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Abstract

We consider an optimal fishery harvesting problem using an age-structured pop-
ulation model with nonlinear recruitment. The motivating example is Atlantic
Cod. The goal is to maximize the profit (total gain) of fishing. We seek to find
the optimal harvesting strategy for each age class, but also to find the optimal
net size. Using the extension of Pontryagin’s Maximum Principle to discrete sys-
tems, we are able to derive the necessary conditions and the characterizations for
the optimal harvesting strategies. Numerical simulations for both Beverton-Holt
and Ricker recruitment functions are provided.
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1 Introduction

Fish is a valuable source of protein, and many people have lived to a large extent on fish
and other seafood. Overfishing has driven many stocks of fish to near extinction [9, 10].
This applies in particular to the Mediterranean Sea, the Baltic Sea, and the North Atlantic
Ocean. The collapse of the Newfoundland or Baltic sea cod fisheries should be taken as a
severe warning that the fishery industry needs more careful controls [13]. With appropriate
stock assessment data, mathematical models can be used to derive possible management
strategies, which may aid the supervision of this industry.

The fundamental work on quantitative fisheries management was done by Beverton and
Holt, Ricker, Schaefer and Clark [2, 4, 25, 26, 27, 28]. Researchers have proposed to include
age structure of the harvested population, and earlier studies of optimal harvesting of age-
structured fish populations have been published both in fishery ecology and economics.
Leslie developed the theory for age-structured populations based on matrix methods [3].
Clark used bioeconomic modeling to integrate population dynamics with characterizations
of important economic processes, and his book is the most comprehensive treatment of
dynamic renewable resource models [4]. Clark [4] first studies fishing for a single age class,
or cohort, with the goal to find the optimal time to harvest the entire cohort. Then he
formulates a multicohort model with fixed recruitment and non-selective fishing mortality,
the goal is to maximize present value profit, he finds the solutions to be a sequence of impulse
controls. Wilen [38, 39] also pointed out more realistic fishery models should be based on
population age structure. For many fish species, the von Bertalanffy formula [36] provides a
good relation between age and size, and thus age-structured models are also size-structured.
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Reed [24] studies optimal age-specific harvesting policy for maximizing equilibrium yield.
He finds the optimal policy is of the “two-age” type. Getz has a series of papers on optimal
harvesting with age structure [7], he and Haight [8] gave an extensive survey about age-
structured population models and harvesting. Most studies they cite solve the problems
under certain restrictions, such as requiring the harvest is constant over time. In Horwood
and Whittle [11, 12], the optimal solutions are approximated by linearizing the optimality
conditions in the neighborhood of the steady state with the goal to maximize a discounted
yield for a multicohort fishery harvesting problem.

Stage [31] and Tahvonen [32, 34, 35, 33] suggest that including population age structure
into economic studies deserves more emphasis. Stage [31] applies an age-structured model for
Namibian linefishing and finds that the main result depends on the length of the planning
horizon. Recently Tahvonen [32, 34, 35, 33] has analyzed models of optimal harvesting
fish stocks with age structure. He studies the effects of different types of gear selectivity.
One type is non-selective fishing gear, which means that all age classes are harvested in
fixed but not necessarily equal proportions, and the optimal harvesting strategy may be
“pulse-fishing” in time. The other type is “knife-edge” selectivity, which means all age
classes above a certain age are subject to fishing mortality, while all younger fish completely
escape. Tahvonen [35] also points out population age structure contains information on
future harvest possibilities, where a biomass (or surplus production) model neglects this
information and may lead to major deviations between the expected and actual outcomes
especially under multiple steady states and nonlinearities.

Li and Yakubu [15] present a juvenile-adult discrete time production model of exploited
fishery systems with general recruitment functions, and they use historical fish population
data from Georges Bank to investigate the impact of recent harvesting levels on the sustain-
ability of cod fishery. They show that a constant harvesting policy with the same harvesting
rate of 2007 would lead to the recovery and sustainability of Georges Bank cod fishery. Skon-
hoft et al. [30] studies an age structured fishery model with two fishing fleets targeting two
different mature age classes of the fish stock, an age class of immature fish is also included.
The optimal harvesting policy essentially depends on the various biological (recruitment
and survival) and economic (cost and price) parameters of the fishery. Their results differ
significantly from a biomass model. They point out even when an age structured model
is formulated in its simplest form and studied within an equilibrium context, no clear-cut
results can be obtained even concerning the qualitative structure of the optimal harvesting,
e.g., whether harvesting all or only some of year classes.

Though a complete model should take into account many species, other external biolog-
ical factors and economic features, we will concentration on the development of a fisheries
model for a single species, like cod, herring or plaice. Our model will be nonlinear due to
density dependent effects only in the juvenile class since density effects have not been found
for adults. In our discrete time model with age-structure, we are looking for optimal har-
vesting strategies, including the level of effort and the size of the nets. Optimal control of
discrete populations has been used much less frequently than in systems of ordinary differen-
tial equations, and we use the tool of optimal control theory for discrete systems [14, 22, 29]
to solve optimal harvesting problems for our model.

This paper formulates an age-structured fishery population model with nonlinear re-
cruitment. We have k age classes, the catching of fish with age greater than or equal to m
corresponds to an implicit net size (more precisely, the size of the fishing nets). The net
parameter m marks the width of the meshes of the fishing nets which catch a fish of age
more than or equal to m. Again, we remark that age can easily be related to size [36]. With
net-fishing, it is agewise nonselective, so the harvesting strategy will be the same for all age
classes greater than or equal to m. Our goal is to maximize the profit (total gain) of fishing,
and we assume the cost is directly proportional to the fishing effort. Our optimal control
problem consists of finding both the optimal net size and the corresponding optimal har-
vesting strategies for each age class. We view our work going beyond the work of [24, 7, 8, 6]
and concentrating on non-equilibrium dynamics.
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In Section 2, we present the age-structured fishery harvesting model. In Section 3 we
derive the adjoint equations and the characterization of the optimal harvesting strategy. The
model is applied to the case of a cod population in numerical simulations for Beverton-Holt
and Ricker recruitment functions in Section 4. Our novel feature is to find both the optimal
net size m∗ and the optimal fishing effort for each age class. Finally we draw conclusions in
Section 5.

2 Age-structured Fishery Harvesting Model

2.1 Population Model

Here we consider a one species fishery population model that takes the age structure and
net harvesting into account. We will find the optimal harvesting strategy for a marine fish
with k age classes: larvae, juvenile 1, juvenile 2, ..., and adult fish.

We consider marine fish (like cod, herring, plaice, haddock or anchovy) that follow a
yearly cycle, in which the adult fish migrate from the open sea to the spawning grounds.
These spawning grounds are usually better protected areas in shallower waters closer to the
coast. Most of the year the adult fish are in the open sea, which offers more food. They lay
a very large number of eggs (for example, cod lay several million). From these the fish larvae
hatch. Within several months these larvae metamorphose into juvenile fish. The larvae as
well as the young fish live on plankton. Their size and demands for growth require large
amount of food. Therefore the life cycle of fish larvae is intimately tied to the plankton
bloom. Many of the larvae die of starvation or are eaten. The juvenile fish will stay in
more protected areas (sometimes called nursery grounds) until they join the class of mature
fish in their migrations. Thus the density dependence in the population dynamics will act
essentially only during the larvae and possibly early juvenile stage.

The most important and most critical role in fish population dynamics is played by the
recruitment function. Recruitment describes the development process from eggs to the first
year class. Despite its importance, the recruitment process is as yet poorly understood. The
larval stage makes the recruitment a nonlinear process [5]. If R stands for this relationship,
the following properties for R are natural:

1. linear increase at low larval concentration,

2. saturation at high larval concentration.

In this paper, we will use for illustration the most common forms: Beverton-Holt and
Ricker. However, the dynamics resulting from these two forms may be quite distinct. To
decide which is better suited would depend on population density data. In our analysis, we
will take a general form for R, later in numerical simulations, we will use those two forms
for recruitment, representing two different populations.

The yearly cycle of marine fish suggests to describe their dynamics as a discrete age
class model. We assume that we have the age classes 1, 2, . . . , k of length T1, T2, . . . , Tk,
with Ti ∈ N. Let xi(t) denote the number of fish in age class i at time t. Then our model is

x1(t+ 1) = (1− µ1)
(
1− 1

T1

)
x1(t) +R(xl(t), . . . , xk(t)),

xi(t+ 1) = (1− µi−1) 1
Ti−1

xi−1(t) + (1− µi)
(
1− 1

Ti

)
xi(t) for i = 2, . . . , k − 1,

xk(t+ 1) = (1− µk−1) 1
Tk−1

xk−1(t) + (1− µk)xk(t). (2.1)

Here µi is the mortality in class i. The term (1− µi)
(
1− 1

Ti

)
is the fraction of individuals

in age class i who survive and remain in class i after one time unit, and (1 − µi−1) 1
Ti−1

is

the fraction that survives and moves to the next age category i. The nonlinear recruitment
function R(xl(t), . . . , xk(t)) depends on xl(t), . . . , xk(t) in general. Here we assume the
fertility begins with class l.
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Since the number of eggs of an adult female fish is proportional to its weight, the number
of eggs in the year t is given by

E(t) = c
k∑
i=l

xi(t)wi(t), (2.2)

where c is a proportionality constant, i.e., the number of viable eggs per weight and wi(t)
denotes the average weight of a fish in age class i at time t. The number of recruits becomes

R(xl(t), . . . , xk(t)) =
aE(t)

1 + E(t)
E0

(2.3)

for Beverton-Holt recruitment and

R(xl(t), . . . , xk(t)) = aE(t)e−
E(t)
E0 (2.4)

for Ricker recruitment, where a,E0 > 0 are constants. Note that the only nonlinearity of
this model is in the stock-recruitment function R(xl(t), . . . , xk(t)).

The system in (2.1) describes a dynamical system, which has been studied in itself in
order to understand the basic parameters and its stability, see [16] for details. One finds
that for realistic values of the parameter a, there is a unique globally stable equilibrium for
both recruitment functions.

2.2 Optimal Harvesting Model

Let u(t) be the fishing effort, which would depend on the number of fish fleets and equipment.
Let 0 ≤ u ≤ M, with M the maximum fishing effort. We are assuming that “on average”
the size is an increasing function of the age. The catching of fish of age greater than or
equal to m corresponds to an implicit net size. The net parameter m marks the width of
the meshes of the fishing nets which catch a fish of age more than or equal to m. Then the
harvesting of each age class is

hi(t) =

{
0, i = 1, 2, . . . ,m− 1;

u(t), i = m,m+ 1, . . . , k.
(2.5)

This desribes a type of impulse fishing at the end of year t. Our control set is

U = {u = (u(1), . . . , u(T − 1)) | 0 ≤ u(t) ≤M, t = 1, . . . , T − 1},

where M ≤ 1 and T is the total number of years of fishing. We have the following discrete
harvesting model with the general nonlinear recruitment R(xl(t), . . . , xk(t)):

x1(t+ 1) = (1− µ1)
(
1− 1

T1

)
x1(t) +R(xl(t), . . . , xk(t))− h1(t)x1(t),

xi(t+ 1) = (1− µi−1) 1
Ti−1

xi−1(t) + (1− µi)
(
1− 1

Ti

)
xi(t)− hi(t)xi(t),

xk(t+ 1) = (1− µk−1) 1
Tk−1

xk−1(t) + (1− µk)xk(t)− hk(t)xk(t). (2.6)

for i = 2, . . . , k − 1, and hi(t), i = 1, . . . , k is from (2.5). We could have different ui(t) for
each age class, but in reality, using net-fishing, the harvesting is agewise nonselective. We
choose the mesh m size to be an integer, so that we do not have a partial catch in any class.

We will maximize the total gain from fishing for t = 1, 2, . . . , T −1 while maximizing the
fish population at the final time T for i = m, . . . , k:

G(m,u) =

k∑
i=m

Axi(T ) +

T−1∑
t=1

(
k∑

i=m

u(t)xi(t)wipi −Bu(t)

)
, u ∈ U. (2.7)
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If one is also trying to maintain a reasonable level of fish in the harvested classes (to benefit
the fish population), then the coefficient A is positve; otherwise if concentrating only on
gain, then A would be 0. For pi, the price per unit weight of fish from class i at time t, we
will use

pi = p0w
α
i ,

with α > 1, p0 > 0, since larger fish give more fillets and they are more valuable. We assume
the cost is directly proportional to the fishing effort, and the size of coefficient A relative
to the cost B of the fishing effort balances the relative importance of maximizing the final
fish population and the cost of the fishing effort. Notice the objective functional has linear
dependence of the control u(t), which will lead to a bang-bang and/or singular optimal
control problem, and we only harvest those who pass the net with size m.

Then the optimal harvesting solution algorithm consists of two parts: first, for each m
fixed, we seek to find the corresponding optimal harvesting strategy, i.e., the optimal fishing
effort u to maximize G(m,u); second, we find the optimal net mesh size m which gives the
largest total gain. Since we only have a finite number of age classes, we can compare the
G(m,u) values for different m in order to obtain the optimal net size. Our novel feature is
to find both the optimal net size and the optimal fishing effort.

We will use the extension of Pontryagin’s Maximum Principle (PMP) [14, 22, 29] for
the optimal control of discrete system. The technique involves the use of adjoint functions,
which append the discrete system (2.6) to the maximization of the objective functional
(2.7). PMP gives the optimality system of difference equations consisting of the state and
adjoint difference equations coupled with an optimal control characterization. Note that the
adjoint equations have transversality conditions at the final time while the state equations
have initial conditions. The key idea is that the adjoint method provides us with the gradient
of the cost function needed for the maximization procedure. We note that an optimal control
exists due to the finite dimensional structure of this system.

3 Adjoint Equations

Note that we are temporarily assuming that the parameter m is fixed and later we will
compare the G(m,u) values to find the optimal net size m. Since there are a finite number
of values for m, we will run our numerical results for all values of m and see which gives the
largest gain.

To simplify our notation, we denote σi = (1− µi)
(
1− 1

Ti

)
, i = 1, . . . , k − 1 and

τi = (1− µi−1) 1
Ti−1

for i = 1, . . . , k − 1.

Theorem 3.1. Given m ≥ l, and an optimal control u∗ and the corresponding solutions
xi, i = 1, . . . , k of the state system (2.6), there exist adjoint variables λi, i = 1, . . . , k
satisfying: for t = 1, . . . , T − 1,

for 1 ≤ j ≤ l − 1,

λj(t) = λj(t+ 1)σj + λj+1(t+ 1)τj ; (3.1)

for l ≤ j ≤ m− 1,

λj(t) = λj(t+ 1)σj + λj+1(t+ 1)τj + λ1(t+ 1)
∂R(t)

∂xj
; (3.2)

for m ≤ j ≤ k − 1,

λj(t) = λj(t+ 1)σj + λj+1(t+ 1)τj + λ1(t+ 1)
∂R(t)

∂xj

− λj(t+ 1)u(t) + u(t)wjpj ; (3.3)

– 197 –



Optimal Harvesting of Fish Populations Ding, Lenhart, Behncke

for j = k,

λk(t) = λk(t+ 1)(1− µk) + λ1(t+ 1)
∂R(t)

∂xk
− λk(t+ 1)u(t) + u(t)wkpk (3.4)

with λj(T ) = 0, j = 1, . . . ,m− 1, and λj(T ) = A, j = m, . . . , k.

Proof. The Hamiltonian for t = 1, 2, . . . , T − 1 is

H(t) =

(
k∑

i=m

u(t)xi(t)wipi −Bu(t)

)
(3.5)

+ λ1(t+ 1)
[
σ1x1(t) +R

(
xl(t), . . . , xk(t)

)
− h1(t)x1(t)

]
+
k−1∑
i=2

λi(t+ 1)
[
τi−1xi−1(t) + σixi(t)− hi(t)xi(t)

]
+ λk(t+ 1)

[
τk−1xk−1(t) + (1− µk)xk(t)− hk(t)xk(t)

]
.

Rewrite H(t) as

H(t) =

(
k∑

i=m

u(t)xi(t)wipi −Bu(t)

)
+
k−1∑
i=1

λi(t+ 1)σixi(t)

+
k−1∑
i=1

λi+1(t+ 1)τixi(t)−
k∑

i=m

λi(t+ 1)u(t)xi(t)

+ λ1(t+ 1)R
(
xl(t), . . . , xk(t)

)
+ λk(t+ 1)(1− µk)xk(t). (3.6)

Using the extension of Pontryagin’s Maximum Principle [14, 22, 29], the necessary con-
ditions are for j = 1, 2, . . . , k, t = 1, 2, . . . , T − 1,m ≥ l,

λj(t) =
∂H(t)

∂xj
; (3.7)

λj(T ) =

{
0, j = 1, . . . ,m− 1;

A, j = m, . . . , k;

For 1 ≤ j ≤ l − 1,
λj(t) = λj(t+ 1)σj + λj+1(t+ 1)τj ; (3.8)

for l ≤ j ≤ m− 1,

λj(t) = λj(t+ 1)σj + λj+1(t+ 1)τj + λ1(t+ 1)
∂R(t)

∂xj
; (3.9)

for m ≤ j ≤ k − 1,

λj(t) = λj(t+ 1)σj + λj+1(t+ 1)τj + λ1(t+ 1)
∂R(t)

∂xj

− λj(t+ 1)u(t) + u(t)wjpj ; (3.10)

for j = k,

λk(t) = λk(t+ 1)(1− µk) + λ1(t+ 1)
∂R(t)

∂xk
− λk(t+ 1)u(t) + u(t)wkpk. (3.11)

�

– 198 –



Letters in Biomathematics

When we specify a recruitment function in the numerical results section, we will use
maximizing the Hamiltonian with respect to the control and the sign of the switching func-
tion,

∂H(t)

∂u(t)
at u∗,

to determine the optimal control.
Note that we only have a finite number of age classes, we can compare the G(m,u) values

for different m in order to obtain the optimal net size.

4 Numerical Results

The characterization of the optimal control u∗ depends on the sign of this switching function:

S =
k∑

i=m

(
piwi(−λi(t+ 1)

)
xi(t)−B, (4.1)

u∗(t) = 0, if S(t) < 0 at t;

u∗(t) = M, if S(t) > 0 at t.
(4.2)

For the singular case, when S(t) = 0, we calculate the optimal control value at that t
numerically by maximizing the Hamiltionian at that time.

To solve the optimal harvesting problem numerically, due to the boundary conditions
being at the initial time for the states and at the final time for adjoints, an iterative method
is used to solve this optimality system. Given initial guesses for the controls and the state
equations, the state system (2.6) is solved forward in time, and the adjoint system (3.1)–
(3.4) is solved backward in time. The control is updated using the characterization (4.2)
with the newly found state and adjoint values, and the iteration repeats until convergence
occurs. See the book by Lenhart and Workman [14] for details of this method.

Note the linear dependence of the control u in the objective functional (2.7) will give
a bang-bang and/or singular case of the optimal control. We would like to point out that
we will find the optimal net size based on the maximum total gain from fishing among the
finite number of m values and the corresponding optimal fishing effort for each age class.
We note that using m as a function of time is not reasonable since changing the net mesh
sizes each year is unrealistic.

To apply this to a specific population in a certain location, one should know which
recruitment function is a better fit for that population. We will use Beverton-Holt and
Ricker’s recruitment functions in our simulations. In (3.2)–(3.4), for l ≤ j ≤ k,

∂R(t)

∂xj
=


acwj[

1 + E(t)
E0

]2 Beverton-Holt form,

acwj · e−
E(t)
E0

(
1− E(t)

E0

)
Ricker form.

As noted above, we will consider cod in these simluatons and optimal control calculations.
Cod is thus the typical prototype marine fish, other species can be analyzed along the same
lines. For parameter values besides the recruitment functions, see Myers [17, 1, 19, 18, 20].
The maximum age for cod is 30 years and fertility begins at about t = 8 to 12 years. So we
choose 12 age classes, for the first age class, T1 = 8 and for other classes, Ti = 2, i = 2, . . . 12.
The Bertalanffy weight formula [36] as a function of class i is

wi = 17(1− e−0.12(2i+6))3.

The average mortality for cod is about µ = 0.18, and we used a linear function to make µ
increase between 0.18 and 0.22 as the age classes increase, to account for increasing mortality.
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Also recall the price per unit weight of fish is

pi = p0w
α
i , (4.3)

with α > 1, p0 > 0.

We assumed catching the fish of age greater than or equal to m corresponds to an implicit
net size parameter. We set l = 2 to indicate fertility begins at age class 2 and we set m ≥ l.
After we find the optimal harvesting strategy for each fixed m, we vary m = 2, . . . , 12 to find
the optimal net size in order to obtain the largest G(m,u) value. We set the lower bound
for harvesting to be 0 and the upper bound M = 0.5. The parameters in the nonlinear
recruitment functions are from Li and Yakubu [15] using Northeast Fisheries Science Center
data for the assessment of 19 Northeast Ground-fish Stocks through 2007 [21]. For Beverton-
Holt recruitment, a = 1.13, 1

E0
= 1.012 × 10−5, c = 105, and for Ricker recruitment

a = 1.851 × 10−4, 1
E0

= 6.262 × 10−5, c = 106. Note that these two recruitment functions
represent different sets of data from different populations, give quite different dynamics and
should not be directly compared. We use initial conditions of 105 for class 1 and 103 for the
other classes for the Beverholt-Holt case and 106 for class 1 and 104 for the other classes for
the Ricker case. The population with Beverton-Holt recruitment has a much higher level
near the end of the 30 years.

As in [30], we examine how the optimal harvesting policy depends on the biological (re-
cruitment) and economic (cost and price) parameters of the fishery. First we give numerical
results for Beverton-Holt recruitment function. For B = 104, A = 104, α = 1.1, T = 30, the
optimal net size is m = 2. When α = 1.5 and 2 the corresponding m becomes 3 and 4, re-
spectively. For A = 104, the optimal control is approximately bang-bang; we do not harvest
the whole time interval due to some emphasis on saving the fish level at the final time. As
α increases, the price goes up (especially for older fish), the optimal net size m increases,
and we spend longer time to harvest with the maximum effort. Figure (1) gives the optimal
harvesting strategies for three different scenarios, and Figure (3) shows the cod population
corresponding to the case 1(a).

For A = 0, i.e., we only want to maximize the profit, when T = 30, the optimal net
size m = 2, and the optimal strategy is to harvest with the maximum fishing effort for the
entire fishing period, see Figure 2(a). This maximum effort makes sense in this scenario
without consideration of the unharvested fish at the final time. When T = 20, Figure 2(b)
gives the optimal harvesting strategy and optimal net size for B = 105, A = 0, α = 4. In
this case m = 4 and we see the bang-bang optimal control with 2 switches. Switching
twice may be due to the playoff between the value of large fish due to increased α (from
1.1 to 4) and the increased cost B (from 104 to 105). Maybe the period of no harvest
gives the population some time to grow larger, more valuable fish. We also examined a
variety of different parameter values, when B increases, we spend shorter time harvesting
at the maximum level since it is more expensive. When A decreases, i.e., maximizing the
fish population at the final time is less important, we spend longer time harvesting at the
maximum level in order to maximize the profit.

Next, we give numerical simulations for Ricker recruitment. For T = 30, B = 105,
A = 104, we vary α = 1.1, 1.5, and 2.5 the corresponding optimal net size m = 3, 3 and 4,
respectively. The optimal harvesting pattern is similar to Beverton-Holt case; see Figure (4).
When B = 104, A = 0, α = 2.5, then m = 4 and the unusual switching pattern in the
Figure 4(d) may again illustrate the playoff between price α and cost B. In Figure (3) with
Beverton-Holt recruitment, the population levels off, while in Figure (5) the population
decreases quickly. Different dynamics are expected due to these 2 different recruitment
functions. Note Figure (5) corresponds to the case 4(a). These low population levels indicate
that an upper bound of 0.5 on the harvest of a fish stock with Ricker recruitment is too
large; when an upper bound of 0.1 is used, the population levels in some ages classes increase
by 1000.
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(a) Optimal Harvest, m = 2, α = 1.1
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(b) Optimal Harvest, m = 3, α = 1.5
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(c) Optimal Harvest, m = 4, α = 2

Figure 1: Optimal harvest with Beverton-Holt recruitment for T = 30, B = 104, A = 104

with different α, (a) optimal net size m = 2 when α = 1.1, (b) m = 3 when α = 1.5, and
(c) m = 4 when α = 2.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

ag
e 

cl
as

s 
2

(a) Op. Harvest, m = 2, T = 30, α = 1.1, B = 104
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(b) Op. Harvest, m = 4, T = 20, α = 4, B = 105

Figure 2: Comparing optimal harvest with Beverton-Holt recruitment.
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(a) Cod Population for age classes 1–4
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(b) Cod Population for age classes 5–8
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(c) Cod Population for age classes 9–12

Figure 3: Cod population with Beverton-Holt Recruitment for age classes 1–12 after har-
vesting, B = 104, A = 104, α = 1.1, T = 30, corresponding to Figure 1(a).
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(a) Optimal Harvest, m = 3, α = 1.1, A = 104
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(b) Optimal Harvest, m = 3, α = 1.5, A = 104
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(c) Optimal Harvest, m = 4, α = 2.5, A = 104
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(d) Optimal Harvest, m = 4, α = 2.5, A = 0

Figure 4: Optimal harvesting with Ricker recruitment for T = 30, (a) optimal net size m = 3
when α = 1.1, B = 105, A = 104, (b) m = 3 when α = 1.5, B = 105, A = 104, (c) m = 4
when α = 2.5, B = 105, A = 104, and (d) m = 4 when α = 2.5, B = 105, A = 0.
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(a) Cod Population for age classes 1–4
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(b) Cod Population for age classes 5–8
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(c) Cod Population for age classes 9–12

Figure 5: Cod population with Ricker Recruitment for age classes 1–12 after harvesting,
B = 105, A = 104, α = 1.1, T = 30, corresponding to Figure 4(a)
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5 Conclusions

We applied optimal control theory for an age structured discrete harvest model with non-
linear recruitment. The feature of our project is to find both the optimal net size and
the corresponding optimal harvesting strategies for each age class. We derived the adjoint
equations and the characterization of the optimal control using the extension of Pontrya-
gin’s Maximum Principle [22] for the general nonlinear recruitment, then we’ve implemented
numerical simulations for Beverton-Holt and Ricker recruitment functions. The parameters
in the nonlinear recruitment functions are from Li and Yakubu [15] using Northeast Fish-
eries Science Center data for the assessment of 19 Northeast Ground-fish Stocks through
2007 [21]. As in [30], we’ve examined how the optimal harvesting policy depends on the
biological (recruitment) and economic (cost and price) parameters of the fishery. If the
goal includes maximizing the fish population at the final time, then a bang-bang optimal
control occurs; if we only want to maximize the profit, then the optimal harvesting strategy
is to harvest with the maximum effort for the entire fishing period unless the cost B is very
high. We notice the optimal net size can be affected by the price parameter α. The optimal
harevest effort may be affected by a playoff between costs and the price parameter α, and
thus an intermediate time interval without any harvesting could occur.
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