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ABSTRACT

We construct and analyze an immunological mathematical model to explore within-

host dynamics of a neglected tropical vector disease called human African trypanoso-

miasis (HAT). The disease, caused by a parasite with immune-evading strategies, is

represented by six di�erential equations encompassing type 1 and type 2 parasites,

naive macrophages, classical macrophages, alternative activated macrophages, and

cytokines. Initial analysis without control measures reveals a disease-free equilibrium

and two endemic equilibria, one with co-existing type 1 and type 2 parasites and the

other with only one parasite type. Additionally, we explore the impact of control

measures on parasite persistence and extinction. Two optimal control models assess

the e�ect of two therapeutic drugs; one focuses on the parasite's invasion, and the

other targets the parasite growth rate. Findings indicate that the �rst drug shifts

the system from co-existence to a type 2 parasite endemic state, while the growth

inhibitor drug eliminates the parasite from the host.
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1 Introduction

Human African trypanosomiasis (HAT) also known as the sleeping sickness is one of the neglected tropical diseases transmitted
by tsetse flies. The HAT disease is caused by a parasite named Trypanosoma brucei. There are two types of Trypanosoma brucei
that cause the HAT disease, namely Trypanosoma Brucei Gambiense (TBG) and Trypanosoma Brucei Rhodesience (TBR)
(WHO, 2019). TBG causes the chronic form of the HAT disease, and TBR causes the acute form.

The World Health Organisation (WHO) had targets to have HAT disease eliminated by 2020, unfortunately, that has not
been achieved because at the moment HAT is not of high importance to the WHO as compared to other diseases (WHO, 2019).
HAT affects people in 36 countries in sub-Saharan Africa with 62% of the reported cases most predominately in Democratic
Republic of Congo (Uniting to Combat NTD, 2019). In addition, TBG accounts for 80% of the reported cases.

HAT is complex to diagnose, and surveillance is difficult due to the fact that most of the people affected reside in remote
rural places. The HAT disease harbour itself in both human and nonhuman hosts like cattle and wild animals, making it difficult
to control as it requires different host to maintain itself into the community (Wamwiri et al., 2007). The disease being mostly
chronic adds more strain to diagnoses, the infected individuals show mild symptoms in the first stage making it difficult to detect
from case to case which can lead to the disease being fatal if not diagnosed early. The common symptoms in the first stage entail
fever, headache, enlarged lymph nodes, joint pains, and itching (WHO, 2019). The more obvious signs and symptoms appear
in the second stage when the parasite crosses the blood-brain barrier, affecting the central nervous system which causes changes
in behavior, confusion, sensory disturbances, poor coordination, and sleeping disorder.

HAT is transmitted to humans by a bite from tsetse flies. During the biting, metacyclic trypomastigotes larvae get injected
into the human host and later evolve into bloodstream trypomastigotes to easily be transported from the bloodstream to other
organs. Once in the bloodstream, the parasites invade the immune system by antigenic variations of the glycoproteins surface
coating (Rogers, 1988). Antigenic variation is the ability to switch periodically to thousands more parasite types. The HAT
parasite is known to display extreme adaptation to their environment, therefore, the immune cells fail to identify the parasite
ounce it has gone through that variation. The more they switch, the less the immune cells is able to keep up with the parasite
leading to an increase in the parasite load.
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The first line of defense against the trypomastigotes are macrophages. Macrophages are an important part of the immune sys-
tem for its function to engulf foreign substances, they are also responsible for the secretion of cytokines which plays an important
role in the communication between immune cells during infections. In this study, we will consider three types of macrophages:
the naive macrophages, the classical activated macrophages, and the alternative activated macrophages. Naive macrophages are
made in the bone marrow and mature either into classical macrophages to form part of the innate immune system or, later on,
into alternative activated macrophages to be part of the adaptive immune response. Innate immune response is initiated when
a foreign substance enters the body, and it’s mostly dealt with in a matter of a few hours. On the other hand, adaptive immune
response takes over when the innate immune system is not able to destroy the invader.

For effective immune response, communication between various immune cells type is capital. At the center of that com-
munication are chemical messengers called cytokines. Cytokines are proteins that bind to specific receptors to promote and
activate immune cells (Turner et al., 2014). Their role is modulation of inflammation with TNF, NO, IL-1, IL-6, and IFN being
pro-inflammatory signaling cytokines, IL-4 and IL-10 being the anti-inflammatory signaling cytokines. The pro-inflammation
cytokines are responsible for enhancing and stimulating inflammatory responses whereas anti-inflammatory control the pro-
inflammatory cytokine responses (Zhang and An, 2007). Cytokines are communication mediators. They alert the immune
system when a response is needed. For the purposes of this study, cytokines will be considered collectively as part of their com-
munication function in the human host.

The infection dynamics of HAT is still not well understood. Only a few noticeable mathematical models have been dedicated
to studying this neglected tropical disease. This is mostly due to the fact that HAT has not enjoyed the attention given to more
widespread disease like Cancer, HIV/AIDS, and Ebola. With those few noticeable HAT models most of them are population
models (see, for example, Rogers, 1988; Ndondo et al., 2016; Artzrouni and Gouteux, 1996; Gervas et al., 2018; Rock et al.,
2015, to mention a few). Modeling African tyrpanosomisais goes back to Rogers (1988) who presented a two-vertebrate-host
species and one-vector species to simulate how the disease cannot be maintained by the human hosts alone. He had modified
a model describing Maleria to allow for incubation and temporary immunity periods for both host species. Rogers also looked
at the probability of transmission with a susceptible vector bites an infectious host. Results show that the disease prevalence
can be influenced by fly density and seasonal changes in fly numbers. Unlike Rogers, Artzrouni and Gouteux (1996) considered
modeling the disease with only the human as the main host for the parasite. From that paper we gather that the human host
cannot be neglected since it plays a vital role in the HAT disease dynamics, and it is important to explicitly understand how the
disease manifest in the human host.

With HAT being a vector borne disease, a study done by Ndondo et al. (2016) models the transmission dynamics, taking
into account the growth of the tsetse fly population at the different stages of its life cycle. That gave motivation to this study to
take into account the different stages of the parasite life cycle and the different components involved in the disease transmission
within the human host. Some studies modeled HAT by incorporating control theory in implementing measures like education,
treatment, and insecticides to mathematical models (Gervas et al., 2018; Rock et al., 2015).

With population models being enhanced, less attention is paid to within-host models. It is imperative to focus attention on
how within-host dynamics influence disease progression because diseases succeed when host mechanisms fail. Studying those
mechanisms will lead to targeted control measures that can be implemented at the correct level of disease progression. An in-
teresting study by Navarrete (2019) constructed a within-host mathematical model that associated host rhythms in temperature
and immunity with parasite replication and immune evasion. Their findings show that temperature and immunity play an im-
portant role in mammal host transmission. Another within host model done by Frank (1999) developed a mathematical model
that integrate parasite and host immunity, the results show that the minor modifications of switch rates by natural selection are
required to develop a sequence of ordered parasites. The study does acknowledge that the switching rate can lead to a series of
outbreaks that enable the parasite to escape immune surveillance.

There is little to no knowledge on the effect of antigenic variations by the parasite in evading the immune system within the
human host. To our knowledge, there is no study that incorporate cytokines into the modeling of HAT. It is unrealistic to have
immune cells singly working without incorporating the role of cytokines. This study seeks to investigate the effect of parasite
switching in the evolution of the disease and how the immune system responds to the evasion. Our study differentiates the
parasite types and acknowledges the specific immune response to the new parasite type. We later introduce treatment dynamics
of different therapeutic drugs to capture the desirable effects of the drugs and expose the effects of drug toxicity. We employ
optimal control theory to the improved models in order to get a desired outcome by optimising the duration of the infection
while minimising the parasite in the system.

The paper is organised as follows: In Section 2, we introduce our immunological model. In Section 3, we present the math-
ematical analysis of the immunological model, which includes the positivity and uniqueness of solutions, model equilibria, and
the stability of the model equilibria. In Section 4, we present the numerical solutions for the model; whereas, in Section 5, the
optimal control models are analysed by incorporating effects of two different therapeutic drugs to the previous model. More-
over, the numerical simulations for the optimal control models are also presented in this section together with the optimality
conditions solutions. Lastly, we provide the conclusion in Section 6.
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2 Model Formulation

In this section, the basic immunological mathematical model that captures explicitly how the trypanosomiasis parasite interact
with the immune system is developed. The within-host transmission is modeled using six variables: Parasite type 1 P1, Naive
macrophages Mn, Classical activated macrophages Mc, Cytokine C , Alternative activation macrophages Maa, and Parasite
type 2 P2. The parameters and variables are explained in Tables 1 and 2, respectively.

From the model diagram in Figure 1, the following system of differential equations are derived:

dP1

dt
= α1P1 − s1P1 − k1P1Mc − 𝜇1P1, (1)

dMn

dt
= Λn − αnMnP1 + (1 − k1)P1Mc + (1 − k2)P2Maa − αcMn − αaaMnP2 + αIMnC − 𝜇nMn, (2)

dMc

dt
= αnMnP1 + αcMn + γcMcC − (1 − k1)P1Mc − 𝜇cMc, (3)

dMaa

dt
= αaaMnP2 + γaaMaaC − (1 − k2)P2Maa − 𝜇aaMaa, (4)

dC
dt

= αp1P1Mc + αp2P2Maa − αIMnC − γaaMaaC − γcMcC − 𝜇sC , (5)

dP2

dt
= s1P1 + α2P2 − k2P2Maa − 𝜇2P2. (6)

Equation (1) describes the rate of change of parasite type 1 over time, the equation was developed considering the different
mechanism in the parasite population growth, switching to another type and removal. The recruited parasites multiply through
binary fusion that follows exponential growth with the growth rate given by α1. The second term in Equation (1) models the
parasite switches at a switch rate s1 (Frank, 1999). Switching to more parasite types can be easily incorporated despite our restric-
tion on parasite types. The third term models the parasite being engulfed by classical macrophages at a rate k1. It is assumed that
parasite type 1 population decays at a natural rate 𝜇1.

Equation (2) describes the rate of change of the naive macrophages over time. In addition to the immune system, this
population is affected by deactivated macrophages and macrophage activation. The first term of the Equation (2) models the
recruitment of the naive macrophages at a rate Λn. The second term of the Equation (2) represents naive macrophages being
activated by dead parasite by a process called classical activation (Baral, 2010). The third and fourth term models the deactivation
of the classical and alternative activated macrophages when they interact with the parasites. The fifth and sixth terms describe
the differentiation of the naive macrophages into classical and alternative activated macrophages, respectively (Rőszer, 2015).
When cytokines bind to then naive macrophages more of the macrophages are produced at a rate αI . It is assumed that this
population decays naturally at a 𝜇n.

Equation (3) describe the rate of change of the classical activated macrophages over time. The naive macrophages activated
by dead parasites increase the classical macrophages population, this is modeled by the first term of Equation (3). As a result
of differentiation of naive macrophages, the classical macrophage population is supplied with more classical macrophages at an
activation rate αc. Similarly to naive macrophages, more classical macrophages are produced at the rate γc when they bind to the
cytokines. When classical activated macrophages come into contact with parasites, they deactivate to naive macrophages at a rate
of (1− k1), reducing the population of this macrophage. It is assumed that the classical macrophages decay naturally at a rate 𝜇c.

Equation (4) describe the rate of change of the alternative activated macrophages with respect to time. In the presence of
parasite type 2, these macrophages activate in order to combat infection (Rőszer, 2015). The alternative activated macrophages
are produced when naive macrophages differentiate, at an activation rate of γaa. In the third term model the deactivated Maa
macrophages when they interact with the parasite type 2 . The population of alternative activation macrophages is assumed to
decay naturally at a rate 𝜇aa.

Equation (5) describe the rate of change of the concentration of a group of cytokines over time. Macrophages secrete cy-
tokines, which are represented by the parameters αp1, αp2. The cytokines are responsible for the activation of the three types
of macrophages which in turn reduces the concentration of the C at a rate αc, γaa, and γc. With the disease progressing, the
concentration of cytokine is assumed to decay naturally at a rate 𝜇s.

Equation (6) describes the rate of change of parasite type 2 with respect to time. Equation (6) is developed following the
parasite switch, growth, and removal. The first term of the equation (6) models the parasite switch from first type to the second
type of parasite. Similarly to type 1 parasite, the second type grow exponentially. The third term represents the killing effect of
alternative activated macrophages on type 2 parasite at a rate k2. It is assumed that parasite type 2 decay naturally at a rate 𝜇2.
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Figure 1: HAT immunological transmission dynamics.

Table 1: Description of the parameters of the model.

Parameter Description
α1 Growth rate of parasite type 1
s1 Switching rate of the parasite type 1 to parasite type 2
k1 Killing rate of parasite type 1 by classical macrophages
𝜇1 Natural death rate of the parasite type 1

Λn Supply of naive macrophages
αn Activation rate of naive macrophages by dead parasite
αc Activation rate of the classical macrophages from the naive macrophages
αaa Activation rate of the alternative activated macrophages from naive macrophages

αI Activation rate of naive macrophages by cytokine
𝜇n Natural death rate of naive macrophages
γc Production rate for classical macrophages in the presence of cytokine
𝜇c Natural death rate of classical macrophages

γaa Activation of alternative activated macrophages by the presence of cytokines
𝜇s Natural decay of cytokines
αp1 Secretion rate of cytokine by classical macrophages
αp2 Secretion rate of cytokine by the alternative activated macrophages

k2 Killing rate of parasite type 2 by alternative activated macrophages
𝜇aa Natural death rate of the alternative activated macrophages
α2 Growth rate of parasite type 2
𝜇2 Natural death rate of parasite type 2
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Table 2: Description of the state variables of the model.

Variables Description Initial Value
P1 (t) Parasite type 1 population size 1000
Mn (t) Naive macrophage population size 800
Mc (t) Classical macrophage population size 500

Maa (t) Alternative activated macrophage population size 0
C Cytokine population size 3.8

P2 (t) Parasite type 2 population size 0

3 Mathematical Analysis

In this section, we show that the solutions to the system of equations (1)–(6) exist and are unique, and that the solutions remain
positive for all time t ≥ 0. In addition, the system’s equilibria is given together with the stability analysis of both the disease-free
equilibrium and endemic equilibrium.

3.1 Existence and uniqueness of solutions

We need to prove existence and uniqueness of the solutions for the system of equations (1)–(6). To show uniqueness, the system
of equations can be written in the form x′ = H (x) with x = (P1,Mn,Mc,Maa,C ,P2) and re-indexing x = (x1, x2, x3, x4, x5, x6).
Therefore, we define

H1 (x) = α1x1 − s1x1 − k1x1x2 − 𝜇1x1,
H2 (x) = Λn − αnx2x1 + (1 − k1)x1x3 + (1 − k2)x6x4 − αcx2 − αaax2x6 + αIx2x5 − 𝜇nx2,
H3 (x) = αnx2x1 + αcx2 + γcx3x5 − (1 − k1)x1x3 − 𝜇cx3,
H4 (x) = αaax2x6 + γaax4x5 − (1 − k2)x6x4 − 𝜇aax4,
H5 (x) = αp1x1x3 + αp2x6x4 − αIx2x5 − γaax4x5 − γcx3x5 − 𝜇sx5,
H6 (x) = s1x1 + α2x6 − k2x6x4 − 𝜇2x6.

Theorem 3.1 (see Thieme, 1948, Theorem A.4). Let Rn
+ = [0,∞)n be the cone of non-negative vector in Rn

+. Let
H : Rn+1

+ → Rn
+ be a Lipschitz function, H (t, x) =

(
H1 (t, x),H2 (t, x), . . . ,H6 (t, x)

)
satisfying Hi (t, x) ≥ 0 whenever t ≥ 0,

x ∈ Rn
+, xi = 0. Then, for every x0 ∈ Rn

+, there exists a unique solution of x′ = H (t, x), x(0) = x0, with values in Rn
+, which is

defined on some time interval [0, b); b > 0.

Using Theorem 3.1 we then check for i = 1, 2, 3, 4, 5, 6, Hi (x) ≥ 0 if x ∈ R6
+ and xi = 0; therefore,

H1 (0,Mn,Mc,Maa,C ,P2) = 0,
H2 (P1, 0,Mc,Maa,C ,P2) = Λn + (1 − k1)P1Mc + (1 − k2)P2Maa ≥ 0,
H3 (P1,Mn, 0,Maa,C ,P2) = αnMnP1 + αcMn ≥ 0,
H4 (P1,Mn,Mc, 0,C ,P2) = αaaMnP2 ≥ 0,

H5 (P1,Mn,Mc,Maa, 0,P2) = αp1P1Mc + αp2P2Maa ≥ 0,
H6 (P1,Mn,Mc,Maa,C , 0) = 0.

We can further define H (t, x) = H (t+, x+) where t+ = max{t, 0} and x+ = (x1, x2, x3, x4, x5, x6) are positive parts of the scalar t
and vector x. We can check that ∥x+−y+∥ ≤ ∥x−y∥ for any of the usual norms onRn. Hence H is a locally Lipschitz continuous
vector field on R6 satisfies Hi (t, x) ≥ 0 for all t ∈ R, x ∈ R6

+, xi = 0.

3.2 Positivity of solutions

We need to prove that all the variables remain non-negative given positive initial conditions for all time t ≥ 0.

Lemma 3.2. Let the non-negative initial conditions be
(
P1 (0) ≥ 0, Mn (0) ≥ 0, Mc (0) ≥ 0, Maa (0) ≥ 0, C (0) ≥ 0,

P2 (0) ≥ 0
)
∈ R6

+, then all solutions of the system of equations (1)–(6) are positive for all t > 0 and non-negative for all t such that
all positive solution satisfy

(
P1 (t) > 0, Mn (t) > 0, Mc (t) > 0, Maa (t) > 0, C (t) > 0, P2 (t) > 0

)
for all large t.
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Proof. From the system of equations (1)–(6) we have the first equation as

dP1

dt
= α1P1 − s1P1 − k1P1Mc − 𝜇1P1.

We then obtain the inequality to be
dP1

dt
≥ −s1P1 − k1P1Mc − 𝜇1P1.

Then it follows that
dP1

dt
≥ (−s1 − k1Mc − 𝜇1)P1 ⇒ dP1

P1
≥ (−s1 − k1Mc − 𝜇1)dt.

Integrate the above expression

P1 (t) ≥ P1 (0) exp
(
−
(
(s1 + 𝜇c)t +

∫ t
0 k1Mc (s)ds

))
.

Similarly, we have

Mn (t) ≥ Mn (0) exp
(
−
(
𝜇nt +

∫ t
0
(
αcP1 (s)ds + αaaP2 (s)ds

) ))
,

Mc (t) ≥ Mc (0) exp
(
−
(
𝜇ct +

∫ t
0 (1 − k1)P1 (s)ds

))
,

C (t) ≥ C (0) exp
(
−
(
𝜇st +

∫ t
0
(
αIM (s)ds + γcMc (s)ds + γaaMaa (s)ds

) ))
,

Maa (t) ≥ Maa (0) exp
(
−
(
𝜇aat +

∫ t
0 (1 − k2)P2 (s)ds

))
,

P2 (t) ≥ P2 (0) exp
(
−
(
𝜇2t +

∫ t
0 k2Maa (s)ds

))
.

It then follows that

lim
t→∞

P1 (t) > 0, lim
t→∞

Mn (t) > 0, lim
t→∞

Mc (t) > 0,

lim
t→∞

C (t) > 0, lim
t→∞

Maa (t) > 0, lim
t→∞

P2 (t) > 0.

Therefore, we can conclude that P1 (t), Mn (t), Mc (t), Maa (t), C (t), P2 (t) are positive for all t > 0 □

3.3 Model equilibria

In this subsection we give the model equilibrium states and the stability analysis of both the disease-free equilibrium and endemic
equilibrium.

3.3.1 Disease-free equilibrium (DFE)

The disease-free equilibrium is when there is no HAT disease in the human host. The equilibrium point is found by equating
the right hand side of the system of equations (1)–(6) to zero, thus the DFE point is given by

E0 =
(
0,

Λn

αc + 𝜇n
,

αcΛn

𝜇c (αc + 𝜇n)
, 0, 0, 0

)
.

The DFE describes the natural immune response in the absence of parasites. Only naive macrophages and classsical macrophages
are present. Moreover, alternative activated macrophages are non-existant at the DFE, due to the fact that the adaptative immune
response is not yet required.

3.3.2 Endemic equilibrium (EE)

The endemic equilibrium point represents the state at which the disease persists in the human host. The solutions to the system
of equations (1)–(6) reach the solution curves given by

E∗ =
(
P∗

1 ,M∗
n,M∗

c ,M∗
aa,C∗,P∗

2
)
.

We found that there exist two endemic equilibrium points for the system of equations (1)–(6), which are as follows:
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Case 1: There is no parasite P1; only parasite P2 exists. That is, P1 = 0 and only parasite P2 exists; therefore, the disease
continues. In this scenario, the endemic point is given by

E∗
1 =

(
0,M∗

n,M∗
c ,M∗

aa,C∗,P∗
2
)

where

P∗
1 = 0,

M∗
n = −

α2 (𝜇aa − C∗γaa) + 𝜇2 (C∗γaa − 𝜇aa) − k2Λn

k2 (αc − αiC∗ + 𝜇n)
,

M∗
c = −

αc
(
α2 (C∗γaa − 𝜇aa) + 𝜇2 (𝜇aa − C∗γaa) + k2Λn

)
k2 (C∗γc − 𝜇c) (αc − αiC∗ + 𝜇n)

,

M∗
aa =

α2 − 𝜇2

k2
,

C∗ =
P∗

2M
∗
aaαp2

γaaM∗
aa + γcM∗

c + αiM∗
n + 𝜇s

,

P∗
2 =

(α2 − 𝜇2) (C∗γaa − 𝜇aa) (−αc + αiC∗ − 𝜇n)
𝜇2αaa𝜇aa + α2

(
αaa (C∗γaa − 𝜇aa) + (k2 − 1)αc + (k2 − 1)𝜇n

)
− C∗𝜇2αaaγaa + k2αaaΛn + e0

,

and where
e0 = 𝜇2αc − k2𝜇2αc − αiC∗ (k2 − 1) (α2 − 𝜇2) − k2𝜇2𝜇n + 𝜇2𝜇n.

Case 2: Both parasites P1 and P2 co-exist. In this scenario, the endemic point is given by

E∗
2 =

(
P∗∗

1 ,M∗∗
n ,M∗∗

c ,M∗∗
aa ,C∗∗,P∗∗

2
)

where

P∗∗
1 =

(𝜇aa − C∗∗γaa) (b3) + P2 (b1)
(C∗∗γaa − 𝜇aa) (b4) + P2 (b2)

,

M∗∗
n =

(
(k2 − 1)P∗∗

2 + C∗∗γaa − 𝜇aa
) (
−k1Λn + C∗∗γc𝜇1 + s1 (C∗∗γc − 𝜇c) − 𝜇1𝜇c + α1 (𝜇c − C∗∗γc)

)
k1
(
(C∗∗γaa − 𝜇aa) (C∗∗αi − 𝜇n) + P∗∗

2
(
C∗∗ (k2 − 1)αi + αaa (𝜇aa − C∗∗γaa) − (k2 − 1)𝜇n

) ) ,

M∗∗
c =

α1 − s1 − 𝜇1

k1
,

M∗∗
aa =

P∗∗
2 αaa

(
k1Λn − C∗∗γc𝜇1 + α1 (C∗∗γc − 𝜇c) + 𝜇1𝜇c + s1 (𝜇c − C∗∗γc)

)
k1
(
(C∗∗γaa − 𝜇aa) (C∗∗αi − 𝜇n) + P∗∗

2
(
C∗∗ (k2 − 1)αi + αaa (𝜇aa − C∗∗γaa) − (k2 − 1)𝜇n

) ) ,

C∗∗ =
P∗∗

2 M∗∗
aa αp2 + P∗∗

1 M∗∗
c αp1

γaaM∗∗
aa + γcM∗∗

c + αiM∗∗
n + 𝜇s

,

P∗∗
2 =

P∗∗
1 s1

k2M∗∗
aa − α2 − 𝜇2

,

and where

b1 = −α1αaaγaaγc (C∗∗)2 + αaaγaaγc𝜇1 (C∗∗)2 − k2α1αcγcC∗∗ + α1αcγcC∗∗ + k2αcγc𝜇1C∗∗ − αcγc𝜇1C∗∗

+ α1αaaγc𝜇aaC∗∗ − αaaγc𝜇1𝜇aaC∗∗ + (k2 − 1)αi (α1 − 𝜇1) (C∗∗γc − 𝜇c)C∗∗ + α1αaaγaa𝜇cC∗∗

− k2α1γc𝜇nC∗∗ + α1γc𝜇nC∗∗ + k2γc𝜇1𝜇nC∗∗ − γc𝜇1𝜇nC∗∗ + k1αcΛn − k1k2αcΛn + k2α1αc𝜇c − α1αc𝜇c
− k2αc𝜇1𝜇c + αc𝜇1𝜇c − α1αaa𝜇aa𝜇c + αaa𝜇1𝜇aa𝜇c + k2α1𝜇c𝜇n − α1𝜇c𝜇n − k2𝜇1𝜇c𝜇n + 𝜇1𝜇c𝜇n

− s1 (C∗∗γc − 𝜇c)
(
C∗∗ (k2 − 1)αi − k2αc + αc − C∗∗αaaγaa + αaa𝜇aa − k2𝜇n + 𝜇n

)
− αaaγaa𝜇1𝜇cC∗∗,

b2 = −C∗∗α1αaaγaa + C∗∗k1α1αaaγaa + C∗∗αaa𝜇1γaa − C∗∗k1αaa𝜇1γaa − C∗∗α1αnγc + C∗∗k2α1αnγc − k1αnΛn

+ k1k2αnΛn − C∗∗ (k1 − 1) (k2 − 1)αi (α1 − 𝜇1) + Cαnγc𝜇1 − C∗∗k2αnγc𝜇1 − k1α1αaa𝜇aa + α1αaa𝜇aa

+ k1αaa𝜇1𝜇aa − αaa𝜇1𝜇aa − k2α1αn𝜇c + α1αn𝜇c + k2αn𝜇1𝜇c − αn𝜇1𝜇c − k1α1𝜇n + k1k2α1𝜇n − k2α1𝜇n

+ k1𝜇1𝜇n − k1k2𝜇1𝜇n + k2𝜇1𝜇n − 𝜇1𝜇n + α1𝜇n

+ s1
(
C∗∗ (k1 − 1) (k2 − 1)αi − (k1 − 1)αaa (C∗∗γaa − 𝜇aa) − (k2 − 1)

(
αn (C∗∗γc − 𝜇c) + (k1 − 1)𝜇n

) )
,
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b3 = C∗∗α1αcγc − C∗∗αc𝜇1γc + C∗∗α1𝜇nγc − C∗∗𝜇1𝜇nγc + k1αcΛn − C∗∗αi (α1 − 𝜇1) (C∗∗γc − 𝜇c) − α1αc𝜇c
+ αc𝜇1𝜇c + s1 (C∗∗γc − 𝜇c) (C∗∗αi − αc − 𝜇n) − α1𝜇c𝜇n + 𝜇1𝜇c𝜇n,

b4 = C∗∗α1αnγc − C∗∗αn𝜇1γc + k1αnΛn − C∗∗ (k1 − 1)αi (α1 − 𝜇1) − α1αn𝜇c + αn𝜇1𝜇c + k1α1𝜇n − α1𝜇n

− k1𝜇1𝜇n + 𝜇1𝜇n + s1
(
C (k1 − 1)αi + αn (𝜇c − C∗∗γc) − (k1 − 1)𝜇n

)
.

3.4 Stability analysis of model equilibria

In this subsection, we focus on the stability analysis of the model equilibrium points of the system of equations (1)–(6).

3.4.1 Local stability of the DFE

The stability of the disease free equilibrium point E0, is determined by solving |J (E0) − λI | = 0 where λ is the eigenvalue.
According to van den Driessche and Watmough, if the eigenvalue of the Jacobian have negative real parts, then the point E0 is a
locally asymptomatic stable. The Jacobian matrix associated with the system of equations (1)–(6) at E0 is given by

J (E0) =

©­­­­­­­«

α1 − k1Mc − 𝜇1 − s1 0 0 0 0 0
(1 − k1)Mc −Mnαn −αc − 𝜇n 0 0 αIMn −αaaMn
Mnαn − (1 − k1)Mc αc −𝜇c 0 γcMc 0

0 0 0 −𝜇aa 0 αaaMn
Mcαp1 0 0 0 −γcMc − αIMn − 𝜇s 0
s1 0 0 0 0 α2 − 𝜇2

ª®®®®®®®¬
where

Mn =
Λn

αc + 𝜇n
, Mc =

αcΛn

𝜇c (αc + 𝜇n)
.

The eigenvalues for the above Jacobian matrix are given by

λ1 = α2 − 𝜇2,
λ2 = −𝜇aa,
λ3 = −𝜇c,
λ4 = −αc − 𝜇n,

λ5 =
−(𝜇1αc𝜇c − α1αc𝜇c + k1αcΛn − α1𝜇c𝜇n + 𝜇1𝜇c𝜇n + s1𝜇c𝜇n + s1αc𝜇c)

𝜇c (αc + 𝜇n)
,

λ6 =
−αcγcΛn − αi𝜇cΛn − 𝜇c𝜇n𝜇s − αc𝜇c𝜇s

𝜇c (αc + 𝜇n)
.

The eigenvalues λ2, λ3, λ4, and λ6 have negative real parts. For λ1 and λ5 to have negative real parts, the following conditions
have to hold:

α2

𝜇2
< 1,

α1αc𝜇c + α1𝜇c𝜇n

𝜇1αc𝜇c + k1αcΛn + 𝜇1𝜇c𝜇n + s1𝜇c𝜇n + s1αc𝜇c
< 1. (7)

To understand the biological meaning of these conditions, we observe that from Equation (6), when P1 = 0 at the DFE,
P2 tends to be zero only when α2 < k2Maa + 𝜇2 because k2Maa + 𝜇2 is the rate at which P2 decreases overall and α2 is P2’s
reproductive rate. Hence

α2

α2 + k2Maa + 𝜇2
< 1.

This means that the reproductive rate of P2 should be less than the rate at which P2 is being washed out of the host. Since
Maa = 0 at DFE, the condition reduces to α2

𝜇2
< 1. The second condition on Equation (7) can be written as

α1

𝜇1 + k1αcΛn
𝜇c (αc+𝜇n ) + s1

where M∗
c is the value of Mc at the DFE. Using the same reasoning, for P1 in Equation (1), P1 tends to zero only if α1 < 𝜇1 +

k1M∗
c + s1, where 𝜇c + K1M∗

c + s1 is the overall decreasing rate of P1. Hence for the DFE to be stable, the reproduction rates of
all parasite types should be less than their overall flashing rates.
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3.4.2 Local stability of endemic equilibrium

The stability of the endemic point E∗
1 depends on the stability of the Jacobian matrix J (E∗

1 ) given by

J (E∗
1 ) =

©­­­­­­­«

L0 0 0 0 0 0
(1 − k1)M∗

c −M∗
nαn L6 0 (1 − k2)P∗

2 αIM∗
n (1 − k2)M∗

aa − αaaM∗
n

M∗
nαn − (1 − k1)M∗

c αc L7 0 γcM∗
c 0

0 αaaP∗
2 0 L3 γaaM∗

aa αaaM∗
n − (1 − k2)M∗

aa
αp1M∗

c −αIC∗ −γcC∗ αp2P∗
2 − γaaC∗ L4 αp2M∗

aa
s1 0 0 −k2P∗

2 0 L5

ª®®®®®®®¬
where

L0 = α1 − k1M∗
c − 𝜇1 − s1, L3 = γaaC∗ − (1 − k2)P∗

2 − 𝜇aa, L4 = −αIM∗
n − γaaM∗

aa − γcM∗
c − 𝜇s,

L5 = α2 − k2M∗
aa − 𝜇2, L6 = αIC∗ − αc − αaaP∗

2 − 𝜇n, L7 = γcC∗ − 𝜇c.

We find the sign of eigenvalues using the Gershgorian Circle Theorem below, where n = 6.

Theorem 3.3 (Gershgorian theorem from Bejarano et al., 2018). Let x̄ be an equilibrium point of a dynamical system
in the form dx

dt = f (x),

Df (x̄) =
©­­­­«

J11 J12 · · · J1n
J21 J22 · · · J2n
...

...
. . .

...
Jn1 Jn2 · · · Jnn

ª®®®®¬
the Jacobian matrix of the dynamical system evaluated in x̄, and Ri =

∑n
j=1,j≠i |Jij | for i = 1, . . . , n. If Jii < 0 and Ri < |Jii | for

i = 1, . . . , n, then x̄ is locally asymptotically stable.

Using Theorem 3.3, the first condition Jii < 0 for i = 1, . . . , 6 leads to

α1 < k1M∗
c + 𝜇1 + s1, γaaC∗ < (1 − k2)P∗

2 + 𝜇aa, α2 < k2M∗
aa + 𝜇2, αIC∗ < αc + αaaP∗

2 + 𝜇n, γcC∗ < 𝜇c.

The second condition, Ri < |Jii | for i = 1, . . . , 6 leads to

2| (1 − k1)M∗
c −M∗

nαn | + αp1M∗
c + s1

L0
< 1,

αc + αaaP∗
2 + αIC∗

L6
< 1,

(1 − k2)P∗
2 + αp2P∗

2 − γaaC∗ + k2P∗
2

L3
< 1,

γcC∗

L7
< 1,

αIM∗
n + γcM∗

c + γaaM∗
aa

αIM∗
n + γaaM∗

aa + γcM∗
c + 𝜇s

< 1,
2| (1 − k2)M∗

aa − αaaM∗
n | + αp2M∗

aa

L5
< 1.

The stability of the endemic point E∗
2 depends on the stability of the Jacobian matrix J (E∗

2) given by

J (E∗
2) =

©­­­­­­­«

L0 0 −k1P∗∗
1 0 0 0

(1 − k1)M∗∗
c −M∗∗

n αn L1 (1 − k1)P∗∗
1 (1 − k2)P∗∗

2 αIM∗∗
n (1 − k2)M∗∗

aa − αaaM∗∗
n

M∗∗
n αn − (1 − k1)M∗∗

c αnP∗∗
1 + αc L2 0 γcM∗∗

c 0
0 αaaP∗∗

2 0 L3 γaaM∗∗
aa αaaM∗∗

n − (1 − k2)M∗∗
aa

αp1M∗∗
c −αIC∗∗ αp1P∗∗

1 − γcC∗∗ αp2P∗∗
2 − γaaC∗∗ L4 αp2M∗∗

aa
s1 0 0 −k2P∗∗

2 0 L5

ª®®®®®®®¬
where

L0 = α1 − k1M∗∗
c − 𝜇1 − s1, L1 = αIC∗∗ − αcP∗∗

1 − αc − αaaP∗∗
2 − 𝜇n, L2 = γcC∗∗ − (1 − k1)P∗∗

1 − 𝜇c,
L3 = γaaC∗∗ − (1 − k2)P∗∗

2 − 𝜇aa, L4 = −αIM∗∗
n − γaaM∗∗

aa − γcM∗∗
c − 𝜇s, L5 = α2 − k2M∗∗

aa − 𝜇2.

Similarly, applying Theorem 3.3 to J (E∗
2) with size 6 × 6 we get the following inequalities:

α1 < k1M∗∗
c + 𝜇1 + s1, αIC∗∗ < αcP∗∗

1 + αc + αaaP∗∗
2 + 𝜇n, γcC∗∗ < (1 − k1)P∗∗

1 + 𝜇c,
γaaC∗∗ < (1 − k2)P∗∗

2 + 𝜇aa, α2 < k2M∗∗
aa + 𝜇2.



216 M. MAKHUVHA, H. MAMBILI-MAMBOUNDOU. PUBLIC

According to the Gershgorian theorem, Ri < |Jii | for i = 1, . . . , 6 is equivalent to Rj < |Jjj | for j = 1, . . . , 6. Using
Theorem 3.3 on matrix J (E∗

2) with size 6 × 6 we get the following inequalities:

2| (1 − k1)M∗∗
c −M∗∗

n αn | + αp1M∗∗
c + s1

L0
< 1,

αnP∗∗
1 + αc + αaaP∗∗

2 + αIC∗∗

L1
< 1, (8)

(1 − k1)P∗∗
1 + |αp1P∗∗

1 − γcC∗∗ | + k1P∗∗
1

L2
< 1,

(1 − k2)P∗∗
2 + |αp2P∗∗

2 − γaaC∗∗ | + k2P∗∗
2

L3
< 1, (9)

αIM∗∗
n + γcM∗∗

c + γaaM∗∗
aa

αIM∗∗
n + γaaM∗∗

aa + γcM∗∗
c + 𝜇s

< 1,
2| (1 − k2)M∗∗

aa − αaaM∗∗
n | + αp2M∗∗

aa

L5
< 1. (10)

Therefore, we conclude that the equilibrium point E∗
2 is locally stable only provided the conditions given in Equation (8)–(10)

hold.

4 Numerical Solutions

This section presents numerical simulations of the system of equations (1)–(6). The model simulations were carried out using
the MATLAB software, using the parameter values in Table 3 and initial values in Table 2. Due to lack of information on the
immunological dynamics for the sleeping sickness disease obtaining the parameter values presented some challenges. Few pa-
rameter values were obtained from published literature, while others were assumed based on assumptions made in the model
formulation and in comparison with the dynamics of other tropical diseases like malaria, whose parasite exhibit similar charac-
teristics as the HAT parasite (Mhlanga et al., 1997). Therefore our results are purely theoretical but qualitatively sound.

The model simulations gave us an insight into the effects of parasite switching on the evolution of HAT and how the disease
progresses over time in the human host. In order to investigate the effects of parasite switching, we first simulate the model
when the switch parameter is zero. Figures 2–4 illustrate the evolution of various populations in this scenario. From Figures 2
and 3, it can be seen that with no switching of the parasite, the innate immune response is adequate to deal with the pathogen.
The parasite is cleared within a week of infection. During that same period, there is a rise in the levels of naive and classical
macrophages (Figure 3) as well as cytokines levels (Figure 4) in the host. It can be noted that the levels of macrophages and
cytokines decrease after the pathogen has been dealt with. This highlights the significant role played by both macrophages and
cytokines in the innate immune response, immediately after infection, to limit the spread of the pathogen. Moreover, it can be
noted that when the innate response is effective against the infection, adaptive response is not required.

In the second scenario, we allow the parasite to switch to another parasite type. The response of various populations to the
switch is shown in Figures 5–8, when the value of the switching parameter is s1 = 0.0001. The way at which the parasite evades
the immune response by switching type to different parasite type, can be depicted in Figure 5. This is illustrated by exponential
rise of the type 2 parasite, two weeks after infection. Figure 7 show cases the host adaptative immune response to the resurgent
parasite, characterise by the activation of alternative activated macrophages, whose role is to deal with the new rise in the type 2
pathogen. Figure 8 show cases the cytokine concentration which justifies the behaviour of alternative activated macrophages.

5 Optimal Control Strategies

In this section, we formulate two optimal control models by modifying the system of equations (1)–(6), to incorporate the
effect of different drug strategies. Often the treatment of HAT patients depends on the stage of the disease at which the patient
is diagnosed. Drugs can be categorized into two types:

• Initial stage drug and

• Second stage drug.

5.1 Initial stage drug

These are drugs that are administered in the early stage of the disease, due to their inability to cross the blood brain barrier.
This for instance is the case of Pentamidine, Suramin (Etchegorry et al., 2001). The main function of these drugs is to reduce
the parasite load in the host. Our performance measure is to minimize the parasites load in a finite time tf . The corresponding
optimal control problem is

minimise
{
J = P1 (tf ) + P2 (tf )

}
.
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Table 3: Parameter values.

Parameter Value Units References
α1 0.75 day−1 Wockner et al., 2020
s1 0.0001 day−1 Frank, 1999
k1 0.00045 day−1 Assumed
𝜇1 0.45 day−1 Assumed

Λn 100 cells/ml/day−1 Assumed
αn 0.5 day−1 Assumed
αc 0.00304 day−1 Assumed
αaa 0.0045 day−1 Assumed

αI 0.4 day−1 Mohamed et al., 2018
𝜇n 0.02 day−1 Pienaar and Lerm, 2014
γc 0.4 day−1 Mohamed et al., 2018
𝜇c 0.02 day−1 Pienaar and Lerm, 2014

γaa 0.4 day−1 Assumed
𝜇s 0.0154 day−1 Assumed
αp1 0.0015 day−1 Assumed
αp2 0.006 day−1 Assumed

k2 0.0006 day−1 Assumed
𝜇aa 0.02 day−1 Pienaar and Lerm, 2014
α2 0.8 day−1 Assumed
𝜇2 0.45 day−1 Assumed

d0 0.2 day−1 Assumed
d1 0.02 day−1 Assumed
𝜇u 0.00045 day−1 Assumed

Figure 2: Numerical solution showing progression of the parasite types with no parasite switching.
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Figure 3: Numerical solution showing progression of the naive and classical macrophages with no parasite switching.

Figure 4: Numerical solution showing progression of the alternative activated macrophages and the cytokines levels with no
parasite switching.
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Figure 5: Numerical solution showing progression of the parasite types with parasite switching.

Figure 6: Numerical solution showing progression of the naive and classical macrophages with parasite switching.
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Figure 7: Numerical solution showing progression of the alternative activated macrophages with parasite switching.

Figure 8: Numerical solution showing progression of the cytokine concentration with parasite switching.
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subject to

dP1

dt
= α1P1 − d0 (1 − e−U )P1 − s1P1 − k1P1Mc − 𝜇1P1, P1 (0) = P0

1 ;

dMn

dt
= Λn − αnMnP1 + (1 − k1)P1Mc + (1 − k2)P2Maa − αcMn − αaaMnP2 + αIMnC

− 𝜇nMn − d1 (1 − e−U )Mn, Mn (0) = M0
n ;

dMc

dt
= αnMnP1 + αcMn + γcMcC − (1 − k1)P1Mc − 𝜇cMc − d1 (1 − e−U )Mc, Mc (0) = M0

c ;

dMaa

dt
= αaaMnP2 + γaaMaaC − (1 − k2)P2Maa − 𝜇aaMaa − d1 (1 − e−U )Maa, Maa (0) = M0

aa;

dC
dt

= αp1P1Mc + αp2P2Maa − αIMnC − γaaMaaC − γcMcC − 𝜇sC , C (0) = C0;

dP2

dt
= s1P1 + α2P2 − d0 (1 − e−U )P2 − k2P2Maa − 𝜇2P2, P2 (0) = P0

2 ;

dU
dt

= v(t) − 𝜇uU , U (0) = U 0

(11)

where P0
1 , M0

n , M0
c , M0

aa, C0, P0
2 , U 0 are positive constants at 0 ≤ v(t) ≤ vmax, with vmax being the maximum dosage possible.

In the model system (11), we denote the amount of drug in the human host at time t byU (t). The drug kills the parasite, and
we assume that the drug is toxic to the immune cells. This is represented by the fraction kill for an amount of drug introduced
to the system (De Pellis and Radunskaya, 2000). The fraction kill is given by

z(U ) = di (1 − e−kU ) for i = 1, 2.

Certain aspects in the pharmacokinetics are still unrevealed in this current study, we let k = 1. We let d1 denote the parasite drug
response coefficient, with d0 being the cell drug response coefficient with an assumption that d0 > d1. The amount of drug in
the host is determined by the drug dosage v(t) given at a particular time. It is assumed that the drug decays naturally at a rate 𝜇u.
It is important to note that the control is not effective when U = 0 and effective when U ≠ 0.

Theorem 5.1. Given the optimal control variable v(t), and corresponding state variables P1, Mn, Mc, Maa, C, and P2 of the
control system (11), and initial conditions in Table 2 admit a unique optimal solution P∗

1 ,M∗
n ,M∗

c ,M∗
aa, C∗, P∗

2 associated with an
optimal control v(t) with a fixed optimal final time tf ; moreover, there exists adjoint co-state functions λi (t), 1 ≤ i ≤ 7, satisfying
dλ1
dt = − 𝜕H

𝜕P1
, dλ2

dt = − 𝜕H
𝜕Mn

, dλ3
dt = − 𝜕H

𝜕Mc
, dλ4

dt = − 𝜕H
𝜕Maa

, dλ5
dt = − 𝜕H

𝜕C , dλ6
dt = − 𝜕H

𝜕P2
, dλ7

dt = − 𝜕H
𝜕U with corresponding transversality

conditions λ1 (tf ) = 1, λ2 (tf ) = 0, λ3 (tf ) = 0, λ4 (tf ) = 0, λ5 (tf ) = 0, λ6 (tf ) = 1, and λ7 (tf ) = 0. The Hamiltonian function H
for the optimal control problem is given by

H = J + λ1 ¤P1 + λ2 ¤Mn + λ3 ¤Mc + λ4 ¤Maa + λ5 ¤C + λ6 ¤P2 + λ7 ¤U

Furthermore, the optimal control dosage is given by

v(t) =


0, if λ7 > 0,
vmax , if λ7 < 0,
undetermined, if λ7 = 0.

Proof. According to Pontryagin maximum principle (Pontryagin et al., 1986), we have the Hamiltonian function defined as,

H = A1P1 + A2P2 + λ1 [α1P1 − d0 (1 − e−U )P1 − s1P1 − k1P1Mc − 𝜇1P1]
+ λ2 [Λn − αnMnP1 + (1 − k1)P1Mc + (1 − k2)P2Maa − αcMn − αaaMnP2 + αIMnC − 𝜇nMn − d1 (1 − e−U )Mn]

+ λ3 [αnMnP1 + αcMn + γcMcC − (1 − k1)P1Mc − 𝜇cMc − d1 (1 − e−U )Mc]
+ λ4 [αaaMnP2 + γaaMaaC − (1 − k2)P2Maa − 𝜇aaMaa − d1 (1 − e−U )Maa]

+ λ5 [αp1P1Mc + αp2P2Maa − αIMnC − γaaMaaC − γcMcC − 𝜇sC]
+ λ6 [s1P1 + α2P2 − d0 (1 − e−U )P2 − k2P2Maa − 𝜇2P2]

+ λ7 [v(t) − 𝜇uU ],
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where λ1, λ2, λ3, λ4, λ5, λ6, and λ7 are the adjoint functions associated with the state functions. Applying the Pontryagin
maximum principle, the adjoint system is given by

dλ1

dt
= −A1 + λ1 [d0 (1 − e−U ) + s1 + k1Mc − 𝜇1 − α1] + α2Mnλ2 + λ3 [(1 − k1)Mc − αnMn] − λ6s1 − λ5αp1Mc

dλ2

dt
= λ2 [αnP1 + αc − αIC + αaaP2 + 𝜇n + d1 (1 − e−U )] + λ5αIC − λ4αaaP2 − λ3 [αnP1 + αc]

dλ3

dt
= λ1k1P1 − λ2 (1 − k1)P1 + λ3 [(1 − k1)P1 + 𝜇c + d1 (1 − e−U ) − γcC] + λ5 [γcC − αp1P1]

dλ4

dt
= λ6k2P2 − λ2 (1 − k2)P2 + λ4 [(1 − k2)P2 + 𝜇aa + d1 (1 − e−U ) − γaaC] + λ5 [γaaC − αp2P2]

dλ5

dt
= λ5 [αIMn + γaaMaa + γcMc + 𝜇s] − λ2αIMn − λ3γcMc − λ4γaaMaa

dλ6

dt
= −A2 + λ2 [αaaMn − (1 − k2)Maa] + λ4 [(1 − k2)Maa − αaaMn] − λ5αp2Maa

+ λ6 [k2Maa + d0 (1 − e−U ) + 𝜇2 − α2]
dλ7

dt
= e−U (λ1d0P1 + λ2d1Mn + λ3d1Mc + λ4d1Maa + λ6d0P2) + λ7𝜇u.

Using the transversality condition, the initial values for the adjoint functions are obtained as

λ1 (tf ) =
𝜕J
𝜕P1

����
t=tf

= 1, λ2 (tf ) =
𝜕J

𝜕Mn

����
t=tf

= 0, λ3 (tf ) =
𝜕J
𝜕Mc

����
t=tf

= 0, λ4 (tf ) =
𝜕J

𝜕Maa

����
t=tf

= 0,

λ5 (tf ) =
𝜕J
𝜕C

����
t=tf

= 0, λ6 (tf ) =
𝜕J
𝜕P2

����
t=tf

= 1, λ7 (tf ) =
𝜕J
𝜕U

����
t=tf

= 0.

The drug in the whole system is dependent on the dosage given at a particular time. The aim is to minimise the Hamiltonian
H , with respect to the dosage v. But H is linear in v

H = λ7v + λ8,

where λ8 = A1P1 + A2P2 + λ1 ¤P1 + λ2 ¤Mn + λ3 ¤Mc + λ4 ¤Maa + λ5 ¤C + λ6 ¤P2 − 𝜇uλ7 ¤U . Thus the optimal value v(t)

v(t) =


0, if λ7 > 0,
vmax , if λ7 < 0,
undetermined, if λ7 = 0.

The adjoint function λ7 is the switching function for the drug dosage v(t), bounded by 0 ≤ v(t) ≤ vmax; the drug should be
injected at maximum rate, vmax, whenever λ7 is negative and should be stopped whenever λ7 is positive. □

5.1.1 Numerical simulations of early stage stage drug

We use the steepest descent method to find the optimal control, in combination with the forward, backward sweep method
for the state and co-state variables. We note that the drug dosage needs to be the same every day. The initial conditions for
model (11) are given byP1 = 1000, Mn = 500, Mc = 300, Maa = 10, C = 5, P2 = 500, with the assumption that intervention is
implemented when the disease has progressed in the human host. The solution curve (blue) without intervention was simulated
with the initial conditions in Table 2. From Figure 9, we notice the significant reduction of the parasite type 1 population in the
presence of the drug as opposed to no drug in the system. From Figure 12, we notice that in spite of the drug being present in
the system, parasite type 2 increases with time. This suggests that using a drug targeting the parasite population does not reduce
the disease burden. We observe a decline in the macrophage populations in Figures 10, 11, and 14 when using the first stage drug.
That is because the drug has a negative impact on macrophages because of the toxicity of the drug. This then means that the
body loses its ability to fight parasites. Attributes shown in Figure 12 confirms that not any drug minimises the disease burden
in the system. Figure 15 illustrates that early stage drugs need to be administered continuously for 10 days.

5.2 Second stage drug

In the second optimal control strategy, the specific function of the drug is to reduce the parasite load by targeting their production
abilities. These are drugs that are administered in the second stage of the disease, due to their ability to cross the blood brain
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Figure 9: Numerical solutions of model system showing progression of parasite type 1 with effects of the early stage drug.

Figure 10: Numerical solutions of model system showing progression of naive macrophages with effects of the early stage drug.
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Figure 11: Numerical solutions of model system showing progression of classical macrophages with effects of the early stage
drug.

Figure 12: Numerical solutions of model system showing progression of parasite type 2 with effects of the early stage drug
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Figure 13: Numerical solutions of model system showing progression of cytokines with effects of the early stage drug.

Figure 14: Numerical solutions of model system showing progression of alternative macrophages with effects of the early stage
drug.
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Figure 15: Drug dosage

barrier. This for instance is the case of Melarsoprol, Eflornithine, and Fexinidazole (Etchegorry et al., 2001). In this strategy, the
performance measure is given by

J =
∫ tf

t0

(
A1P1 + A2P2 + b2u2

2 − b1u2
1
)
dt.

Thus, we wish to minimise the density of parasite P1,P2 and the toxicity of the drug u2, while maximising drug efficacy. The
corresponding optimal control problem is

minimise
{
J =

∫ tf
t0

(
A1P1 + A2P2 + b2u2

2 − b1u2
1
)
dt
}

.

subject to

dP1

dt
= (1 − u1)α1P1 − s1P1 − k1P1Mc − 𝜇1P1, P1 (0) = P0

1 ;

dMn

dt
= Λn − αnMnP1 + (1 − k1)P1Mc + (1 − k2)P2Maa

− αcMn − αaaMnP2 + αIMnC − (𝜇n + u2)Mn, Mn (0) = M0
n ;

dMc

dt
= αnMnP1 + αcMn + γcMcC − (1 − k1)P1Mc − (𝜇c + u2)Mc, Mc (0) = M0

n ;

dMaa

dt
= αaaMnP2 + γaaMaaC − (1 − k2)P2Maa − (𝜇aa + u2)Maa, Maa (0) = M0

aa;

dC
dt

= αp1P1Mc + αp2P2Maa − αIMnC − γaaMaaC − γcMcC − 𝜇sC , C (0) = C0;

dP2

dt
= s1P1 + (1 − u1)α2P2 − k2P2Maa − 𝜇2P2, P2 (0) = P0

2

(12)

where P0
1 , M0

n , M0
c , M0

aa, C0, P0
2 are given constants and 0 ≤ u1 (t) ≤ 1; u2 (t) ≥ 0 with u1 = 1 being 100% effective and u1 = 0

being no drug usage.



LETTERS IN BIOMATHEMATICS 227

Theorem 5.2. Given the optimal control variable u1, u2, and corresponding state variables P1, Mn, Mc, Maa, C, and P2 of the
control system (12), and initial conditions in Table 2 admits a unique optimal solution P∗

1 , M∗
n , M∗

c , M∗
aa, C∗, P∗

2 associated with
an optimal control u1, u2 with a fixed optimal final time tf ; moreover, there exists adjoint co-state functions λi (t), 1 ≤ i ≤ 6,
satisfying dλ1

dt = − 𝜕H
𝜕P1

, dλ2
dt = − 𝜕H

𝜕Mn
, dλ3

dt = − 𝜕H
𝜕Mc

, dλ4
dt = − 𝜕H

𝜕Maa
, dλ5

dt = − 𝜕H
𝜕C , dλ6

dt = − 𝜕H
𝜕P2

, dλ7
dt = − 𝜕H

𝜕U . The Hamiltonian
function H for the optimal control problem is given by

H = J + λ1 ¤P1 + λ2 ¤Mn + λ3 ¤Mc + λ4 ¤Maa + λ5 ¤C + λ6 ¤P2.

Furthermore, the optimal control variable solutions are given as

u∗1 = min
{

max
{

0,− 1
2b1

(
λ1α1P1 + λ6α2P2

)}
, 1
}

.

Proof. According to the Pontryagin maximum principle (Pontryagin et al., 1986), the Hamiltonian function is defined by

H = A1P1 + A2P2 + b2u2
2 − b1u2

1 + λ1 [(1 − u1)α1P1 − s1P1 − k1P1Mc − 𝜇1P1]
+ λ2 [Λn − αnMnP1 + (1 − k1)P1Mc + (1 − k2)P2Maa − αcMn − αaaMnP2 + αIMnC − (𝜇n + u2)Mn]

+ λ3 [αnMnP1 + αcMn + γcMcC − (1 − k1)P1Mc − (𝜇c + u2)Mc]
+ λ4 [αaaP2Mn + γaaMaaC − (1 − k2)P2Maa − (𝜇aa + u2)Maa]

+ λ5 [αp1McP1 + αp2P2Maa − αIMnC − γaaMaaC − γcMcC − 𝜇sC]
+ λ6 [s1P1 + (1 − u1)α2P2 − k2P2Maa − 𝜇2P2],

where λ1, λ2, λ3, λ4, λ5, λ6 are adjoint functions of the following adjoint system:

dλ1

dt
= −A1 + λ1 [s1 + k1Mc + 𝜇1 − (1 − u1)α1] + λ2 [αnMn − (1 − k1)Mc] + λ3 [(1 − k1)Mc − αnMn] − λ5αp1Mc − λ6s1,

dλ2

dt
= λ2 [αnP1 + αc + αaaP2 + (𝜇n + u2) − αIC] − λ3 [αnP1 + αc] − λ4αaaP2 + λ5αIC ,

dλ3

dt
= λ1k1P1 − λ2 (1 − k1)P1 + λ3 [(1 − k1)P1 + (𝜇c + u2) − γcC] + λ5 [γcC − αp1P1],

dλ4

dt
= k2P2λ6 − λ2 (1 − k2)P2 + λ4 [(1 − k2)P2 + (𝜇aa + u2) − γaaC] + λ5 [γaaC − αp2P2],

dλ5

dt
= λ5 (αIMn + γaaMaa + γcMc + 𝜇s) − λ2αIMn − λ3γcMc − λ4γaaMaa,

dλ6

dt
= −A2 + λ2 [αaaMn − (1 − k2)Maa] + λ4 [(1 − k2)Maa − αaaMn] − λ5αp2Maa + λ6 [k2Maa + 𝜇2 − α2 (1 − u1)].

Using the first derivative test, the optimal controls are obtained by solving

𝜕H
𝜕u1

= −2b1u1 − λ1α1P1 − λ6α2P2 = 0, (13)

𝜕H
𝜕u2

= 2b2u2 −Mnλ2 −Mcλ3 −Maaλ4 = 0. (14)

Solving for u1 and u2 in the system (13)–(14), the corresponding optimal control variable solutions are given by

u∗1 = − 1
2b1

(
λ1α1P1 + λ6α2P2

)
,

u∗2 =
1

2b2

(
λ2Mn + Mcλ3 + Maaλ4

)
. □

5.2.1 Numerical simulations of second stage drug

Similarly, we use the steepest descent method to find the optimal control, in combination with the forward, backward sweep
method for the state and co-state variables.

Figures 16–21 illustrate the dynamics of model (12). Model (12) incorporates the drug that targets the growth rate of the
parasite. In Figure 16, we notice that parasite type one ideally reduces in the presence of the drug. In Figure 19, we observe that
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Figure 16: Numerical solutions of model system showing progression of parasite type 1 with effects of second stage drug.

Figure 17: Numerical solutions of model system showing progression of naive macrophages with effects of second stage drug.
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Figure 18: Numerical solutions of model system showing progression of classical macrophages with effects of second stage
drug.

Figure 19: Numerical solutions of model system showing progression of parasite type 2 with effects of second stage drug.
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Figure 20: Numerical solutions of model system showing progression of cytokines with effects of second stage drug.

Figure 21: Numerical solutions of model system showing progression of alternative activated macrophages with effects of
second stage drug.
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Figure 22: Numerical solutions of model system showing progression of alternative activated macrophages with effects of
second stage drug.

Figure 23: Numerical solutions of model system showing progression of alternative activated macrophages with effects of
second stage drug.
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the second parasite shows a decline over time in the presence of the second stage drug. In Figures 17, 18, and 21, we notice the
drastic reduction in the macrophages, and that is due to the fact that the second stage drug is more toxic than the first stage drug.

From Figure 22, we notice the increase in the toxicity levels on the last day of treatment which explains drastic decline in the
macrophages population. In this study we have discovered that for a drug to be efficient, the drug has to have an efficacy of 90%
(see Figure 23). When a drug targets the population of the parasite at a given point it becomes difficult to control the parasite
hence the rise on parasite type 2 still exist. In reality the parasite switches to multiple types of parasites, and in this paper we
investigate using two types of parasites that.

6 Conclusion

The purpose of this study was to model and analyse the microscopic dynamics of the HAT disease within the human host. We
obtained a system of six ordinary differential equations describing the switching of the parasite type 1 to type 2 and its interactions
with various immune cells. There exist solutions to our system; the solutions are unique and positive. We performed a qualitative
analysis of the system, and the analysis revealed the existence of one disease-free equilibrium state and two endemic equilibrium
states. In addition, we carred out a stability analysis of the three equilibria using the Gershgorian circle theorem and van den
Driessche and Watmough’s method, and we established conditions of existence and stability of equilibrium states.

Furthermore, to investigate if the switching of the parasite from one type to the other helps the disease to persist within the
host, numerical solutions of the system under consideration are presented. Figures 2, 3, and 4 show the solutions of the system
of equations (1)–(6) without parasite switching. It can clearly be seen that in the absence of switching, the immune cells are able
to clear the parasite from the body.

We then incorporate parasite switching in the system of equations (1)–(6). It can be observed in Figure 5 that the parasite
evades the immune system even though an adaptive immune response is initiated through alternative activated macrophages,
in order to deal with the new parasite type. A single switch reveals that the body is overwhelmed by the parasite load. This
is indicated by the sharp increase in parasite type 2 after a few days of infection Figure 5, as well as the increase in alternative
activated macrophages Figure 7. Naive and classical macrophages are part of the innate immune system, while alternatively
activated macrophages are produced when the innate system fails to fight parasites.

In the effort of clearing the parasite from the host, two optimal control models are introduced. The first controlled model
shows cases of all possible HAT treatments that focus on the invasion of the parasite. This example is the case of Pentamidine,
Suramin. These drugs specifically kill the parasite in the blood system. In the effort to find the optimal drug dosage and at the
same time reduce the toxicity of the drug, our performance measure focuses on reducing the parasite load and finding the optimal
final time. The controlled model is simulated numerically and presented in Figures 9–14. It can be observed that, even though
the parasites load is reduced, this type of drugs are not efficient in curing the disease due to parasite switching. It was found
that the drug steers the system from the co-existing parasites states to only the parasite type 2, the endemic state, considering
that in this work the parasite only switches to one other parasite type, when in reality the parasite switches to thousand different
types. Furthermore, we observe a decline in macrophages, suggesting that drug toxicity is the influencing factor in reducing
macrophage load with time.

The second optimal control model include treatments of HAT that specifically targets the reproduction of the parasites
within the host. This example, is the case of Melarsoprol, Eflornithine, and Fexinidazole. The numerical results show that these
type of drugs are quite efficient in the treatment of HAT, and more adopted to deal with the switching of the parasite of other
types (see Figures 16–21). The numerical solutions confirm that there is a possibility of achieving total elimination of the HAT
disease when using a growth inhibitor drug.
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