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The principal gene sequence (PGS), defined as the most common gene sequence in a
deme, is replaced over time because new gene sequences are created and compete with
the current PGS, and a small fraction become PGSs. We have developed a set of coupled
difference equations to represent an ensemble of demes, in which new gene sequences
are introduced via chromosomal inversions. The set of equations used to calculate the
expected lifetime of an existing PGS include inversion size and rate, recombination rate
and deme size. Inversion rate and deme size effects are highlighted in this work. Our
results compare favourably with a cellular automaton-based representation of a deme.
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1. Introduction

Chromosomal inversions are examples of a broader group of chromosomal rearrangements.
Stasipatric speciation is when chromosomal inversions are the primary mechanism of
speciation (White, 1978); however, examples of speciation typically include chromosomal
inversions only as a contributing factor. Examples are ubiquitous, including Drosophila
(Ayala & Coluzzi, 2005; Noor, Grams, Bertucci, & Reiland, 2001; Ranz et al., 2007),
sunflowers (Rieseberg, 2001; Rieseberg et al., 2003), and primates (Ayala & Coluzzi, 2005;
Lee, Han, Meyer, Kim, & Batzer, 2008; Navarro & Barton, 2003a, 2003b), for example.
Suppressed recombination of inverted chromosome segments has been investigated as a
speciation mechanism (Ayala & Coluzzi, 2005; Navarro & Barton, 2003a, 2003b), and the
precise role of inversions in speciation is still debated (Faria & Navarro, 2010). In part this
is because the role of chromosomal inversions in speciation is difficult to quantify in nature.
For example, its role is discussed qualitatively in conjunction with the hybrid dysfunction
model of speciation (Ayala & Coluzzi, 2005).

In a simplified model of a reproducing population of a species or deme, a chromoso-
mal rearrangement can enter the deme as a chromosomal inversion. In this example, the
chromosomal inversion competes with all other chromosomal gene sequences until all other
sequences are replaced.At this point the new chromosomal gene sequence is said to be fixed.
An early model of chromosomal rearrangement fixation in a deme was provided by Lande
(1979), when he extended work on the fixation of new gene mutations (Kimura, 1962) to
chromosomal rearrangements. Kimura’s model (1962) included a diffusion approximation
based on the Wright–Fisher (Fisher, 1922; Wright, 1931) model of genetic drift. Later,
fixation probabilities for new chromosomal arrangements were investigated (Hedrick, 1981;
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Spirito, 1992, 1998) and showed that the calculated fixation probabilities for the early models
were in qualitative agreement with each other. However, the results were not compared to
biological systems and predated computational simulations of chromosomal rearrangements
in a deme.

Chromosomal inversions in an isolated deme are estimated to occur with a rate of 10−4 to
10−3 (gamete gen)−1 (Lande, 1979). This low rate has allowed models of inversion fixation
to assume only one chromosomal inversion (or rearrangement of any kind) is present in a
deme at a time. Inversions can also be introduced into demes via immigration at rates at
least as great as 0.05 (gamete gen)−1 (Beerli & Felsenstein, 1999; Hey & Nielsen, 2004;
Wang & Whitlock, 2003). The fixation probability of a new inversion is usually treated as
a function of deme size and inversion fitness (Hedrick, 1981, 1992; Spirito, 1998). Even
when the inversion is otherwise fitness neutral, the size of the inversion directly contributes
to a reproductive advantage of smaller inversions over larger inversions in a computer
simulation Clark, Wabick, and Weidner (2012) and in Drosophila (York, Durrett, & Nielsen,
2007). This reproductive difference can also be treated as fitness. The statistical properties
of the reproduction process also affect fixation probabilities. When applied to inversions,
the Wright-Fisher model assumes reproductive competition between the original and new
inversions is described by a binomial probability distribution, although this is one of several
possible models (Der, Epstein, & Plotkin, 2011; Schweinsberg, 2003) of reproduction.

The historical focus of research on inversions has been the fixation probability of a
single inversion (Hedrick, 1981; Lande, 1979; Spirito, 1992, 1998), the linkage between
inversions and individual gene variants (Noor et al., 2001; Rieseberg, 2001), and the role of
inversions in evolution (Kirkpatrick, 2010; Lowry & Willis, 2010). Additionally, most of
these models (Lande, 1979; Spirito, 1992, 1998) calculated endpoints but not the trajectories
taken by a deme or ensemble of demes to reach the endpoints. Hedrick (1981) did look at a
limited number of trajectories for an infinite population size in which stochastic fluctuations
can be ignored.

We model the trajectory of the principal gene sequence (PGS), defined as the gene
sequence with the highest occurrence frequency in the present generation, so that we may
better understand the transition of a gene sequence to and from the PGS state. There are many
gene sequences within a deme that fail to survive to the point of fixation. Consequently,
it is reasonable to look at the process as a fixed gene sequence, the PGS, is replaced by
one of many new gene sequences that appear in the deme over many generations. To
accomplish this task, a computational model of a single deme in which inversion is allowed
is implemented. This simulation allows us to follow the evolution of the PGSs in the deme
over many generations. In particular, we compute the lifetime of each PGS in the deme as
a function of inversion rate and deme size. Individual trajectories can be interesting, but
provide an incomplete picture. We introduce a set of coupled equations that approximate the
computer simulation. The solution to the set of coupled equations yields the density of PGS
states for the ensemble and the PGS lifetime. Here, a PGS state is defined by the fraction
of strands with the PGS in the deme and the density of PGS states is the state distribution
of non-interacting demes in the ensemble. Simulations include genetic drift, limited fitness
effects and multiple inversions.

2. Model

2.1. Cellular automaton

Acellular automaton (CA) model begins by establishing a grid of cells. Here, each individual
in the deme is represented by a row of cells and each cell in row represents a specific gene.
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Table 1. Definitions of abbreviation, parameters, and variables.

Bki Probability of deme with size n and i PGS strands producing a deme of the same size with
k PGS strands in the next generation

Ckn Ratio of ρk(t)/ρn(t)
CA Cellular automaton model
DGS Different genetic sequences
φ The absolute value of the fractional part of �

� Expected change in the size of the subpopulation with the PGS
I Chromosomal inversion rate set between 0.0001 (strand gen)−1 and 0.05

(strand gen)−1 for this work
j Number of strands with the PGS
jeq Equilibrium value of j
K Inverse lifetime of PGS
L Loss rate in recombination calculated to be 0.140 (pair gen)−1 for this work
m Number of genes per chromosome set to 50 for this work
n Number of haploid strands in a deme varies between 20 and 80 in this work
q Minimum number of strands for gene sequence to be a PGS
PGS Principal gene sequence
ρk(t) Fraction of the ensemble of demes with k PGS members
�ρk(t) Change in the value of ρk(t) in one generation
R Recombination rate during reproduction set to 1 (pair gen)−1 for this work
SGS Same genetic sequence
σki Fraction of ρi (t) transferred to ρk(t) in one generation
τ Lifetime of a PGS
U Fixation probability of underdominant chromosomal inversion
ω Absolute value of the whole number part of �

The cell sequence in the CA is the same as the gene sequence for the individual. The major
features of the model used in this work have been previously discussed in detail Clark et al.
(2012). Table 1 summarizes the abbreviations, parameters and variables used in this work.
Each member of a deme of n haploid individuals is modelled as a single strand of DNA
divided into m genes. The simulations in this work are completed for 20 ≤ n ≤ 80 and
m = 50. Initially, the gene sequence is identical for all n strands and the initial position of
each gene serves as the gene trait assignment. A strand must have one gene from each of
the m traits to survive and reproduce. As time advances individual genes move from their
original positions, but retain their original trait assignments. Repeating cycles of inversion
and recombination lead to the replacement of the PGS with a new sequence that differs
from the existing PGS only in gene order.

The reproduction process begins by randomly selecting two strands with complete
replacement to reproduce.All viable strands are equally likely to be selected for reproduction
and will be selected slightly more than once to account for the nonviable strands. The
recombination rate R is 1 (pair gen)−1 in this work, and the recombination locus is picked
at random from a uniform distribution of the set of m loci consisting of all loci between
adjacent genes and the strand end at gene position 1. Two offsprings are formed from each
recombination and saved as members of the next generation. The reproduction process
continues until the new generation consists of n strands. Offsprings that lack a complete set
of genes are assigned as a reproduction probability of zero and are removed from the deme
at the start of the next reproduction cycle. The parents are returned to the current generation
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pool, where they may be selected to reproduce again. If a specific strand is selected to be a
parent more than once, it will usually be paired with a different strand each time since both
strands are randomly selected to reproduce. Each of the n strands in the new generation
undergoes inversion with an average inversion rate I, where 0.0001 (strand gen)−1 ≤ I ≤
0.05 (strand gen)−1 in this work. Two inversion points are randomly selected from a uniform
distribution of the m + 1 loci between genes or at the ends of the strands for each pair of
strands as the final reproduction step.

Figure 1(a) shows a section of a typical cellular automaton trajectory (top curve) for
I = 0.01 (strand gen)−1 and n = 20, where the number of strands with the PGS is presented
as a function of time.Aparticular genetic sequence is usually the PGS for an extended period
of time, but the number of strands with the PGS fluctuates. If the fluctuation is great enough
that the number of strands with the PGS drops below n/2 a new PGS usually replaces
the existing PGS. The tick marks at the bottom of Figure 1(a) denote the times when the
existing PGS was replaced. Several genetic sequences may exist in the deme at the same
time and compete for the role of PGS. In some cases, a PGS survives for a long period of
time and in other cases a new PGS is rapidly replaced. A new genetic sequence is introduced
at an average rate of one every five generations for this inversion rate and one-third of new
inversions are expected to disappear from the deme in a generation.

An alternative view is presented in Figure 1(b), which shows the fraction of PGSs
with a measured lifetime that equals or exceeds the indicated number of generations. The
large initial decrease in PGS fraction reflects the competition between different genetic
sequences for the role of PGS, when the PGS state is near n/2. When a genetic sequence
first becomes a PGS, the displaced PGS is usually present with a high enough frequency to
again become the PGS. After 20–40 generations one sequence usually has a much greater
frequency than any other sequence so it becomes an established PGS and the magnitude
of the slope of the curve in Figure 1(b) decreases and becomes constant. Consequently,
genetic drift via inversion in this simulation occurs on two time scales. On a short time
scale, a deme has multiple gene sequences and no one sequence has been established as
the long term PGS; the system is called polymorphic. On a much longer time scale, a PGS
exists for many generations in spite of competition with numerous new genetic sequences
created via inversions. These inversions can be classified as rare, since they appear in only
a small fraction of the deme membership and quickly disappear from the deme. Eventually,
the frequency of some competing genetic sequence will exceed the existing PGS and it
becomes the new PGS. The constant slope K corresponds to an exponential decay process.
The lifetime, τ = −1/K , is the time required for the fraction of original PGSs in the
ensemble to decrease by a factor of 1/e, when measured in the long time limit after the
exponential tail has formed. For example, the exponential tail is seen to dominate the curve
in Figure 1(b) after 25 generation and has τ = 259. gen for K = −0.00387/gen, when
measured for demes with PGSs that survive for between 200 and 1000 gen. Figure 1(b)
only shows the first 100 generations to highlight the formation of the exponential tail.

2.2. Model approximations

Each step in the production of a new generation, including the occurrence of inversions,
recombinations and pair selection for reproduction is stochastic. The associated stochastic
fluctuations drive genetic drift. A set of equations describing the time evolution of a deme’s
PGS can be separated into terms that depend on the mean effects of inversion, recombination
and pair selection and terms that incorporate the stochastic fluctuations present in the system.
As the size of the deme becomes large, the importance of stochastic fluctuations is minimized
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and differential equations based on average rates are expected to be valid. For small demes,
on the order of n = 20, stochastic fluctuations can dominate average changes.

The deme can be modelled as two subpopulations, one includes j strands with the PGS
and the other includes n − j strands with different sequences. We consider two simplifying
approximations, either all n − j strands have the same genetic sequence (SGS) or they all
have different genetic sequences (DGS). We develop the SGS model here, and show the
changes required for the DGS model in Appendix 1. All n − j strands are assumed to have
the same genetic sequence when inversions occur infrequently, since selection removes
most new inversion from the deme before the next inversion occurs. Inversion with rate I
will reduce the j number of strands with the PGS by an amount, I j . There are no inversion
losses from the n − j strands in the SGS model. This is a valid assumption when j = n −1,
because the inversion makes no difference in the model. Since this approximation is not true
when j ≈ n/2, the stability of the PGS is underestimated in generations when the deme is
polymorphic as described in conjunction with Figure 1(b).

The probability of producing nonviable offspring during recombination is equal to the
fractional size of the sequence mismatch between two gene sequences. The average rate
of producing nonviable offspring from parental genetic sequences selected with a uniform
distribution of inversion loci is L = 0.140 (pair gen)−1 for R = 1 (pair gen)−1, as shown
in Appendix 2. This effective population loss includes L j (1 − j/n) from each of the two
subpopulations because of recombination between the subpopulations. The same absolute
number of strands is lost in recombination from both subpopulations, but a greater fraction of
the n− j strands is lost. This confers an effective fitness advantage to the PGS subpopulation
over the subpopulation with the inverted gene sequence since the PGS subpopulation always
accounts for at least half the deme size. The total loss in population from recombination is

nloss = 2L j

(
1 − j

n

)
. (1)

Recombination losses to the deme are replaced by allowing viable individuals to reproduce
until the population is returned to n.

The expected change � in the size of the subpopulation with the PGS is

� = −I j − L j

(
1 − j

n

)
+
(

2L j

(
1 − j

n

)) ( j − I j − L j
(

1 − j
n

))
n − 2L j

(
1 − j

n

) , (2)

where the first two terms represent the inversion and recombination reductions in the
number of strands with the PGS, respectively. The third term accounts for the proportional
replacement of strands lost from the entire deme. It is the product of the number of strands
lost from the deme and the proportion of strands with the PGS after the inversion and
recombination events described by the first two terms in the equation. Setting � = 0 to
obtain the steady state solution yields a quadratic equation whose stable equilibrium solution
is

jeq = n

2

(
3

2
+ 1

2

√
1 − 8I

L

)
(3)

for I ≤ L/8. If I � L/8, Equation (3) can be approximated as

jeq = n

(
1 − I

L

)
. (4)
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As the inversion rate is increased, the fraction of population with the PGS decreases.
Similarly, a decreasing loss rate from recombination results in a decrease in PGS stability.
Values of j greater or lesser than the solution to Equation (3) have � values that are negative
or positive, respectively.

Equation (3) in the SGS model becomes

jeq = n

2

⎛
⎝(1 + 1

n

)
+
√(

1 − 1

n

)
− 4I

L

⎞
⎠ (5)

in the DGS model (see Appendix 1), and Equation (4) becomes

jeq = n

⎛
⎝1 − I

L
(

1 − 1
n

)
⎞
⎠ (6)

when I � L/4.
The ratio I/L becomes the important parameter in Equation (3) through Equation (6).

Since L is a function of R, it is necessary to only vary I to gain a basic understanding of the
population dynamics.

2.3. Ensemble picture

A more complete understanding of the life history of a PGS is gained by considering an
ensemble of initially identical non-interacting demes with n strands. At all times after the
first generation the ensemble will consist of n +1 different ρk(t), where ρk(t) is the density
of demes in state k and 0 ≤ k ≤ n is the number of strands with the original PGS. Demes
with k near n/2 are in polymorphic states and demes with k near n are in rare states. The
change in each ρk(t) during one generation is

�ρk(t) =
n∑

i=0

ρi (t)σki − ρk(t)
n∑

i=0,i �=k

(
n

i

)(
k

n

)i (
1 − k

n

)(n−i)

+
n∑

i=0,i �=k

ρi (t)

(
n

k

)(
i

n

)k (
1 − i

n

)(n−k)

. (7)

The second term in Equation (7) is the amount of ρk(t) that is transferred to all
other ρi (t) and the third term is the amount of all other ρi (t) that is transferred to ρk(t)
because of stochastic effects.Abinomial probability distribution is used because it describes
selection with complete replacement, in agreement with the selection processes in the
cellular automaton simulation. Of course the specific trajectory of any single PGS cannot
be predicted; however, the trajectory of the ensemble can be. A member of the ensemble in
state k < n may end up in any PGS state with k ≤ n because of the stochastic character
of the frequency of strand selection for inversion and recombination and pairing of strands
for recombination.

The first term in Equation (7) describes the mean effects of inversion, recombination and
deme size. Here, σki is the fraction of ρi (t) transferred to ρk(t) according to Equation (2)
or Equation (A2) for the SGS or DGS models, respectively. σkk is negative and represents
the fraction of ρk(t) that is transferred to all other ρi (t). The absolute value of � can be
greater or less than one, depending on the choice of parameters. It is convenient to denote
the absolute value of the whole number part of � as ω and the absolute value of the fractional
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part as φ. Then 1−φ is the fraction of ρk(t) that is transferred to ρk±ω(t) and the remainder,
φ, is transferred to ρk±(ω+1)(t) in this model. The sign agrees with the sign of �. In the
limit of small deme sizes and inversion rates ω is normally zero, so the 1 − φ fraction of
ρk(t) remains in the same k state and the remainder is transferred to one of the k ± 1 states,
in agreement with the sign of �. The set of ρk(t) can be solved for each generation using
any matrix package. SCILAB was used for this work.

Once the same genetic sequence is common to less than half of the population, it may
no longer be the PGS. This is determined by direct observation in a cellular automaton
trajectory. In the ensemble picture, the minimum number of strands q ≤ n/2 must be
specified to define when a PGS is replaced. Any member of the ensemble with fewer than
q strands is deemed to have the original PGS replaced and is removed from the ensemble.
The replaced quantity of PGSs in the ensemble is

∑q−1
k=0 ρk(t). In the ensemble simulation,

these ρk(t) are set to zero for all time after t = 0. In the SGS model the PGS has been
replaced when the number of PGS strands is less than half of the total deme size so q = n/2
in this work. Setting q = n/2 is an approximation in the DGS model since there can be
more than two different gene sequences at the same time.

3. Discussion

Figure 2 shows CA, SGS, and DGS results for the value of I to be (a) 0.05 (strand gen)−1,
(b) 0.01 (strand gen)−1, (c) 0.001 (strand gen)−1, and (d) 0.0001 (strand gen)−1. The SGS
and DGS simulations begin with q = 10, ρq(0) = 1, and all other ρk(0) = 0. The CA
model required between 80 and 90 min of CPU time on a 2.6 GHz processor to complete
the 10,000 gen calculation used in Figure 2(a) with FORTRAN. A week of CPU time was
required to generate the results used in Figure 2(d). For comparison, the SGS and DGS
results for Figure 2(a) and (d) were completed in 3 and 30 s, respectively, using SCILAB.

The CA model has already shown that the same genetic sequence can become the PGS
multiple times when a deme’s genetic sequence is polymorphic. Consequently, the rapid
replacement of the PGS on the short time scale in the CA model represents a competition
between genetic sequences and not the removal of a genetic sequence from the deme. The
two ensemble models calculate the probability that a new PGS will remain the PGS for
any specified duration. Both ensemble models predict the rapid replacement of an initial
PGS as expected for a polymorphic deme where inversion size effect is the only cause of
fitness differences between genetic sequences. A long exponential tail forms, following the
polymorphic stage. This stage corresponds to a much more stable PGS when non-PGSs are
rare. The polymorphic region is most visible in Figure 2(a), but all plots in Figure 2 show
the result of genetic sequence competition as the fraction of demes in the ensemble with
the original PGS decreases from 1 to approximately 0.3.

The rapid replacement of an initial PGS can also be explained by considering
Equation (7). The first term in Equation (7) always acts to increase or decrease the PGS
state, depending on whether the value of k is less than or more than jeq , respectively. In
the cases shown in Figure 2, it acts to move members of the ensemble from ρq(0) = 1 to
a distribution of non-zero ρk(t) about k = jeq . The second term describes the removal
of all demes from the ensemble so it always acts to reduce the ensemble fraction with k
PGS strands. In the first few generations, the second term in Equation (7) describes the
rapid removal of demes until the first term has acted to transfer the mean density of PGS
states from near q to near jeq . The third term always acts to increase the ensemble fraction
with k PGS strands, but has little effect on the ensemble prior to the first two terms having
sufficient time to disperse the ensemble from the initial state.
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Figure 3. Comparison of lifetimes computed with the CA model and the SGS and DGS models using
Equation (7) for n = 20.

The ensemble and CA results are not expected to agree exactly because the ensemble
models consider the evolution from a single state until the PGS has been replaced, while
the CA model follows all of the PGSs in the history of a single deme. Nevertheless,
the ensemble and CA results should be in general agreement after the ensembles have
evolved from the initial state, which usually takes less than 50 generations for the inversion
rates used in this work. At this point, the ensembles have evolved away from demes
that are all polymorphic to a density of states in which demes with rare inversions are
common or even predominant as the inversion rate approaches zero. Figure 2 shows that
the slopes at large times are similar between the ensemble models and the CA for each set of
initial conditions even though the inversion rate changes by a factor of 500 from
Figure 2(a)–(d).

Both ensemble models tend to underestimate the stability of the PGS for a deme size
of 20 individuals. For example, the CA model converges to τ = 259 gen, which is closer
to τ = 164 gen for the DGS model versus τ = 113 gen for the SGS model when I =
0.01 (strand gen)−1. Both SGS and DGS models only include stochastic fluctuations of the
size of the PGS subpopulation relative to the total deme. This is valid for the SGS model,
but an additional approximation in the DGS model. The DGS model assumes each non-PGS
present in the deme has an occurrence frequency of one. This is accurate when inversions
are rare but not when a deme is polymorphic.

The lifetime is well defined for exponential decay curves as in the tail regions of the
curves in Figure 2. The lifetimes of a PGS for the CA, SGS and DGS model are provided
in Figure 3 for the simulations shown in Figure 2. The lifetime of the PGS in the ensemble
models becomes constant, when the relative distribution of states in the ensemble, ρk(t),
becomes constant, which requires that all �ρk(t)/ρk(t) = −1/τ for t in the long tail region.
The approximate lifetime can also be obtained analytically by solving a modified version
of Equation (7). The second term in Equation (7), including the sign, can be conveniently
written

ρk(t)

((
n

k

)(
k

n

)k (
1 − k

n

)(n−k)

− 1

)
, (8)

and the first term within the outer parentheses in this expression can be combined with the
third term in Equation (7) to yield



Modelling a Gene Sequence’s Lifetime 23

Table 2. Lifetimes for various inversion rates and deme sizes. Lifetimes for the CA, SGS and DGS
models are included. (7) and (12) refer to the equation numbers in the text that are used for the lifetime
calculation.

τ(103 gen)
n I ((strand gen)−1) C A SGS(7) DGS(7) SGS(12) DGS(12)

20 0.05 0.0375 0.0115 0.0149 0.0213 0.0194
20 0.01 0.259 0.113 0.164 0.132 0.209
20 0.001 2.57 1.40 2.09 1.56 2.62
20 0.0001 26.5 14.3 21.4 15.9 26.7
40 0.001 6.98 4.00 11.3 3.92 10.1
80 0.001 19.6 44.4 526. 28.2 112

n∑
i=0

ρi (t)

(
n

k

)(
i

n

)k (
1 − i

n

)(n−k)

. (9)

Now it is useful to modify Equation (7) by multiplying the left side by ρk(t)/ρk(t) and
dividing through by ρn(t) to obtain

−Ckn

τ
=

n∑
i=q

σki Cin − Ckn +
n∑

i=q

Bki Cin . (10)

Here, Ckn = ρk(t)/ρn(t), Cnn = 1, and the time dependent functionality for Ckn is not
included since it approaches a constant value as time increases. Additionally, the ki terms
in the last summation on the right side of Equation (7), excluding ρi (t), are denoted by Bki

to obtain the simplified form of Equation (10). The value of τ in Equation (10) remains the
negative, inverse slope of the straight line section of the curves in Figure 2, and can more
generally be written as

1

τ
=
∑n

k=mCkn
∑q−1

i=0

(q
n

) ( k
n

)i (
1 − k

n

)(n−i)∑n
k=mCkn

, (11)

where the inner sum is the cumulative distribution function for the probability of obtaining
0 to q − 1 strands with the PGS starting with k PGS strands in a deme of size n.

Equation (10) is conveniently solved for the set of Ckn by moving the term on the left
side to the right side and moving BknCnn from the summation in Equation (10) to the left
side. Then the only non-zero term on the left side is BnnCnn . The resulting expression,

−BknCnn = −
(

1 − 1

τ

)
Ckn +

n∑
i=q

σki Cin +
n−1∑
i=q

Bki Cin, (12)

can be solved iteratively to obtain the values of Ckn and τ in approximately 0.7 s using
SCILAB. Table 2 presents the PGS lifetime results for the same initial conditions as used
for Figure 2 and is in qualitative agreement with the results from implementation of Equation
(7) for both SGS and DGS models. Lifetimes for deme sizes of 40 and 80 individuals are
included for an inversion rate of I = 0.001 (strand gen)−1. The PGS lifetime calculation is
most sensitive to the ensemble members in states with k near q, and it is insensitive to the
value of Ckn for k near n. Figure 4(a) shows the (n + 1 − q) values of Ckn for I = 0.01
(strand gen)−1 and 0.001 (strand gen)−1. A factor of ten decrease in inversion rate produces
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a slightly greater decrease in the values of all Ckn , k �= n, relative to Cnn . The relative
decrease in values of Ckn remains nearly constant as k approaches q. Figure 4(b) shows
the components of Equation (11) for I = 0.01 (strand gen)−1. Demes whose states are
defined by q ≤ k ≤ q + 2 account for 0.74 of PGS replacement in any generation. While
the probability of PGS replacement for k ≥ n − 2 is nearly zero.

Spirito (1992) calculated the probability of fixation of underdominant chromosomal
inversions for a diploid deme, U, using several methods which were in qualitative agreement
with each other. The results presented here for a haploid deme with 20 members can be
compared to Spirito’s results for a diploid deme with 10 members. Spirito reports rates
for particular inversion sizes so we interpolated his results for the iteration of genotypic
transition matrices to obtain a fixation probability of U = 0.01017 for n = 10 and L = 0.14
(pair gen)−1. This was then converted to a lifetime according to

τ = 1

nIU
, (13)

which yields a calculated lifetime of 4.92 × 103 gen. Spirito’s work includes the 0.5
probability that an inversion that becomes a PGS may not survive the polymorphic state,
while our calculations are specifically for the rare state. To compare our results with Spirito’s,
Spirito’s lifetime value can be reduced by a factor of two to account for the probability that
the new PGS will not survive the polymorphic state, which gives a lifetime of 2.46×103 gen.
This value compares well with a lifetime of 2.57 × 103 gen shown in Table 2 for the CA
model. Similar calculations for I = 0.01 (strand gen)−1 yield lifetimes of 10.8 × 103 gen
and 162×103 gen for n = 40 and 80, respectively. Here the qualitative agreement between
Spirito’s results and lifetimes reported in Table 2 is not as good as n increases. Spirito’s
results, like our SGS and DGS model results, are based on approximations, so we expect
the CA model results are more accurate.

Table 2 shows that the PGS stability has a non-linear dependence on the inversion rate
that is significant for I > 0.01 (strand gen)−1. The average fraction of the deme that will
have a non-PGS genetic sequence at any time increases as the inversion rate increases. The
CA results show that the PGS is replaced at a rate of once every 37 inversions at I = 0.05
(strand gen)−1 compared to once every 51.4 inversions when I = 0.001 (strand gen)−1.
The non-linear effect is small enough in the CA model for I ≤ 0.01 (strand gen)−1 that it
is unlikely to be observed in isolated demes. The same equations as used in this work can
also be used to model gene sequence immigration into a deme. Immigration can occur at
higher rates than inversion so non-linear effects should be easily observed in a controlled
setting. For example, when there is one immigrant per generation in a deme size of 20.

4. Conclusion

The CA and ensemble models presented in this work provide useful ways to calculate the
expected lifetime of a PGS when all genetic sequences are equally fit and mismatches due
to inversion size and location are included. The models can be extended to incorporate other
quantifiable fitness characteristics. The three models are in qualitative agreement with each
other, although the ensemble models require far less computing resources. The CA model is
useful because it can show an individual deme making the transition between polymorphic
and rare states, while the SGS and DGS models show the ensemble behaviour. The CAmodel
can be used to make predictions in either the polymorphic or rare states, while the ensemble
models can be applied to rare states. These models can guide the design of experiments
in controlled settings for small populations, although such experiments are likely to yield
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results more quickly if conducted in the polymorphic state. The current ensemble models
average the effect of the distribution of inversion sizes on the PGS lifetime. We plan to use
the ensemble models to explore the predicted effect of inversion size on PGS lifetime and
compare those results with the CA model. We also plan to generalize the models to include
non-neutral inversions.
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Appendix 1
In the limit of large inversion rate, inversions occur frequently enough that several other gene
sequences exist in the deme along with the PGS. In the DGS model, we assume a different genetic
sequence for all strands that do not have the PGS. This greatly simplifies the model but overestimates
the stability of the PGS. The deme is divided into the j strands with the PGS and n − j strands with
other sequences, and all n − j sequences are unique. The number of strands lost to inversion from the
j strands with the PGS remains Ij. The recombination loss includes L j (1 − j/n) from each of the two
subpopulations because of recombination between the subpopulations and L(n − j)(1 − j/n − 1/n)
from recombination within the subpopulation with n − j unique genetic sequences. The total loss in
population from recombination is

nloss = L

(
1 − j

n

)
(n − j − 1) . (A1)

Recombination losses to the reproducing population are replaced by allowing viable individuals to
reproduce until the population is returned to n. The average change in the size of the population with
the PGS is

� = −I j − L j

(
1 − j

n

)
+
(

L

(
1 − j

n

)
(n + j − 1)

) (
j − I j − L j

(
1 − j

n

))
n − L

(
1 − j

n

)
(n + j − 1)

, (A2)

where the first two terms represent the inversion and recombination reductions in the number of strands
with the PGS, respectively. The third term accounts for the proportional replacement of strands lost
from the entire deme. It is the product of the number of strands lost from the deme and the proportion
of strands with non-PGSs after the inversion and recombination events described by the first two
terms in the equation. Setting � = 0 yields a quadratic equation whose meaningful solution is

jeq = n

2

⎛
⎝(1 + 1

n

)
+
√(

1 − 1

n

)2
− 4I

L

⎞
⎠ . (A3)

and provides the mean fraction of strands with the PGS when considering only the average effects of
inversion, recombination, and deme size on reproduction. If jeq > n/2, Equation (A3) shows that a
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28 B.K. Clark

PGS will never be replaced if only average effects are considered, just as we observed for the SGS
model discussed in the main text. If I � L/4, Equation (A3) can be approximated as

jeq = n

⎛
⎝1 − I

L
(

1 − 1
n

)
⎞
⎠ . (A4)

Appendix 2
The average rate of unsuccessful recombination events depends on the average density of different
inversion sizes in the deme with n total members and j members with the PGS. Let μi (t) be the
density of all inversions of i genes with respect to the PGS. There are (m + 1 − i) unique inversions
of size i and the total number of possible inversions of m(m + 1)/2, where the total number of genes
is m and inversion loci are restricted to points between genes or at the ends of the strand of DNA. The
rate of unsuccessful recombination events between the inverted strands and deme members with the
PGS is (i − 1)/m. This model assumes only one genetic sequence other than the PGS is present in
the deme at any time. In a system with discrete generations, the change in μi (t) in one generation is

�μi (t) = 2I

(
j

n

)(
m + 1 − i

m(m + 1)

)
−
(

j

n

)(
i − 1

m

)
μi (t), (B1)

where I remains the inversion rate. The term with I is the rate at which new inversions of size i are
produced while the term including μi (t) is the rate of loss of inversions of size i from the deme.

At steady state, �μi (t) = 0 and

μi = 2I

(
m − (i − 1)

(m + 1)(i − 1)

)
, (B2)

where the explicit time dependence has been dropped for the steady state value of μi . There are (i −1)
recombination locations for an inversion of size i, so the mean loss rate is

L = 〈i − 1〉
m

, (B3)

where

〈i − 1〉 =
∑m

i=2

(
(m−(i−1))
(m+1)(i−1)

(i − 1)
)

∑m
i=2

(
(m−(i−1))
(m+1)(i−1)

) . (B4)

The mean loss rate is independent of the inversion rate and the sum does not include i = 1 since an
inversion of only one gene is meaningless in this model.
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