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Abstract

American chestnuts, Castanea dentata, were once a dominant tree in east-
ern deciduous forests of the United States before the chestnut blight fungus,
Cryphonectria parasitica, was introduced unintentionally in the early 1900s in
New York. This fungus rapidly devastated American chestnut populations until
a hypovirus infection of the fungus began to reduce pathogen virulence on chest-
nut trees. The subsequent reappearance of large reproducing chestnut trees,
associated with a large proportion of blight-infected isolates being parasitized
by this hypovirus, is currently taken to indicate recovery of American chestnut
populations. We explore, using previously-established matrix population mod-
els, the dynamics of healthy, fungus-infected, and hypovirus-infected American
chestnut populations to test the efficacy of this recovery. Our main result is
that populations transitioning from being fungus-infected to hypovirus-infected
are predicted to show large transient amplifications as a result of demographic
transitions, only to decline asymptotically to zero, and this result is robust to
uncertainty in fecundity values. Our results suggest that the current recovery
of the American chestnut population may be a transient phenomenon and that
more conservation efforts may be necessary to ensure its long-term persistence.

Keywords: basic reproduction number, Cryphonectria parasitica, Castanea den-
tata, fungus infection, matrix population models

1 Introduction

American chestnuts, Castanea dentata (Marsh.) Borkh., were once a dominant tree in east-
ern deciduous forests of the United States with an estimated 4 billion individual trees [24].
The chestnut blight fungus, Cryphonectria parasitica (Murrill) Barr, was introduced unin-
tentionally in the early 1900s in New York [21], and it rapidly devastated populations of the
American chestnut. Branches and trunks infected with the fungus are girdled by cankers
and die. The root systems are not infected, thus they may produce new uninfected sprouts
from the root collar. These new sprouts eventually become infected, thus perpetuating
the epidemic. Double-stranded RNA (dsRNA) hypovirus infection of the fungus reduces
pathogen virulence (rate of canker expansion) on chestnut trees [19]. Trees infected with
a hypovirus-containing isolate of the pathogen may produce wound callus tissue, which re-
duces canker expansion rates and prevents the fungus from girdling the branch or trunk.
Trees producing these non-lethal (non-girdling) cankers are said to be recovering. Branches
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and trunks with non-girdling cankers often have increased longevity compared to those with
lethal cankers [7].

Recovery of European chestnuts, C. sativa, from blight is widespread in Europe and
is associated with the presence of hypoviruses [16]. Attempts to introduce hypoviruses as
biological control agents of C. parasitica in the eastern United States have largely failed
to stop the spread of the disease (reviewed in [19]). In contrast, there has been natural
spread of hypoviruses and some recovery of individual trees within naturalized American
chestnut populations in Michigan [12]. A study to examine the population-level effects of
hypovirus infection of C. parasitica on American chestnut populations using population pro-
jection matrices [2] suggested that treatment of diseased American chestnut populations with
hypovirus could result in the long-term persistence of American chestnut populations [6].
Three different matrix models were used to compare asymptotic population growth rate λ
and stable stage (size) distributions of healthy, diseased (blight-infected), and recovered
(hypovirus-infected) American chestnut populations in Michigan. Population growth rates
did not appear to differ significantly from one for all population types, but stable stage
distributions of healthy and hypovirus-infected populations were more similar to each other
than to blight-infected populations, suggesting that, at least demographically, a legitimate
population-level recovery was occurring at these sites.

While population dynamics is a relatively old area of theoretical ecology, since the
publication of the study in Davelos and Jarosz [6] much work has been done to more
thoroughly understand structured population dynamics. One important line of work has
been the appreciation for, and the development of, measurements of transient dynam-
ics [14, 17, 18, 3, 29, 30, 11, 26, 27, 9, 28, 15]. A population’s transient dynamics—the
fluctuation and oscillation in both population growth rate and population size over (rela-
tively) short time intervals caused by populations in unstable stage distributions—can vary
substantially from a population’s asymptotic dynamics [20, 1]. Additionally, the sensitivity
of transient dynamics to changes in model parameters can be profoundly different than the
sensitivity of λ to changes in these same model parameters [28]. Thus, population ecologists
need to study both asymptotic population measurements of population growth and mea-
surements of transient dynamics to have the most well-informed approach to management
and conservation of populations of interest [11, 1].

In this paper we use the basic reproduction number as defined in Cushing [4] to show
that the differences in population viability between healthy, diseased and recovered pop-
ulations are actually not trivial, and that the hypovirus-infected populations modeled in
Davelos and Jarosz [6], despite having growth rates within 2 percent of one, are actually
quite far away from being able to persist long-term. This poses an interesting ecological
question: How, then, does one explain the observed recovery of hypovirus-infected chestnut
populations discussed in Davelos and Jarosz [6]? To answer this question, we use popula-
tion inertia p∞ [18, 28] to show that the observed recovery of C. dentata populations in
Michigan may in fact be the product of transient dynamics alone. We show that popula-
tion inertia when transitioning from a healthy population to a fungus-infected population is
well below one, signalling a transient attenuation. This calculation, coupled with a signifi-
cant decrease in the basic reproduction number suggests, as expected, that chestnut blight
has a significant negative impact on C. dentata at the population level. However, when
transitioning from a blight-infected population to a hypovirus-infected one the results are
mixed: Population inertia is much larger than one, signalling transient amplification, while
the basic reproduction number for the hypovirus-infected population is smaller than that
for the fungus-infected population, predicting an eventual population decline. We show that
this finding is robust to reasonable uncertainty in fecundity estimates, which are the most
uncertain estimates in the study by Davelos and Jarosz [6] (discussed below), and propose
future avenues of research finding conservation measures that will more effectively increase
the chances of long-term population persistence for C. dentata.
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2 Methods and Models

2.1 Basic theory and prior results

In this paper we work with density-independent population projection matrix models

nt+1 = Ant, (1)

as seen in Caswell [2]. Here, nt is a vector such that the ith element of nt is the total
population of C. dentata in stage i at time t. A is the population projection matrix, where
the i, jth element of A is the expected number of individuals in stage i produced by an
individual in stage j in each time-step. The basic theory of population projection matrix
models is well developed, and can be summarized as follows [4]: if the matrix A is primitive
(i.e., there is a positive probability that each stage can eventually contribute to every other
stage), then there exists a constant c such that

nt ≈ cλtw,

as t → ∞, independent of initial population n0, where λ is the largest eigenvalue of A
(which is real, positive, and unique) and w is the eigenvector associated with λ (which is
real, positive, and unique). The value λ is referred to as the asymptotic growth rate (or finite
rate of population increase in [6]) and w the stable stage distribution. If one normalizes w so
that its entries sum to one, it yields the proportion of individuals in each of the population’s
stages as t→∞.

We use the matrices developed in Davelos and Jarosz [6], where elements of the transition
matrices used in the population projection models were based on data collected annually
in the Missaukee, Leelanau, County Line, Frankfort, and Stivers sites in the northern lower
peninsula of Michigan, due to their similar population sizes and site characteristics (see [6]
for a more thorough description of the population sites). Three population projection matri-
ces were created, one for the two healthy populations (Leelanau and Missaukee Healthy), one
for the two populations still experiencing significant fungus-induced epidemics (Missaukee
Diseased and Stivers) and one for the two populations that have experienced perceived re-
covery due to hypovirus infection (Frankfort and County Line). Each model assumed eight
population stages, and thus nt from (1) is an 8-dimensional vector and A is a 8 by 8 ma-
trix. All individuals within a population that were greater than 100 cm in height (assigned
stages 5–8 in the model) were measured each year; therefore confidence in these transi-
tion probabilities is very high. To estimate transition probabilities for smaller individuals
(stages 1–4 in the model), permanent plots were established and all small individuals (less
than 100 cm in height) were measured because it was not feasible to measure every small
individual within each population. True seedlings and other small individuals were assigned
to different stage classes (stage 1 for true first year seedlings, stages 2–4 for other small
individuals) due to differences in survival probability [5]. Numbers of individuals in these
plots were scaled to account for the difference in the area of the plots versus the area of the
entire population. The placement of the plots was not truly random and this scaling was
not exact for the populations so there is likely to be some uncertainty in these probabilities.
To estimate reproduction for each tree, the number of branches with burrs was counted for
each tree. Three of these branches were selected haphazardly and the number of burrs on
each was counted. These estimates have the greatest uncertainty as it was often difficult
to view the entire crown of a tree (even with binoculars) to accurately count the number
of branches with burrs and the number of burrs. These values were used to estimate the
average number of seedlings per individual in each stage and were the measure of fecundity
used in the matrix projections. Due to the high uncertainty in fecundity values relative to
those of the parameters modeling stage transitions, we will only explore population dynam-
ics subject to uncertainty in fecundity values, and leave uncertainty with regard to stage
transitions to the Discussion.
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We will refer to the matrices for the healthy, diseased (fungus-infected) and recovered
(hypovirus-infected) populations as AH , AD and AR, respectively (parameter values for
these matrices can be found in Table 3 in [6]). Each of these matrices is primitive, meaning
that the leading eigenvalues, which are λH = 1.014, λD = 0.995, and λR = 0.987, are the
asymptotic growth rates of the populations in each disease scenario. Notice that these
λ values are slightly different than those reported in [6], who used an average of the growth
rates in Table 2 of that paper to compute a rough estimate of the growth in each scenario.
The leading eigenvectors, which are

wH =
[
0.16 0.42 0.06 0.16 0.09 0.07 0.01 0.02

]T
,

wD =
[
0.03 0.09 0.05 0.09 0.26 0.46 0.01 0.005

]T
,

wR =
[
0.13 0.50 0.08 0.10 0.05 0.06 0.04 0.04

]T
,

respectively, are the stable stage distributions of each of the populations. A graphical
illustration of the differences between each of these stable stage distributions can be found
in Figure 2 in [6]. In [6] the authors note that, while the growth rates for various healthy,
diseased and recovered populations are relatively similar, the stable stage distribution for
the population predicted from the diseased matrix is much different than that of the healthy
and recovered populations, which are quite similar to one another. This was taken to be
evidence that recovery was truly occurring due to hypovirus infection. In the following two
subsections we describe the tools used to further investigate the differences between these
three types of American chestnut populations.

2.2 Basic reproduction number

The first line of exploration is to look at population growth and persistence through a
different lens. In the traditional way of looking at population persistence for population
projection matrix models like (1) one simply compares the growth rate λ to 1: If λ > 1 the
population grows without bound, and hence persists indefinitely. If λ < 1 the population
decays to zero, and hence goes extinct. If λ = 1 (which is statistically improbable) the
population levels off and remains roughly constant as t→∞ (and hence persists). For the
three populations in [6] the growth rate λ is relatively close to one in each case, meaning
we can say very little definitively about each population’s ability to persist as t→∞ using
the traditional view, let alone make a comparison about how each population persists in
relation to the others.

To view the actual differences in persistence ability between these three populations we
need to look at their basic reproduction numbers, which correspond to the average number
of offspring per individual per lifetime. To do this we start, like Cushing [4], by decomposing
the projection matrix A from (1) into a transition matrix plus a fecundity matrix

A = T + F. (2)

The transition matrix T is composed of the probabilities pertaining to survival and growth
of individuals within the population: i, jth entry of the T is the probability of an existing
member of the population transitioning from the jth stage to the ith stage in one time-step.
Since these transitions cannot generate new individuals for the population, the leading
eigenvalue of T is less than one, and hence the matrix I − T is invertible, where I is
the 8 by 8 identity matrix. The i, jth entry of the fecundity matrix F is the average
number of individuals beginning in stage i created by a member in the jth stage. The basic
reproduction number r (or, as Cushing [4] calls it, the inherent net reproductive number) is
the leading eigenvalue of the matrix F (I − T )−1.

For the models in this paper, Theorem 1.1.3 in [4] states that r is indeed positive, real
and unique. Also, since r gives the expected number of offspring per individual per lifetime,
it follows that if λ ≥ 1 then r ≥ 1 and if λ ≤ 1 then r ≤ 1. Thus, r gives us another
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way to measure whether or not a population is predicted to persist or go extinct. This
alternative formulation also gives a clear interpretation of how “far away” a population
is from persistence, which makes it preferable in the case where λ < 1 but similar to one.
Specifically, while it’s not necessarily true that increasing fecundity will be the most efficient
or optimal way to increase λ (see the Discussion), if r < 1 simply multiplying the fecundity
matrix F by r−1 will cause λ = r = 1.

The basic reproduction number r yields a perspective slightly different than the growth
rate λ, due to a more intuitive reference to the lifespan of the average individual within a
population. To see this, note that the matrix (I − T )−1 = I + T + T 2 + · · · . One can thus
interpret the i, jth entry of (I − T )−1 as the expected amount of time than an individual
starting in stage j will spend in stage i over the course of its lifetime [4]. Thus, the basic
reproduction number r, being the 1, 1st element of F (I − T )−1 in our case, will be the sum
of the average time that an individual starting in stage 1 (first-year juveniles) will spend in
each stage multiplied by the average fecundity (number of first-year juveniles produced) by
individuals in each stage, summing over all stages. Thus, the basic reproduction number r
normalizes population growth/persistence by the average lifespan of individuals within the
population. As we will see with the models in [6], this is not a trivial difference, as a
population with λ near one can have a very small r, due in large part to the longevity of
the average individual masking deficiencies in its overall ability to at least reproduce itself
during its lifetime.

2.3 Population inertia

The second way we investigate the three types of American chestnut populations is to
measure their transient dynamics. To measure transient dynamics stemming from non-
asymptotic (equilibrium) stage distributions we use the aforementioned population iner-
tia p∞ [18, 28]. For a given matrix A and initial population n0, population inertia is given
by

p∞ =
vTn0
vTw

, (3)

where vT is the leading eigenvector of the transpose of A, w is the aforementioned leading
eigenvector (stable stage distribution) of A, and vTw is the dot product of vT and w. It
follows from [2] that vT gives the asymptotic proportion of reproductive output that can
be attributed to each size class, so one can view p∞ as the ratio of the actual reproductive
output as a result of a population with stage structure n0 and the reproductive output of a
population at the stable stage distribution. Thus, when n0 = w, population inertia is one,
as expected. A population is said to attenuate when p∞ < 1 and amplify when p∞ > 1. The
characterizations of attenuation and amplification are less definitive than one would hope,
however, given that a population experiencing transient dynamics can oscillate before its
growth rate equilibrates. Thus, a population experiencing attenuation may increase at times
during its transient phase, but the sum total of decreases outweigh those of the increases,
and similar oscillations may occur for a population experiencing amplification.

Notice that, unlike the asymptotic growth rate λ or basic reproduction number r, pop-
ulation inertia is dependent on the initial population used. Some work has been done to
find initial populations n0 that give the largest possible transient amplification p∞ and at-
tenuation p∞, which are especially important when one is not sure of the initial population
a priori [27, 28]. However, we use initial populations that result from different disease
transition scenarios. Namely, we will use the n0 = wH and AD to study the transient
dynamics elicited by going from a healthy population to a diseased (fungus-infected) popu-
lation and n0 = wD and AR to study those elicited by going from diseased (fungus-infected)
to recovered (hypovirus-infected).
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3 Results

3.1 Population persistence

Since the asymptotic growth rates are relatively similar to one another in the healthy,
diseased (fungus-infected) and recovered (hypovirus-infected) population models, the focus
in Davelos and Jarosz [6] was on the differences in the stable stage distributions (Figure 2
in [6]). The stable stage distribution for the recovered population is very similar to that
of the healthy population, both of which are very different than the diseased population,
suggesting that recovery from the epidemic has indeed occurred. However, when we take
a closer look at the ability of the population to persist in the long run using the basic
reproduction number, these differences in persistence ability are not trivial. Both basic
reproduction numbers for the diseased (rD = 0.57) and recovered (rR = 0.19) populations
are well below one, and the value for the recovered population suggests that the population
would need more than five times its current fecundity values to achieve long-term population
growth (and hence persistence). This phenomenon is hidden when only looking at λ values,
as all of these values are near one. One possible explanation for the small discrepency
in λ values is the relative insensivity of asymptotic population growth rate to fecundity
values when the average lifespan of individuals is large, relative to when average lifespans
are short [2]. In all three chestnut populations the average lifespan of an individual is on
the order of 20–100 years, which is relatively long from an ecological perspective. This
long lifespan is normalized away when calculating the basic reproduction numbers, which
reveal dire circumstances for the diseased and hypovirus-infected populations, as the average
individual cannot come close to reproducing itself during the course of its own lifetime.

3.2 Transient Dynamics

So why then are populations with hypovirus infection considered “recovered” if the model
predicts that is has a smaller chance of persistence than even a fungus-infected popula-
tion? The answer is uncovered when looking at transient dynamics. We first look at how
the population would respond to changing from being healthy to infected by C. parasitica,
by starting with an initial population that is the stable stage distribution for the healthy
population, i.e. n0 = wH , and projecting the population forward using the diseased ma-
trix AD. Figures 1(a) and 1(b) and show that, while not all stages see their population sizes
decline initially, the total population declines sharply from its initial population size, and
eventually each stage’s population declines sharply as t→∞. Population attenuations are
a consequence of the fact that population inertia is 0.73. These transient attenuations are
robust to fecundity values in the healthy population down to roughly 35 percent of their
reported values in [6] and all fecundity values for the diseased population less than or equal
to those reported (Figure 1(c)). Further, monotonic decline is robust to fecundity values in
the healthy population down to roughly 70 percent of their reported values and all fecundity
values for the diseased population less than or equal to those reported (see Figure 1(d)). It
is important to note that we are assuming that a the population’s transition from a healthy
state to a diseased state is sudden, as opposed to gradual, which could possibly overex-
aggerate the short-term transient dynamics elicited by this transition. However, a gradual
transition (via incremental perturbations of the projection matrices) will still likely generate
population responses that accumulate to the result described above.

Once fecundity values were outside of the aforementioned range of values, population
attentuation did not occur. For example, if the fecundity values for the diseased matrix
are higher than those reported in [6], there is a possibility of population amplification
when transitioning from healthy to diseased. However, fecundity values outside of the
aforementioned ranges mimic ecological scenarios that are in the opposite direction or too
far away from what is thought to be observed. For example, it is believed that the fecundity
values for the diseased matrix in [6] are biased upward, with diseased trees exhibiting a
“last-ditch” effort to reproduce before dying, and thus we only considered smaller possible
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fecundity values for the diseased matrix. Additionally, a 30 percent decrease in the fecundity
values for the healthy population represents a substantial deviation downward, even with
significant uncertainty in the numerical value of these parameters.

On the other hand, if we start with an initial population that is the stable stage distribu-
tion for the diseased population, i.e. n0 = wD, and project the population forward using the
recovered matrix AR, we see a total population size that amplifies for roughly 25 time-steps
before sharply declining as t → ∞ (Figures 2(a) and 2(b)). Transient amplifications are a
consequence of the fact that population inertia is 1.63. These transient amplifications are
robust for all fecundity values in the diseased population less than or equal to those reported
values in [6], as well as to fecundity values from 40 percent of the recovered population’s
reported values on up (Figure 2(c)). Large initial amplifications are also robust to fecundity
values less than or equal the reported values for the diseased population as well as fecundity
values from 70 percent of the recovered population’s reported values on up (Figure 2(d)).

Thus, while it appears that recovered populations are indeed recovering in the short
term, they have a very high risk for population extinction in the long run. The transient
amplification caused by the change in parameter values from a fungus-infected population
to a hypovirus-infected population, along with the stage distribution left over from the
disease, gives the chestnut population what appears to be a recovery for an extended period
of time. In fact, this transient amplification mirrors what would happen if the population
were to transition back to a healthy state from a fungus-infected one, as population inertia
when using n0 = wD as the initial population and AH as the population projection matrix
is 1.60, which is very similar to the 1.63 value above. Thus, in the short term at least, the
population dynamics of healthy and hypovirus-infected populations are roughly the same
when transitioning from a fungus-infected population, only to diverge as time passes on due
to the drastic differences in basic reproduction numbers.

As with the transient attenuation result, fecundity values that are outside of this (rela-
tively wide) range may not produce transient amplification when transitioning from fungus-
infected to hypovirus-infected. However, fecundity values for the recovered matrix that
are 30 percent smaller than those reported in [6] not only represent a significant deviation
downward, but also produce a recovered population that declines asymptotically (λ = 0.984,
r = 0.076) and does not experience a transient amplification, suggesting that populations
with fecundity values less than 70 percent of those reported in [6] are not recovered in any
sense.

4 Discussion

In this paper we show that short- and long-term measurements of population growth and
viability yield a complex picture for American chestnut populations recovering from C. par-
asitica infection via hypovirus introduction. On one hand, the reappearance of large repro-
ducing chestnut trees, associated with a large proportion of blight-infected isolates being
parasitized by the hypovirus, is currently taken to indicate recovery of American chestnut
populations [6], leading conservation efforts attempting to introduce hypovirus into existing
American chestnut populations throughout the United States. On the other hand, the re-
sults of previous work studying the population dynamics of healthy, diseased and recovered
American chestnut population are mixed at best, suggesting recovery when examining the
stable stage distributions of recovered populations relative to healthy populations, but not
necessarily seeing evidence of recovery when studying growth rates [6].

When digging deeper into the dynamics of these populations it becomes clear that recov-
ered populations are recovered only in the short term, with transient dynamics that show
large initial population size amplification towards larger values. These transient amplifica-
tions are caused by the differences in stable stage structure between diseased and recovered
populations. No such amplification is seen when transitioning from healthy to diseased,
which was to be expected, given the negative impact blight has been observed to have on
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Figure 1: Population dynamics using wH as the initial population and AD as the population
projection matrix. wH is scaled to sum to one so that population numbers can be viewed
as a proportion of their initial population. (a) shows the dynamics of each individual stage.
(b) gives the dynamics of the total population. (c) and (d) explore of the robustness of
the results in (b) to changes in fecundity values in AH and AD, using matrices of the form
TH + δFH and TD + εFD. The terms δ and ε represent the proportion of the fecundity
values used from the matrices AH and AD given in Davelos and Jarosz [6], respectively.
(c) gives population inertia values when transitioning from a healthy population to a diseased
population as a function of ε for δ ∈ [0.35, 3.85] in increments of 0.5. (d) Shows population
dynamics resulting from using ε values in [0, 1] in increments of 0.15 and δ values in [0.7, 3.5]
in increments of 0.75.
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Figure 2: Population dynamics using wD as the initial population and AR as the population
projection matrix. wH is scaled to sum to one so that population numbers can be viewed
as a proportion of their initial population. (a) shows the dynamics of each individual stage.
(b) gives the dynamics of the total population. (c) and (d) explore of the robustness of the
results in (b) to changes in fecundity values, using matrices of the form TD + δFD and TR +
εFR. (c) gives population inertia values when transitioning from a diseased population to a
recovered population as a function of ε for δ ∈ [0.15, 0.85] in increments of 0.1. (d) Shows
population dynamics resulting from using ε values in [0.75, 3.5] in increments of 0.25 and δ
values in [0, 1] in increments of 0.25.
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various chestnut communities [22]. Transient amplifications eventually decay away, how-
ever, and populations begin to decline in the recovered case, due to both the population
growth rate λR and basic reproduction numer rR being smaller than one. This was reported
in Davelos and Jarosz [6]. However, because λR was relatively close to one, Davelos and
Jarosz [6] did consider the long-term persistence of the recovered populations to be ques-
tionable. When viewing persistence from another, and in the long run equivalent, angle
using rR one sees that recovered populations are actually quite far off from being persistent,
needed more than a five-fold increase in fecundity values to avoid going extinct as t→∞.

While this paper mainly focuses on analyzing a population’s basic reproduction num-
ber, r, and population intertia, p∞, values, it is important to note that these analyses were
only conducted after the limitations of using the traditional population growth rate, λ, were
met. A thorough study of a population’s dynamics should consider (at least) all three of
these analysis tools as complimentary means to make the most informed decisions regard-
ing the evaluation of a population’s past performances and the predicted results of future
conservation measures. Two populations with similar growth rates and basic reproduction
numbers may respond drastically differently to the same initial (or current) population, a
feature population inertia would be able to detect. On the other hand, two populations
with similar population inertias and basic reproduction numbers may have drastically dif-
ferent extinction risks, which traditional population growth rate would be able to detect.
For example, of two populations with similar basic reproduction numbers, the shorter-lived
population will have a higher population growth rate, and thus a smaller extinction risk if
faced with similar transient dynamics. As we have demonstrated in this paper, two popu-
lations with similar growth rates can have drastically different basic reproduction numbers
if the lifespans of the average individual in both populations is long enough to make the
year-to-year discrepancies in population growth appear minimal. Thus, when considering
conservation decisions, population biologists should consider the senstivity of all three mea-
surements to different strategies in an attempt to determine the best possible approach to
management.

On the positive side, there are multiple, and not mutually exclusive, ways to increase re-
production in American chestnut populations. Most obviously, increasing the number of new
seedlings produced per individual would increase the basic reproduction number. Seedling
survival and growth can be increased by excluding seed predators and herbivores (e.g. ro-
dents, deer, and turkeys) with cages [5]. The recent explosion in deer population numbers
and the cost and time investments in constructing cages make this approach challenging.
However, increasing overall reproduction in the American chestnut population need not be
entirely focused on fecundity alone. As stated in Section 2.2, while the basic reproduction
number provides a definitive reference for how “far away” a population’s fecundity is from
eliciting population growth, increasing fecundity may not be the most efficient means for
increasing this value. Indeed, the basic reproduction number rR for the recovered popu-
lation is actually most sensitive to changes in stage transitions, specifically the transitions
from stage 6 to 7 and from stage 2 to 4 and most elastic to changes in the probability
of stage 7 and stage 8 individuals to stay in stages 7 and 8, respectively (see Figure 3).
Thus, another strategy would be to change growth dynamics so that trees spend less time
in non-reproducing size classes and more time in the reproductive size classes. Changing
this growth dynamic could be achieved through a combination of increasing resistance to
infection and judicious use of hypovirulence inoculations. A breeding program established
by The American Chestnut Foundation has introduced resistance from the Chinese chest-
nut (Castanea mollisima) into an American chestnut genetic background. These hybrid
trees are currently being tested for release into North American forests. Resistance could
help trees attain a larger size before becoming infected and then targeted hypovirulence
introductions could allow these larger individuals to tolerate the infection and reach repro-
ductive sizes. This combination of resistance and hypovirulence might explain why recovery
is widespread and appears to be long lasting in Europe (populations recovering for more
than 50 years), since the European chestnuts are slightly less susceptible than American
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chestnuts and hypovirulence has spread naturally and been introduced [16].
Possible extentions of the models in this paper include incorporating density-dependent

feedbacks and including demographic and/or environmental stochasticity, which are both
research paths currently being taken. Incorporating density-dependent feedbacks will more
than likely elicit a model with equilibrium behavior for its population density, as opposed to
its growth rate. For the populations in this paper, this would only affect the healthy popu-
lations, since the fungus-infected and hypovirus-infected populations are already declining,
and density-dependence would not abate this trend toward zero. Some work is currently be-
ing done to explore the mathematical properties of nonlinear models with density-dependent
feedbacks impacting fecundity [8], which draws on the previous work of [23, 31, 10, 25].
Stochastic models analogous to those in this paper will have long-term average growth
rates λs, the properties of which have been studied extensively in the theoretical ecology
literature (see, for example, [2, 32]). However, the transient dynamics of stochastic models
are far less understood (but see [13]), and extending the work in this paper to stochastic
models for American chestnuts is in progress.

The results of our study illustrate the importance of taking a long-term view of recovery
for American chestnuts. While current approaches have provided a transient amplification
and are necessary for the recovery of populations, to maintain the population level gains
we have made in the long run we need to broaden our emphasis to include increasing
reproduction of individuals and increasing the time individuals spend in reproductive classes
and the successful recruitment of seedlings.

S =



0 0 0 0 0 0.20 0.07 0.05
0.27 1.00 0 0 0 0 0 0

0 0 0.37 0.55 0.21 0.20 0 0
0 9.48 0.94 1.43 0.53 0.51 0.19 0
0 0 0 4.31 1.61 1.54 0.57 0
0 0 0 0 3.30 3.17 1.17 0.83
0 0 0 0 0 12.0 4.43 3.16
0 0 0 0 0 0 7.27 5.20



E =



0 0 0 0 0 0.02 0.30 0.68
1.00 4.26 0 0 0 0 0 0

0 0 1.58 0.29 0.04 0.01 0 0
0 1 0.35 5.87 0.25 0.05 0.00 0
0 0 0 1.36 6.61 0.49 0.01 0
0 0 0 0 1.57 14.9 0.25 0.02
0 0 0 0 0 1.27 21.3 0.83
0 0 0 0 0 0 1.53 25.87


Figure 3: The sensitivity and elasticity of the basic reproduction number rR for the recovered
population. The i, jth element of S is the sensitivity of rR to changes in the i, jth element
of AR, and i, jth element of E is the elasticity of rR to changes in the i, jth element of AR.
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