang, 2014; Kang, 2013; Livadiotis & Elaydi,
2012), which are adequate to model populations with non-overlapping generations. For
example, many insects die after reproduction and many fishes have distinctive life stages,
and discrete-time population models are appropriate to study these types of populations.

There are many other populations that reproduce continuously and therefore difference
equations are not adequate to model such populations. In this study, we use ordinary
differential equations to model population interaction and consequently individuals within
each population are assumed to be homogeneous. We propose a model of two competing
populations based on the classical Lotka–Volterra competition system where one population
is subject to Allee effects, while the other population exhibits no Allee effects. However,
our modelling aspect of Allee effects is different from that of Wang et al. (1999). It
is expected that the population with Allee effects will become extinct if its population
size is small. Consequently, a constant rate of the external population is input into the
resident population to rescue the population (Hobday & Tegner, 2000; Nock et al., 2011).
There are discrete-time mathematical models proposed to investigate the effects of external
stocking. See AlSharawi and Rhouma (2009), Elaydi and Yakubu (2002), Kulenović and
Nurkanović (2012), Chow and Jang (2015) and references cited therein. Continuous-time
models incorporating stocking have been studied by Brauer and Soudack (1982) for a class
of predator–prey systems. The effect of stocking is discussed (Brauer & Soudack, 1982) by
comparing isoclines with the model of no stocking. In this study, we shall investigate the
impact of stocking upon population persistence, extinction and competitive exclusion.

In the following section, we present the model and study its global asymptotic dynamics.
It is proven that in some cases, the population with Allee effects can drive the other
population to extinction, while in other cases, the endangered population cannot survive
with stocking. Coexistence of both competing populations is possible in certain parameter
regimes. The final section summarizes results and conclusions. The proofs of our main
results are presented in the Appendix 1.

2. The model and asymptotic dynamics

Let x(t) and y(t) denote two competing populations at time t ≥ 0. The well-known Lotka–
Volterra competition model assumes that each population grows logistically to its carrying
capacity in the absence of the other population (Allen, 2006):

x ′ = r1x

(
1 − x

K1

)
− r1c1xy

K1
,

y′ = r2 y

(
1 − y

K2

)
− r2c2xy

K2
, (2.1)

where competition coefficient c1 > 0 represents the effect of population y on x and c2 > 0
is the effect of population x on y. Parameters ri , Ki , ci , i = 1, 2, are positive constants,
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where r1 and r2 are the intrinsic growth rates of populations x and y, respectively, and K1
and K2 are the corresponding carrying capacities. The asymptotic dynamics of (2.1) are
well known. For most of the parameter values, all solutions (or except possibly on a set of
initial conditions of Lebesgue measure zero) converge to one of the boundary steady states
(Allen, 2006). Only in a very small parameter, regime solutions converge to the coexisting
steady state. These scenarios correspond to the classical competitive exclusion principle
in population biology and therefore the system has been frequently used to illustrate the
principle (Begon, Harper, & Townsend, 1996).

If population x is subject to Allee effects, then we model the population by the following
equation prior to competition:

x ′ = r1x

(
1 − x

K1

)
(x − a1), x(0) ≥ 0, (2.2)

where a1, 0 < a1 < K1, is the Allee threshold of the x population. Such an equation has
been adopted by Amarasekare (1998) and Keitt, Lewis, and Holt (2001) to model Allee
effects. It is easy to see that solutions x(t) of (2.2) satisfy lim

t→∞ x(t) = 0 if 0 ≤ x(0) < a1

and lim
t→∞ x(t) = K1 if x(0) > a1. Therefore, there exists a population level threshold a1

below which the population becomes extinct.
Wang et al. (1999), on the other hand, use the following equation to model Allee effects

for a single population N :

N ′ = N

(
b

(
1 − N

R

)
· N

C + N
− D

)
, (2.3)

where all of the parameters b, R, C, D are positive with b > D, and C is the Allee
constant. The larger C indicates the stronger Allee effects. From Equations (2.2) and (2.3),
it is clear that our modelling aspect is different from that of the model considered by Wang
et al. (1999).

When a population is in danger of extinction, frequently, an external population is
released into the resident population to conserve the endangered population (Hobday &
Tegner, 2000; Nock et al., 2011). With the equation given in (2.2), we propose the following
competition model in which population x is subject toAllee effects and is also under stocking

x ′ = r1x

(
1 − x

K1

)
(x − a1)− r1c1xy

K1
+ sx,

y′ = r2 y

(
1 − y

K2

)
− r2c2xy

K2
, (2.4)

where r1, K1, c1, r2, K2, c2 are positive, 0 < a1 < K1, and s > 0 is the constant
proportionality of stocking. Notice that such a constant rate of stocking is also considered
by Brauer and Soudack for a class of predator–prey models (Brauer & Soudack, 1982).

There are seven parameters in (2.4). We can rescale the system to reduce the number of
parameters. Let

x̂ = x

K1
, ŷ = y

K2
, t̂ = r2t,

and define

r̂1 = r1 K1

r2
, ŝ1 = s

r2
, ĉ1 = r1c1 K2

r2 K1
, â1 = a1

K1
, and ĉ2 = c2 K1

K2
.
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Then by ignoring the hats, system (2.4) is converted to

dx

dt
= r1x(1 − x)(x − a1)− c1xy + s1x,

dy

dt
= y(1 − y)− c2xy, (2.5)

with non-negative initial conditions. Model (2.5) has only four parameters, where
0 < a1 < 1 and r1, c1, c2, s1 are positive. We assume

s1 > r1a1, (2.6)

so that the constant proportionality is greater than the product of a1 and r1. One can see that
population x also exhibits Allee effects if the stocking is small, s1 < r1a1.

If y(0) = 0, then y(t) = 0 for t > 0 and (2.5) reduces to the scalar equation

x ′ = x(r1(1 − x)(x − a1)+ s1). (2.7)

Let f (x) denote the right hand side of (2.7). Dynamics of Equation (2.7) can be easily
determined. Indeed, 0 is always a steady state and Equation (2.7) has a unique positive
steady state x̄ under (2.6), where

x̄ = 1 + a1

2
+

√
(1 + a1)2 + 4

r1
(s1 − r1a1)

2
. (2.8)

If s1 > r1a1 is not assumed, then (2.7) may have two positive steady states, and as a result,
the population will also be subject to Allee effects even with stocking. It can be readily
shown that the positive steady state x̄ is globally asymptotically stable for (2.7) on (0,∞).

We are now ready to study the full system (2.5). Clearly, solutions of (2.5) exist,
remain non-negative and are bounded for t > 0. System (2.5) has boundary steady states
E0 = (0, 0), E1 = (x̄, 0) and E2 = (0, 1). Their stability depends on the Jacobian matrix
J evaluated at the steady states with

J (E0)=
[

s1 − r1a1 0
0 1

]
, J (E1)=

[
f ′(x̄) −c1 x̄

0 1 − c2 x̄

]
, and J (E2)=

[
s1 − r1a1 − c1 0

−c2 −1

]
.

Since each of these matrices are triangular, stability of the boundary steady states is sum-
marized below.

Proposition 2.1 System (2.5) has three boundary steady states E0 = (0, 0), E1 = (x̄, 0)
and E2 = (0, 1), where E0 is a repeller. Steady state E1 is asymptotically stable if c2 x̄ > 1
and a saddle point if c2 x̄ < 1, and E2 is asymptotically stable if s1 < r1a1 + c1 and a
saddle point if s1 > r1a1 + c1.

Notice model (2.5) is a two-dimensional competitive system with respect to the partial
ordering ≤K, where

(x, y) ≤K (z, w) if and only if x ≤ z and y ≥ w.

Since solutions of (2.5) are bounded, every solution of (2.5) converges to a steady state
by Smith and Waltman (1995, Appendix C) due to competitiveness. Let (x0, y0) in R

2+ be
given arbitrarily. Relative to (x0, y0), we can separate R

2+ into four regions Qi , 1 ≤ i ≤ 4,
in a counter-clockwise manner:
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Q1(x0, y0) = {(x, y) ∈ R
2+ : x ≥ x0, y ≥ y0},

Q2(x0, y0) = {(x, y) ∈ R
2+ : x ≤ x0, y ≥ y0}, (2.9)

and Q3 and Q4 are defined similarly. Then, Q2 and Q4 are positively invariant for (2.5) if
(x0, y0) is a steady state. Figure 1(a) plots a point (x0, y0) and illustrates the four regions
Qi , 1 ≤ i ≤ 4, relative to (x0, y0).

Interior steady states are the positive intersections of the isoclines. The non-trivial
x- and y-isoclines are given by

q1(x) = 1

c1
[r1(1 − x)(x − a1)+ s1] and g2(x) = 1 − c2x, (2.10)

respectively. Let h(y) = 1

c2
(1 − y) be the inverse function of g2. Notice q1(0) = 1

c1
(s1 −

r1a1) > 0, q1(x̄) = 0, and y = q1(x) is a concave down parabola with vertex at x̂ =
1 + a1

2
. We separate our discussion into the following cases:

case 1: c1 < s1 − r1a1 and 1 < c2 x̄, case 2: c1 > s1 − r1a1 and 1 < c2 x̄,

case 3: c1 < s1 − r1a1 and 1 > c2 x̄, case 4: c1 > s1 − r1a1 and 1 > c2 x̄,

where the critical case of equality in cases 1–4 is ignored since parameter values are
estimates. In the following, we provide asymptotic dynamics of the model. Their proofs are
presented in Appendix 1.

If case 1 holds, then from the graphs of y = q1(x) and y = g2(x), as illustrated in
Figure 1(b), that there is no interior steady state. Since every solution of (2.5) converges to
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Figure 1. (a) illustrates the regions Q1–Q4 defined in (2.9) relative to the point (x0, y0). (b)–(d) are
the isoclines of system (2.5) under different parameter regimes: (b) c1 < s1 − r1a1 and 1 < c2 x̄ , (c)
c1 > s1 − r1a1 and 1 < c2 x̄ , and (d) c1 < s1 − r1a1 and 1 > c2 x̄ .
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a steady state, it follows from Proposition 2.1 that E1 = (x̄, 0) is globally asymptotically
stable in int(R2+).

Theorem 2.2 If c1 < s1 − r1a1 and 1 < c2 x̄ , then system (2.5) has no interior steady
states and E1 = (x̄, 0) is globally asymptotically stable in int(R2+).

Since c1 is small and c2 is large under the assumption of Theorem 2.2, population x is
more aggressive than the y population in competing for resources. Even though population x
is subject toAllee effects, the stocking s1 is large, so the x population drives the y population
to extinction.

When case 2 occurs, then a simple graphical analysis shows that (2.5) has a unique
interior steady state E∗ = (x∗, y∗), where 0 < y∗ < 1 and 0 < x∗ < x̄ . See Figure 1(c).
Furthermore, E0 = (0, 0) is a repeller, and E1 = (x̄, 0) and E2 = (0, 1) are asymptotically
stable by Proposition 2.1. The asymptotic dynamics of the model for case 2 are summarized
below.

Theorem 2.3 Let c1 > s1 − r1a1 and 1 < c2 x̄ . Then (2.5) has a unique interior steady
state E∗ = (x∗, y∗), where E∗ is a saddle point. The stable manifold of E∗ separates R

2+
into two positively invariant regions R1 and R2 such that E2 = (0, 1) and E1 = (x̄, 0) are
globally asymptotically stable in R1 and R2, respectively.

From the assumption of Theorem 2.3, both c1 and c2 are large but the stocking s1
is not large, so that competition between these two populations is intense. Therefore,
competitive exclusion occurs with competition outcomes depending on initial populations.
The population with a larger population size will be more likely to outcompete the other
population.

Consider case 3, where c1 < s1 − r1a1 and 1 > c2 x̄ . A simple graphical analysis as
illustrated in Figure 1(d) shows that (2.5) has a unique interior steady state E∗ = (x∗, y∗).
Notice E0 = (0, 0) is a repeller, E1 = (x̄, 0) is a saddle point with stable manifold on the
positive x-axis, and E2 = (0, 1) is also a saddle point with stable manifold on the positive
y-axis. We summarize the dynamical behaviour of (2.5).

Theorem 2.4 Let c1 < s1 − r1a1 and 1 > c2 x̄ . Then, (2.5) has a unique interior steady
state E∗ = (x∗, y∗) and E∗ is globally asymptotically stable in int(R2+).

Competition coefficients c1 and c2 are small under the assumption of Theorem 2.4,
which indicates that both populations are less aggressive in competing with each other. On
the other hand, stocking s1 is large. Therefore, both populations can coexist for all positive
initial populations.

When case 4 holds, i.e. c1 > s1 − r1a1 and 1 > c2 x̄ , then E1 = (x̄, 0) is a saddle point
and E2 = (0, 1) is asymptotically stable by Proposition 2.1. Moreover, (2.5) may have
either two interior steady states E∗

i = (x∗
i , y∗

i ), i = 1, 2, where 0 < x∗
1 < x∗

2 < x̄ and
y∗

2 < y∗
1 < 1, a unique interior steady state E∗ = (x∗, y∗) when y = g2(x) is tangent to

y = q1(x) at E∗, or no interior steady state. See Figure 2(a)–(c). We label these as cases
4(a)–4(c), respectively. Since parameter values are estimates, the probability of tangency is
very small. Therefore, we do not provide the dynamics for case 4(b). The proof of Theorem
2.5 is omitted since it is similar to the proofs of Theorems 2.3 and 2.4.

Theorem 2.5 Let c1 > s1 − r1a1 and 1 > c2 x̄ . Then (2.5) may have either two, one or
no interior steady states. The unique interior steady state E∗ is non-hyperbolic whenever
it exists. If (2.5) has two interior steady states, E∗

i (x
∗
i , y∗

i ), i = 1, 2, 0 < x∗
1 < x∗

2 < x̄
and y∗

2 < y∗
1 < 1, then E∗

1 is a saddle point and E∗
2 is asymptotically stable. The stable
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Figure 2. Isoclines of system (2.5) when c1 > s1 − r1a1 and 1 > c2 x̄ hold. Plots (a)–(c) correspond
to the cases 4(a)–4(c), where there are two interior steady states, a unique interior steady state, and
no interior steady state, respectively.

Table 1. Asymptotic dynamics of model (2.5).

Parameter regime Interior steady states Asymptotic dynamics

c1 < s1 − r1a1 and 1 < c2 x̄ None E1 is GAS
c1 > s1 − r1a1 and 1 < c2 x̄ Unique E∗ E2 and E1 are GAS in the respective regions
c1 < s1 − r1a1 and 1 > c2 x̄ Unique E∗ E∗ is GAS
c1 > s1 − r1a1 and 1 > c2 x̄ None E2 is GAS

Two with E∗
1 <<K E∗

2 E2 and E∗
2 are GAS in the respective regions

manifold of E∗
1 separates R

2+ into two positively invariant regions such that E2 and E∗
2 are

globally asymptotically stable in the respective regions. Moreover, E2 = (0, 1) is globally
asymptotically stable if (2.5) has no interior steady state.

Under the assumption of Theorem 2.5, population y is more aggressive but population x
is under stocking. The competition outcome is not clear from the given assumption since
either population y dominates or both populations coexist as illustrated in Theorem 2.5. In
the following, we provide sufficient conditions in terms c1 and c2 so that either coexistence
or competitive exclusion occurs.

Theorem 2.6 If (A4) holds, then (2.5) has no interior steady states. If (A6) holds, then
(2.5) has two interior steady states.

There are three conditions in (A4). Two of them are those given in the assumption of
Theorem 2.5, namely c1 > s1−r1a1 and 1 > c2 x̄ . The other condition is c2 < ζs(c1), where
ζs is defined by (A3). This latter condition provides a direct comparison between the two
competition coefficients c1 and c2. The condition implies that population x is less aggressive
than population y. Therefore, the y population drives the x population to extinction.
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There are also three inequalities listed in (A6), where two of them are the same as those
presented in the assumption of Theorem 2.5. The other condition is ζs(c1) < c2 < ψs(c1),
with ψs given in (A5). We can interpret these two inequalities by saying that population x
is more aggressive as compared to the previous scenario where c2 < ζs(c1). However,
population x is not sufficiently aggressive since c2 < ψs(c1). Therefore, coexistence of
both populations is possible if the initial x population is large. Otherwise, the x population
goes extinct since population y is aggressive.

The asymptotic dynamics of model (2.5) are summarized in Table 1.

3. Summary and conclusions

White abalone is an endangered species which is also subject to Allee effects (Hobday
& Tegner, 2000). It is well documented that the species cannot recover naturally without
stocking (Hobday & Tegner, 2000; Stierhoff et al., 2012). In Li and Jiao (2015), a size-
structured single population matrix model is proposed to study the effects of stocking by
different sizes of abalone. In any natural environment, however, populations are likely to
interact with other populations. It is the goal of this study to investigate the impact of Allee
effects and stocking on two competing populations.

If only x population is considered, then it is clear that the population can persist
indefinitely for all positive population distributions if the stocking s1 is larger than the
intrinsic growth rate and the Allee threshold of the x population. However, competition
with another population may change its survival as demonstrated in the present study. In
some cases, the endangered population can drive the other population to extinction while
in other cases the endangered population cannot survive even with the man-made control
strategy.

If population x is aggressive and the stocking is large, then such a control strategy
will drive the other population to extinction. Therefore, this prevention scheme is not ideal
in terms of biodiversity. On the other hand, if population y is more aggressive than the
x population and the stocking is small, then the y population will drive the x population
to extinction and such a control strategy cannot preserve the endangered population. The
other cases derived from this study can be interpreted similarly. The best stocking strategy
is given by case 3, where both populations are not aggressive but the stocking is large. In
such case, both populations can persist indefinitely as a coexisting steady state.

Our investigation provides asymptotic dynamics of two competing populations where
one population is subject to Allee effects and is also under stocking. The success of this
mandated implanting strategy depends not only on the stocking size but also on the nature
of the two interacting species. The degree of intensity of the competition between these two
populations plays an important role in determining competing outcomes and population
coexistence. We conclude that considerable care must be taken before implanting the
population that is subject to Allee effects.
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Appendix 1
Proof of Theorem 2.3 We prove that E∗ is a saddle point. To this end, the Jacobian matrix J
evaluated at E∗ is given by

J (E∗) =

⎡
⎢⎢⎣
∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

⎤
⎥⎥⎦ =

[
a b
c d

]
,

where
∂ f1
∂y

< 0,
∂ f2
∂x

< 0, and
∂ f2
∂y

< 0. The characteristic equation of J (E∗) is λ2 − (a + d)λ +
(ad − bc) = 0 with discriminant � = (a − d)2 + 4bc > 0. Therefore, eigenvalues of J (E∗) are

real numbers. Moreover, f1(x, q1(x)) = 0 and f2(h(y), y) = 0 imply
∂ f1
∂x

+ ∂ f1
∂y

q ′
1(x) = 0 and

∂ f2
∂x

h′(y)+ ∂ f2
∂y

= 0 respectively. Therefore, it can easily be shown that

ad − bc = ∂ f1
∂y

∂ f2
∂x
(q ′

1(x
∗)h′(y∗)− 1). (A1)

Observe that q ′
1(x

∗) > g′
2(x

∗), where g′
2(x

∗) = 1

h′(y∗), and hence ad − bc < 0 by (A1). Therefore,

one eigenvalue λ− of J (E∗) is negative and the other eigenvalue λ+ is positive and hence E∗ is
a saddle point. An eigenvector (v1, v2)

T of J (E∗) belonging to λ− can be chosen to be v1 = 1

and v2 = −a − λ−
b

> 0 since b < 0 and λ− < 0. Thus, the stable manifold M+ of E∗ is

in Q1(E
∗)⋃ Q3(E

∗). Since Q1(E
∗) has no steady state, M+ is unbounded in Q1(E

∗) by the
existence and uniqueness theorem of the initial value problems (Lawrence, 2001). Also, solutions on
the non-negative x and y axes converge to E1 = (x̄, 0) and to E2 = (0, 1) respectively. Therefore,
M+ has an endpoint at E0 = (0, 0). It follows that M+ separates R

2+ into two positively invariant
regions R1 and R2 with E2 ∈ R1 and E1 ∈ R2, and the result follows. �
Proof of Theorem 2.4 It is enough to prove that E∗ is asymptotically stable. Indeed, since 1 < q1(0)
and y = g2(x) is strictly decreasing, y = q1(x) and y = g2(x) must intersect at a point (x∗, y∗) for

which q ′
1(x

∗) < 0. Hence a = ∂ f1
∂x

= r1x∗(1 − 2x∗ + a1) < 0. Since g′
2(x

∗) > q ′
1(x

∗) implies

1 < q ′
1(x

∗)h′(y∗), there holds ad − bc > 0 by (A1). Also, a < 0 and d < 0. Thus both eigenvalues
of J (E∗) are negative and E∗ is asymptotically stable. �
Proof of Theorem 2.6 Let c1 > s1 − r1a1 and 1 > c2 x̄ . We derive sufficient conditions for which
(2.5) has either no interior steady state or two interior steady states. Setting the two isoclines equal,
q1(x) = g2(x), one obtains

r1x2 − (r1(1 + a1)+ c1c2)x + c1 + r1a1 − s1 = 0. (A2)

Let R(x) denote the left hand side of (A2). Then, any positive solution x∗ of R(x) = 0 results in
an interior steady state if and only if c2x∗ < 1. By the assumption c1 > s1 − r1a1 and c2 x̄ < 1,
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R(x) = 0 may have either one, two or no positive solutions

xs± = c1c2 + r1(1 + a1)±
√

[c1c2 + r1(1 + a1)]2 − 4r1(c1 + r1a1 − s1)

2r1
,

depending on the magnitude of [c1c2 + r1(1 + a1)]2 − 4r1(c1 + r1a1 − s1) along with whether
c2xs± < 1.

If [c1c2 + r1(1 + a1)]2 < 4r1(c1 + r1a1 − s1), then xs± are complex numbers and thus (2.5) has
no interior steady states. This inequality can be shown to be equivalent to c2 < ζs(c1), where

ζs(c1) := 2
√

r1(c1 + r1a1 − s1)− r1(1 + a1)

c1
, c1 > s1 − r1a1. (A3)

A straightforward calculation shows that ζs(c1) is strictly increasing on (s1 − r1a1, c∗
s1) and strictly

decreasing on (c∗
s1, ∞), where c∗

s1 = r1 x̄2 + s1 − r1a1. Consequently, a set of sufficient conditions
for which (2.5) has no interior steady state is given by

c2 x̄ < 1, c2 < ζs(c1), c1 > s1 − r1a1. (A4)

Since 1 < c2 x̄ and xs+ < x̄ imply c2xs+ < 1, a set of sufficient conditions for the existence of
two interior steady states is therefore given by 1 < c2 x̄, c2 > ζs(c1), c1 > s1 − r1a1, and xs+ < x̄ .
Furthermore, xs+ < x̄ is equivalent to

r1(1 + a1)+ c1c2 +
√

[r1(1 + a1)+ c1c2]2 − 4r1(c1 + r1a1 − s1) < 2r1 x̄ .

We set

r1(1 + a1)+ c1c2 +
√

[r1(1 + a1)+ c1c2]2 < 2r1 x̄, or equivalently, c2 <
r1(x̄ − 1 − a1)

c1
.

Denote

ψs(c1) := r1(x̄ − 1 − a1)

c1
, c1 > s1 − r1a1. (A5)

Then a set of sufficient conditions for the existence of two interior steady states is

c2 x̄ < 1, ζs(c1) < c2 < ψs(c1), c1 > s1 − r1a1. (A6)
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