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Abstract

Dynamic energy budget models are the most ambitious of resource allocation
models in biology, with many practitioners claiming that they apply to all or-
ganisms with only a few changes in parameters. Because of this generality, they
make very broad predictions about how organisms function. There is extensive
literature on the topic, but some of the broad implications nevertheless remain
largely unexplored. In this paper, we present a careful derivation of the basic ver-
sion of the model from elementary biological assumptions, and we identify some
of the important implications of the model for growth, starvation, maturation,
and reproduction.
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1 Introduction

The formal DEB theory of dynamic energy budget modeling dates from seminal work by
Sebastiaan A. L. M. Kooijman [1], which presented the basic structure that has been retained
in DEB modeling. Kooijman has been a prolific author and has trained a large number of
researchers, thereby creating a large community dedicated to modeling based on the formal
theory. More generally, any other models that attempt to account for resource flow in
animals, such as the net production model [4], ought to be classified under the general
heading of dynamic energy budget models, although some practitioners of DEB theory
believe that the term “dynamic energy budget” should be used only in the narrower confines
of the formal theory.

There has been little integration of dynamic energy budget models into the larger context
of ecology, where there are opportunities to connect models of individual organisms to models
of food webs and other communities. The broader community of ecological modelers has not
incorporated DEB theory into its repertoire of techniques. A possible reason for this lack
of enthusiasm by ecological modelers is the way the theory has been presented. There are a
number of survey papers that contain semi-mechanistic derivations of the basic equations of
DEB theory, in which a key point is assumed without clear justification. The careful reader
of these papers may well get the impression that the theory is somewhat ad hoc, which it is
not. Kooijman’s development of the theory is fully mechanistic, with all assumptions given
a biological justification [2]. Another difficulty related to the presentation of DEB theory
is the relative impenetrability of the standard symbol set. There are two common symbol
sets, depending on whether the currency used for the model is actually energy or is instead
some other limiting quantity such as total mass or moles of carbon. Both of these systems,
however, use notation for important quantities that incorporates symbols normally reserved
in mathematics for delimiters, and the symbol e, normally reserved by mathematicians for
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the base of the exponential function, is commonly used as a state variable. These notational
quirks make it difficult for a person not already well versed in the theory to understand the
equations.

The purpose of this paper is to present a careful derivation of the standard DEB model
that raises questions about some details and presents some general properties of the standard
model that are independent of organism. My derivation is essentially that of Kooijman, but
with a simplified symbol set that is independent of the choice of currency for the model. It
is hoped that the reader will come to understand the promise of DEB theory as a tool for
ecological modeling. To help the reader understand the primary literature, formulas that
connect the simplified notation of this paper to that used by Kooijman [2] are presented in
Appendix A.

2 Development of the Model

Dynamic energy budget (DEB) models describe the life history of an organism in terms
of a small number of variables that represent the organism’s state as it changes over time,
together with a small number of fundamental processes that describe the mechanisms re-
sponsible for changes in the state variables. The same model can be used for a variety
of species and environments merely by changing the values of a small number of primary
parameters. The simplest DEB model is for animals that exhibit indeterminate growth and
maintain the same shape, relative proportions, and structure from birth. The model has
been extended to more complicated animals, but here we consider only the simplest version.

The key idea of DEB models is that changes in the amounts of resources invested in
various components of an organism are determined by quantifiable biological processes.
Any conserved quantity, such as energy or moles of carbon atoms, can be used for the
currency in the model. The standard notation for DEB models is different depending on
the choice of currency and commonly uses volume, rather than the common currency, as a
measure of one of the state variables, which introduces the need for conversion factors. The
notation presented here does not depend on the choice of currency, which will be referred
to euphemistically as ‘energy’ (with the quotation marks). Capital letters are used for the
original variables in the model, with the corresponding lower-case letters used for their
dimensionless versions. Lower-case Greek or Latin letters are used for the physiological
parameters in the dimensionless model.

2.1 State Variables

The basic dynamic energy budget model includes four state variables. These quantities are
distinguished by function rather than structure, so they are not directly observable in a
given organism.

Structure (W ) refers to the corporeal material of an organism that contributes directly
to the animal’s ability to collect and process resources. Structure contributes only indirectly
to reproduction through the resources it is used to collect. It requires maintenance, which
is an expenditure to replace losses due to metabolic processes.

Reserve (E) refers to any corporeal material that is being stored for future allocation
to other components. It does not contribute directly to either resource collection or repro-
duction, and it does not require maintenance. In a more sophisticated model with multiple
resources, each potentially limiting, there needs to be a separate reserve for each resource.

Maturity (H) is a state variable that accounts for ‘energy’ expended from reserves for
the purpose of preparing for reproduction, including ‘energy’ consumed in the process of
reorganization, as when organ systems are built in an embryo, as well as ‘energy’ invested
in permanent reproductive organs. While ‘energy’ expended for maintenance does not need
to be incorporated into a state variable, ‘energy’ invested in maturity does need to be
accounted for since a specific amount of such ‘energy’ marks the transition from juvenile to
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adult. Hence, the maturity variable is abstract in the sense that it includes resources that
are used without being incorporated into the organism. Maturity requires maintenance, as
complexity and reproductive organs can sometimes be sacrificed in response to starvation.

The reproduction component (R) includes ‘energy’ present in the form of gametes, ‘en-
ergy’ used for gametes that have already been released from the organism, and ‘energy’
stored specifically for future reproduction. This component does not require maintenance.
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Figure 1: Schematic of a model organism showing state variables and fluxes. State variables
are given as ‘energy’ (energy, mass of carbon, or moles of carbon) and fluxes are given as
‘energy’ per unit time.

2.2 Processes

The standard DEB model assumes a specific connection pathway for changes among the
four components, as shown in Figure 1. ‘Energy’ is collected from the environment and
assimilated into reserve at rate JA. It is mobilized from the reserve at rate JC , with the
fraction κ allocated for somatic uses and the remaining fraction allocated for maturation
or reproduction. Costs JS and JH for somatic and maturity maintenance are deducted
from the respective streams, with the remainder of the somatic stream going to growth
and the remainder of the maturity/reproduction stream going to maturity for a juvenile or
reproduction for an adult. ‘Energy’ allocated to growth must be converted into structure,
with the yield in structure a fixed fraction y of the resources invested, and with the remaining
investment lost through chemical reactions needed to build the specific tissues that comprise
the structure. Since maturity is largely abstract, it can be thought of as having the same
composition as reserve; hence, there is no need for a yield parameter. One can include
a yield parameter for conversion from reserve to reproduction; here we are thinking of
reproduction primarily as reserve that has been allocated for embryos, in which case it
has the same composition as ordinary reserve. A subsequent submodel that deals with the
conversion of reproductive ‘energy’ into gametes would then need a conversion factor. Note
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that each of the fluxes has the dimension ‘energy’ per time, while y has the dimension
‘energy’ incorporated into structure per ‘energy’ of reserve.

2.3 The Growth Model

The growth model consists of the differential equations for structure and reserve along with
algebraic equations for the assimilation, mobilization, and somatic maintenance fluxes, which
need to be prescribed in terms of the structure variable. Ultimately, it is most convenient to
replace the original variables E and W with the reserve density U and structural length L,
thereby eliminating the dependence on the choice of currency.

Reserve Density and Structural Length

The differential equations that describe the changes in structure and reserve are given in
terms of the standard fluxes as

dE
dt = JA − JC , (1)

dW
dt = y(κJC − JS). (2)

We replace W by the structural length L and E by the reserve density U , with these defined
by

W (t) = ΓL3(t), E(t) = U(t)W (t) = ΓU(t)L3(t), (3)

where Γ is the density of ‘energy’ contained in a unit volume of structure. This parameter
allows all quantities measured in ‘energy’ to be converted into an equivalent structural
length.

After changing variables, the structure equation becomes

3
dL

dt
= κy

JC
ΓL2

− y JS
ΓL2

, (4)

and the reserve equation becomes

W
dU

dt
+ U

dW

dt
= JA − JC ,

or

L
dU

dt
=

JA
ΓL2

− (1 + κyU)
JC
ΓL2

+ yU
JS

ΓL2
. (5)

Completion of the growth model requires specification of the assimilation and maintenance
fluxes in terms of L and a reserve dynamics model that provides an additional equation
for JC .

Assimilation Flux and Reserve Dynamics

Animal feeding models lead to the assumption that assimilation flux is proportional to
structural area. Postponing consideration of the feeding model details, we can use this
assumption to assert that the assimilation flux is given by

JA
ΓL2

= Q, (6)

where Q depends only on food availability and not on the state of the organism. Thus, the
reserve density equation (5) becomes

L
dU

dt
= Q−

[
(1 + κyU)

JC
ΓL2

− yU JS
ΓL2

]
.
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It is convenient to define a function D by

D(U,L) = (1 + κyU)
JC
ΓL2

− yU JS
ΓL2

, (7)

which allows us to write the reserve dynamics equation as

LdUdt = Q−D(U,L). (8)

This equation looks simple, but it is not complete because D includes the unknown mo-
bilization flux JC , which must be determined indirectly. Instead of deriving a mechanistic
model for JC and using it to calculate D, we derive a mechanistic model for D and then
use (7) to calculate JC . This is done in two stages, determining first the dependence of D
on L and then its dependence on U .

When the food availability is constant, the parameter Q is also constant; in this case,
the reserve density achieves an equilibrium given by

D(U∗(L,Q), L) = Q.

We now make the weak homeostasis assumption, which is that the equilibrium reserve
density for a given food level does not change as the individual grows. This implies that U∗

depends only on Q, so the equilibrium equation is

D(U∗(Q), L) = Q.

Differentiating with respect to L therefore yields ∂D/∂L(U∗(Q), L) = 0. Now suppose U
and L are given. We can then define Q∗ by Q∗ = D(U,L), which means that U = U∗(Q∗).
Hence, we have

∂D
∂L (U,L) = ∂D

∂L (U∗(Q∗), L) = 0,

leading to the conclusion that D does not actually depend on L.
The form of the function D is further restricted by the partitioning assumption, which

says that the equations must all make sense even when applied to only a fraction of the
reserve. This argument is typically applied to the definition of D (7), but the conclusion
follows much more easily from examination of (8), now with D(U) rather than D(U,L).
Suppose we arbitrarily divide the reserve into two portions with reserve densities U1 +U2 =
U . The total assimilation must be divided among the two portions as well, withQ1+Q2 = Q.
Then

D(U1) +D(U2) =
[
Q1 − LdU1

dt

]
+
[
Q2 − LdU2

dt

]
= Q− LdUdt = D(U1 + U2).

Similarly, suppose we consider a fraction θ of the total reserve. Assuming starvation condi-
tions (Q = 0) for simplicity, we have

D(θU) = −Ld(θU)
dt = −θLdUdt = θD(U).

These last two results prove that D must be linear; hence, there is a constant ν, with
dimension length per time, such that D(U) = νU . This parameter is called the energy
conductance. Similarly, it makes sense to call the parameter Q, also with dimension length
per time, the assimilation conductance.

The result D(U) = νU completes specification of the reserve dynamics by

dU

dt
=
Q− νU

L
(9)

and the mobilization flux by

JC =
νΓUL2 + yUJS

1 + κyU
. (10)
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Substitution of (10) into (4) yields the final growth equation:

dL

dt
=

y

3(1 + κyU)

(
κνU − JS

ΓL2

)
. (11)

After supplementation by algebraic equations to prescribe the somatic maintenance
flux JS and the assimilation conductance Q in terms of the structure variable L, equa-
tions (9)–(11) constitute a complete model to determine L, U , and JC . These quantities
can then be used as known inputs for the maturation/reproduction component of the model.

Biological Analysis of Reserve Dynamics

We need to delve a bit more deeply into the assimilation model to fully understand the
reserve dynamics equation (9). Suppose Qm is the maximum value of the assimilation
conductance Q. Using a Holling type 2 functional response for the relationship between
assimilation and food density x (scaled by the food density corresponding to assimilation at
half the maximum rate), the overall assimilation conductance is

Q = Qmf(x) = Qm
x

1 + x
. (12)

Substituting this equation into (9) gives us the standard form of the reserve energy equation,

dU

dt
=
ν

L

(
Qm
ν
f(x)− U

)
. (13)

Given f ≤ 1, there is a maximum reserve density defined by

Um =
Qm
ν
. (14)

The existence of a mathematical relationship among Qm, ν, and Um is problematic in
the sense that all three of these quantities—maximum assimilation conductance, energy con-
ductance, and maximum reserve density—seem appropriate to take as primary parameters
that are determined independently through natural selection. It has become standard in the
DEB literature to take Qm and ν as the primary parameters, with ν thought of as roughly
uniform within a given family of organisms, meaning that the equilibrium reserve density
scales with Qm. We will see that maximum structural length L∞ also scales with Qm, so
the equilibrium reserve density scales with maximum structural length. The inevitable con-
sequence of this conclusion is that larger species in a related family have larger maximum
reserve densities, which seems counter-intuitive. Reserve represents investment of resources
in a component that can only improve productivity by later reallocation to structure, in
the same way that depositing money into a checking account can only improve income by
later reinvestment into something productive. In the financial setting, a larger percentage
of holdings maintained as cash is a response to greater unpredictability of future earnings,
not a consequence of being a larger company. Intuitively, one would expect natural selection
to use a larger maximum reserve density as a hedge against greater unpredictability of food
supply. The model can predict this result only if maximum reserve density is a primary
parameter.

The derivation of the reserve density equation produces the energy conductance pa-
rameter ν from a mathematical argument, with no clear biological argument why energy
conductance should be a primary parameter. In principle, there is no difficulty in thinking
of Qm and Um as the primary parameters, with the energy conductance ν as secondary.
Unfortunately, this has its own drawbacks. The relative rate of reserve loss due to starva-
tion is given by (13) with f = 0, so can be written as either ν/L or Qm/LUm. While it is
satisfying to see that larger reserve density increases resistance to starvation in the second
form, it is problematic to have the starvation rate dependent on the food intake rate, given
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that there is no food intake in a starvation scenario. Suppose all food is withheld from
two organisms in the same family and with the same initial length. If reserve density is
roughly fixed in this family, then the organism from the species with larger maximum size
would starve faster than its counterpart in spite of having the same current size and reserve
density.

While the choice between ν and Um as the second primary parameter should be based
on biological considerations, it is not obvious which considerations are most important; this
issue has not been deeply explored in the literature. There is a third alternative, completely
unexplored, which is to omit the weak homeostasis assumption. The partitioning argument
would still hold to show that D is linear in U for given L, but we would need additional
biological assumptions to determine the dependence of D on L. While this alternative is
more complicated, it would allow the energy conductance and maximum reserve density to
be independent primary parameters.

Maintenance and Nondimensionalization

Any maintenance based on cell upkeep and respiration, as well as tissue replacement, should
be proportional to the structure W , which means it can be taken as proportional to the cube
of the structural length L. Similarly, maintenance based on control of internal temperature
or osmotic pressure should be proportional to the square of the structural length. Mainte-
nance costs based on movement should be proportional to the total mass of the organism,
but this would violate the DEB requirement that reserve have no maintenance needs. In-
stead, DEB models consider only structural mass in determining cost of movement, which is
simply added to the upkeep and respiration costs.1 Taking all of the components together,
we can write the maintenance costs as

JS = Γ(kL3 + kAL
2). (15)

Assuming kA = 0 in the standard model (for ectotherms living on land or in salt water), we
can complete the growth and flux equations as

dL

dt
=
y(κνU − kL)

3(1 + κyU)
(16)

and

JC =
ΓUL2(ν + kyL)

1 + κyU
. (17)

For nondimensionalization, we select reference quantities

Um =
Qm
ν
, Lm =

κQm
k

, tr =
1

ky
, (18)

where Lm can be identified as the maximum structural length. We then define the scaled
reserve density u, the scaled length `, the scaled time τ , and the compound parameter φ by

u =
U

Um
, ` =

L

Lm
, τ = kyt, φ = κyUm =

κyQm
ν

. (19)

In terms of these new quantities, with the prime symbol for τ derivatives, the model becomes

u′ =
f(x)− u

φ`
, (20)

`′ =
u− `

3(1 + φu)
, (21)

JC =
Γκ2Q3

m

k2
· 1 + φ`

1 + φu
· u`2. (22)

1This is an unimportant discrepancy in most contexts, but it means that strict DEB models cannot
be used for questions that require an accounting of the metabolic costs of movement, especially for large
organisms that tend to have large reserve densities in the standard model.
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The dimensionless growth model (20)–(21) has only two parameters: the food density x
and the physiological parameter φ, which represents the maximum value (given unlimited
food density) of the ratio of the amount of structure that could be produced by immediate
full mobilization of storage to the amount of structure currently present. This model is
equivalent to the version given by van der Meer [6] except for the latter’s use of e in place
of my u and g = 1/φ in place of my φ.

2.4 Maturation and Reproduction

We now consider the fraction 1−κ of the assimilate that is not used for somatic maintenance
and growth. This portion is initially earmarked for maturation, which includes ‘energy’ used
for reorganization (and therefore expended) as well as ‘energy’ converted into reproductive
organs. The differential equation for maturity increase is

dH
dt = (1− κ)JC − JH ,

where JC is given by (22). We assume the maturity maintenance flux is

JH = kHH

and define dimensionless maturity h and dimensionless maturity maintenance coefficient σ
by

H =
Γκ2(1− κ)Q3

m

k3y
· h, σ =

kH
ky
. (23)

With these definitions, we obtain the maturation model

h′ + σh =
1 + φ`

1 + φu
· u`2, h(0) = hb, h(τp) = hp, (24)

where hb, the dimensionless maturity level at birth, and hp, the dimensionless maturity level
at puberty, are primary parameters. As a practical matter, we can generally take hb = 0,
reflecting the low maturity level at birth. Alternatively, we can think of hp as the increase
in maturity from birth to puberty and neglect the maintenance requirement for maturity
accumulated before birth. The puberty time τp must be determined from the solution of
the initial value problem.

After time τp, the maturity level is fixed, except under extreme starvation conditions,
and the reproduction is given in dimensionless form by

r′ =
1 + φ`

1 + φu
· u`2 − σhp, r(τp) = 0. (25)

For life history optimization problems, we may write the expected total lifetime reproduction
as

E[r(∞)] =

∫ ∞
τp

[
1 + φ`(τ)

1 + φu(τ)
· u(τ)`2(τ)− σhp

]
S(τ) dτ, (26)

where S(τ) is the probability of survival to age t = trτ .

2.5 Summary

The full dimensionless model needed to determine length, storage, puberty time, and accu-
mulated reproduction consists of equations (20), (21), (24), and (25). Aside from parameters
absorbed in the scales, the dynamics are completely determined by physiological parameters
φ, σ, and hp, along with the function x(t) that describes the time-dependent food availabil-
ity. If x is constant, then the reserve density quickly approaches u = f , which simplifies the
growth equation to

`′ = α(f − `), α ≡ 1

3(1 + φf)
.
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This is the von Bertalanffy equation often used for growth of animals; neglecting the small
size at birth, we have the result

` = f
(
1− e−ατ

)
. (27)

The maturation equation then simplifies to

h′ + σh = 3fα(1 + φ`)`2 (28)

and the reproduction equation to

r′ = 3fα(1 + φ`)`2 − σhp. (29)

3 Qualitative Behavior of the Model

We now examine some of the qualitative predictions made by the standard model under
a variety of circumstances. The focus will be on trying to tease out the significance of
the dimensionless parameters φ and σ and the response of the model to a variety of food
conditions.

3.1 Growth

Figure 2 shows the growth history `(τ) under constant food conditions. Figure 2a illustrates
the effect of food availability with moderate storage ratio parameter φ = 1. As seen in (27),
the primary effect of assimilation saturation f is on the asymptotic structural length; how-
ever, there is an additional effect (through α) of increased food in slowing the approach to
the asymptotic length; this would be more pronounced with larger φ. Figure 2b shows the
effect of the storage ratio, with larger values slowing the approach to the asymptotic length.
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Figure 2: Growth history under constant food conditions: (a) x = 1, 2, 3, 4 (bottom to top)
with φ = 1; (b) φ = 0.1, 1, 4 (top to bottom) with x = 4.

3.2 Starvation

Suppose an animal is initially placed in an optimal environment (f → 1), allowed to grow to
a size `0, and then placed in an environment with no food. It can survive for a time because
its reserve can continue to pay maintenance costs even without replenishment. Animals are
not capable of more than a miniscule decrease in structural length, so the organism dies
shortly after it becomes unable to cover its maintenance costs (see [5], for example).2 This
does not require the reserve to drop to 0 (which in theory takes infinite time), but merely
to drop low enough that the model predicts negative growth. From (21), this occurs when

2More sophisticated responses to starvation are also possible; see [2], p. 114–124.
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u = `. Thus, we can define the dimensionless maximum starvation time3 τs(`0, φ) by the
problem

u′ = − u

φ`
, `′ =

u− `
3(1 + φu)

, u(0) = 1, `(0) = `0, u(τs) = `(τs). (30)

In general, this problem has to be solved numerically, but the starvation time can be ap-
proximated analytically for small φ, with the result (see Appendix B)

τs ≈ φF (`0), F (`0) = `0 ln
1

`0
. (31)

This result indicates that τs/φ should be independent of φ for φ small enough. Figure 3
shows that this conclusion is approximately true even for moderate values of φ. Note that
Figure 3 makes a prediction that could potentially be tested by experiment: for any given
species, individuals that are at roughly 35-40% (corresponding to the theoretical minimum
`0 = 1/e of F ) of the maximum structural length should be more resistant to starvation
than larger or smaller individuals.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

l
0

τ
s
/φ

Figure 3: Dimensionless starvation time scaled by φ: φ→ 0 (solid), φ = 4 (dashed).

In dimensional quantities, the starvation time is

ts =
L0

ν
· ln κQm

kL0
=
L0Um
Qm

· ln κQm
kL0

, (32)

depending on the choice of ν or Um as a primary parameter, where L0 is the structural
length when food is cut off. The second result conflicts with the expectation that starvation
time should be largely independent of Qm. The latter is a measure of the animal’s capacity
for assimilating food, which should not make any difference to an animal that has no food
to assimilate. The result (32) is the principal argument for taking ν rather than Um to be
primary.

If we neglect the subtleties of mobilization and growth, we can make a naive estimate
of starvation time. Given that initial food supply is at its maximum, the total amount of
reserve ‘energy’ when food is cut off is

E0 = ΓUmL
3
0.

Assuming no further growth, the rate of somatic maintenance, from (15), is ΓkL3
0. Given

that only a fraction κ of E0 is available to pay somatic maintenance costs, this means that
the reserve energy should last to time

t̄s =
κUm
k

,

3It is the maximum starvation time because a lower initial food concentration would mean a lower initial
energy reserve and less time until u = `.
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which is independent of structural length. The actual starvation time should be less than
this quantity, which we can check against the time ts by choosing the structural length
corresponding to maximum starvation time:

ts(L0) ≤ ts
(
e−1Lm

)
= e−1t̄s.

The restrictions of reserve dynamics mean that starvation happens significantly faster than
it would if reserve could be used to pay maintenance costs instantaneously.

3.3 Maturation

The parameter σ represents the relative cost of maturity maintenance as compared to that
of somatic maintenance. It has two important effects, one of which is on the size achieved
at maturity. The value σ = 1 represents a situation where food shortages affect growth
and maturation equally, which means that it takes longer to reach the adult stage but
that the size achieved at maturity is unchanged. Many authors have made this simplifying
assumption in order to equate maturation with a size and avoid having maturity as a state
variable. However, there are many examples of species for which the size at maturity can
be highly dependent on food availability. In these cases, it is the underfed individuals that
mature at a smaller size; hence, σ < 1. These features are illustrated in Figure 4, which
shows plots of `(τ) against h(τ) using a representative value of φ = 1/3, high and low food
densities, and three values of σ. In both parts, the top curve is for σ = 1; these curves are
identical because low food slows maturation as much as it slows growth, but the low food
curve ends at the maximum values of h and `. Smaller values of σ mean that low food slows
growth more than maturity, so the curves are pushed down from Figure 4a to Figure 4b.
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Figure 4: Development curves in the maturity-length phase plane, with σ = 0 (solid),
σ = 0.5 (dashed), and σ = 1 (dot-dash): a) x = 4; b) x = 0.5, both with φ = 1/3.

3.4 Reproduction

A second effect of maturity maintenance is to impose a minimum rate of ‘energy’ mobilization
to maintain status as a reproductive adult. This phenomenon has been observed and is the
biological justification for including maturity maintenance in the model. The condition that
maturity maintenance for an adult can be paid requires

σhp <
1 + φ`

1 + φu
· u`2,

which corresponds in dimensional terms to

kHHp < Γ(1− κ)UL2(ν + kyL), (33)

given that U is small under starvation conditions. This should be interpreted as a limit to
how low the reserve density U can be to avoid regression.
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While it is not clear that natural selection acts on a genome to achieve optimal fitness,
this assumption is at least plausible. In principle, it can be tested by using dynamic energy
budget models to predict optimal parameter values under known environmental conditions.
A simple calculation provides a rough estimate of the optimal value of the allocation pa-
rameter κ. Equation (27) shows that the dimensionless reproduction rate does not depend
directly on κ. This means that the primary effect of κ occurs in the scale, which is the
same as for H. We can say that reproduction rate of an adult is roughly proportional to
κ2 − κ3, which has its maximum at κ = 2/3. Of course what really matters is the total
lifetime reproduction, and this depends on survival rates. The guarantee of a finite lifespan
suggests that there is an advantage to earlier maturation, which would be achieved by mak-
ing κ a little smaller. On the other hand, many organisms live in an environment where the
primary cause of death is predation on juveniles, and this suggests that κ should be larger.
Reported values of κ are in the range 0.65 to 0.8, which is consistent with these theoretical
observations.

Appendix

A. Notation Dictionary

Table 1 presents the important notation for the basic DEB model in its current standard
version, along with the equivalents using the notation presented in this paper. The extra
factors of Γ in the equivalent notation are because the notation used here is independent of
currency. Standard DEB models that use currency other than energy use different notation.

Table 1: Comparison with the standard notation [2].
Standard Equivalent type specifics

L L state variable structural length
[E] ΓU state variable energy per unit structural volume
e u state variable dimensionless energy density
ṗS JS flux somatic maintenance flux
ṗA JA flux assimilation flux
{ṗA} ΓQ flux assimilation flux per unit area
[EG] Γy−1 parameter energy cost per unit volume of structure
{ṗAm} ΓQm parameter maximum assimilation flux per unit area
[ṗm] Γk parameter maintenance energy cost per unit volume
[Em] ΓUm parameter maximum reserve energy per unit volume
ν ν parameter energy conductance
g φ−1 parameter energy investment ratio

B. Asymptotic Analysis of the Starvation Problem

We begin by rescaling the time in (30) using the substitution

τ = φ`0η,

which changes the problem to

du

dη
= −`0

`
u,

d`

dη
= φ

u− `
3(1 + φu)

, u(0) = 1, `(0) = `0, u(ηs) = `(ηs).

Given φ→ 0, we see that length is constant to leading order, which yields the approximate
problem

` = `0,
du
dη = −u, u(0) = 1, u(ηs) = `0,
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with solution

ηs = ln
1

`0
.

Thus,

τs = φ`0 ln
1

`0
,

which confirms (31).
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