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ABSTRACT

Many processes in biology and medicine have been modeled using Markov decision

processes (MDP) which provides a rich algorithmic theory for model analysis and

optimal control. We focus on the class of MDP that is obtained by considering

stochastic Boolean networks equipped with control actions. We study the e�ect of

changes in model parameters on optimal control policies. We conducted a sensi-

tivity analysis on optimal control policies for a model of the T-cell large granular

lymphocyte. We quanti�ed how the choice of propensity parameters impacts the

e�ectiveness of the optimal policy and then we provide thresholds at which the

e�ectiveness is guaranteed. We also examined the e�ect on the optimal control

policies of the level of noise that is usually added for simulations. Finally, we studied

the e�ect on changes in the propensity parameters on the time to absorption and

the mixing time for a Boolean model of the Repressilator.
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1 Introduction

Boolean network (BN) models are becoming increasingly popular and have been successfully used to model important biological
systems such as the bistable behavior of the lac operon (Veliz-Cuba and Stigler, 2011), the yeast-to-hyphal transition of the yeast
Candida albicans (Wooten et al., 2021), the interaction of pancreatic cancer cells with their microenvironment (Plaugher and
Murrugarra, 2021; Plaugher et al., 2022), and they have been proposed as appropriate models for understanding the evolution
of cellular differentiation (Márquez-Zacarías et al., 2021). Furthermore, there is a growing collection of BN models in the Cell
Collective database (Helikar et al., 2012) covering processes such as signaling, regulation, and cancer.

To account for the stochasticity in various molecular processes, several versions of stochastic Boolean networks exist includ-
ing Probabilistic Boolean networks (PBN) (Shmulevich et al., 2002; Shmulevich and Dougherty, 2010), perturbed Boolean
networks (BNp) (Golinelli and Derrida, 1989; Trairatphisan et al., 2013), and Probabilistic Edge Weights operators (PEW) (De-
ritei et al., 2022). This paper will focus on the stochastic framework that was introduced by Murrugarra et al. (2012) referred
here as Stochastic Discrete Dynamical Systems (SDDS). The stochasticity usually originates from the updating schedule or from
an added perturbation to the functions. Standard updating schedules include synchronous update where all nodes are updated
at the same time, and asynchronous update, where a random set of nodes are updated at each time step. Consequently, a syn-
chronous update produces deterministic dynamics, while an asynchronous update generates stochastic dynamics. The SDDS
framework introduces stochasticity by assigning two propensity parameters to each function in the Boolean network. The PBN
framework considers multiple functions for each node where one function is selected at each step using a probability distribu-
tion.

A Markov decision process (MDP) is a mathematical modeling framework for decision making (Sutton and Barto, 1998;
Bertsekas, 2019). An optimal control policy for an MDP provides an action for each state of the system such that a certain
optimality criterion is achieved. Many methods exist for obtaining optimal control policies such as the infinite-horizon method
with a discount factor (Yousefi et al., 2012; Aguilar et al., 2020). The optimal control policies are usually obtained using the
value iteration method for approximating the solution of Bellman’s equation (Bertsekas, 2005; Murrugarra and Aguilar, 2019).
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The main contributions of this paper will be presented in the Results section, which is divided in two parts. In the first
part, we study the effects of changes in the propensity parameters of the SDDS framework on the optimal control policies for a
Boolean model of the T-cell large granular lymphocyte, or T-LGL (Saadatpour et al., 2011). For this model, we show how the
choice of propensity parameters impacts the effectiveness of the optimal policy and then we provide thresholds for which the
effectiveness is guaranteed. We also examined the effect of the level of noise that is usually added for simulations on the optimal
control policies. In the second part of the Results section, we discuss the effects of the propensities on the long-term dynamics
of a Boolean model of the Repressilator. For this model, we studied the effect of changes in the propensity parameters on the
time to absorption and the mixing time.

This paper is structured in the following way. In Section 2, we introduce the modeling framework SDDS and their associated
Markov decision processes. In Section 3.1 we present the results of the effects of changes in the propensities on control policies
for the T-LGL model. In Section 3.2, we discuss the long term dynamics effects of propensities on a Boolean model of the
Repressilator. In Section 4 we discuss our main findings and provide some conclusions.

2 Methods

In this section we describe the stochastic modeling framework SDDS and the optimal control method that we will use in this
paper.

2.1 Stochastic discrete dynamical systems

Consider n variables x1, . . . , xn that can take values in finite sets X1, . . . ,Xn. Let X = X1 × · · · × Xn be the Cartesian product.
An SDDS in the variables x1, . . . , xn is defined as a collection of n triples

F̂ =
{
fk, p

↑
k
, p↓

k

}n
k=1

, (1)

where for k = 1, . . . , n,

• fk : {0, 1}n → {0, 1} is the update function for xk,

• p↑
k
∈ [0, 1] is the activation propensity,

• p↓
k
∈ [0, 1] is the degradation propensity.

The activation parameter p↑
k

represents the probability that an activation of xk occurs, given that fk would activate xk. That is, if
xk (t) = 0 and fk

(
x1 (t), . . . , xn (t)

)
= 1, then xk (t+1) = 1with probability p↑

k
. The degradation propensity p↓

k
is defined similarly.

We can represent an SDDS as a Markov chain with the transition probability from x = (x1, . . . , xn) to y = (y1, . . . , yn) is
given by

ax,y =
n∏
i=1

Prob(xi → yi), (2)

where Prob
(
xi → fi (x)

)
is the probability that xi will change its value and is given by

Prob
(
xi → fi (x)

)
=


p↑
k
, if xi < fi (x),

p↓
k
, if xi > fi (x),

1, if xi = fi (x).

(3)

The probability that xi will maintain its current value is given by

Prob(xi → xi) =


1 − p↑

k
, if xi < fi (x),

1 − p↓
k
, if xi > fi (x),

1, if xi = fi (x),

(4)

for all i = 1, . . . , n. Note that Prob(xi → yi) = 0 for all yi ∉ {xi , fi (x)}. The transition matrix is

A = (ax,y)x,y∈S . (5)
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2.2 Boolean networks

Boolean networks are discrete dynamical systems. Specifically, consider n variables x1, . . . , xn each of which can take values
in {0, 1}. Then, a synchronously updated Boolean network is a function F = (f1, . . . , fn) : {0, 1}n → {0, 1}n, where each
coordinate function is a discrete function on a subset of {x1, . . . , xn}, which represents how the future value of the ith variable
depends on the present values of the variables. We note that setting all propensity parameters p↑

k
and p↓

k
to 1.0 in the SDDS

framework will result in a synchronous Boolean network.

2.3 Markov chains

A discrete-time Markov chain is a sequence of random variables X1, . . . ,Xn, . . . with the Markov property: Prob
(
Xn+1 = x |

X1 = x1, . . . ,Xn = xn
)
= Prob

(
Xn+1 = x | Xn = xn

)
. That is, the probability of moving to the next state depends only on

the current state and not on the previous states. We note that Boolean networks are Markov chains.

2.4 Markov decision processes

Here we will describe a Markov Decision Process associated to the SDDS framework (Murrugarra and Aguilar, 2019). To use
tools from Markov Decision Processes with SDDS, we consider the underlying Boolean network F and corresponding wiring
diagram G associated with the SDDS F̂ . The wiring diagram G has nodes x1, . . . , xn, and there is a directed edge from xi to xj if
fj depends on xi . The edge and node controls can be encoded in the Boolean network F = (f1, . . . , fn) : Fn

2 → F
n
2.

LetU be the set of all possible control inputs, where 0 represents no control. We encode the edge and node controls using the
function F : Fn

2 × U → F
n
2 such that F (x, 0) = F (x) returns the original Boolean network. To include control in an SDDS,

we replace the functions of fk with Fk : {0, 1}n × U → {0, 1}. With edge control, ui,j refers to control of the edge xi → xj . For
node control, ui refers to node xi . In both edge and node control, setting u to zero represents an inactive control and setting u
to one represents removal of the corresponding edge or node.

A control action a is a combination of control edges and nodes being applied to the Boolean network simultaneously at a
given time step. A set E of control edges and set V of control nodes can be used to define a as an array of binary elements of size
|U | = |E | + |V |. Let A = {0, 1} |U | be the set of all possible actions.

Now, we define an MDP for the SDDS F̂ using these control actions. A Markov decision process for SDDS has four com-
ponents: the set of states S, the set of control actionsA, the transition probability P a

x,y associated with action a at state x that will
lead to state y, and the associated costs C (x, a, y).

The new SDDS resulting from the application of action a is F̂a
′ =

{
F a
k
, p↑

k
, p↓

k

}n
k=1. The transition probabilityP a

x,y from state
x to y associated with action a is computed with equation 2 where fk is replaced by F a

k
. The cost function C (x, a, y) describes

the penalties for going from state x to y using action a. Thus the cost is given as the sum of the cost for the action and one for
the state:

C (x, a, y) = Ca + Cy. (6)
The action cost Ca = cvNv + ceNe where cv and ce are the penalties for the control nodes and edges respectively, and Nv and Ne

are the number of applied control nodes and edges in the given action a. The state cost

Cy =
N∑︁
k=1

wk |yk − s∗k |, (7)

where s∗ is the desired state and wk are the weights of each edge.

2.5 Optimal control for SDDS

This section reviews a method for optimal control for Markov decision processes called the infinite-horizon method with a
discounting factor as presented by Murrugarra and Aguilar (2019).

A deterministic control policy π is a set π = {π0, π1, . . .} where each πt associates a state x(t) to an action a at time step t.
Given a state x ∈ S, a control policy π and a discounting factor γ ∈ (0, 1), the cost function V π associated with π is defined as

V π (x) = IE

[ ∞∑︁
t=0

γtC (x(t), a)
]
, (8)

where C
(
x(t), a

)
represents the expected cost at time step t for executing the policy from state x. The cost at step t is defined by

C (x(t), a) = IE
[
C (x, a, y)

]
=
∑︁
y∈S

P a
x,yC (x, a, y). (9)
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The optimal cost function V ∗ (x) associated with the optimal policy π∗ is

V ∗ (x) = min
a∈A

{
C (x, a) + γIE

[
V ∗ (y)

]}
. (10)

Because this function satisfies Bellman’s equation (Sutton and Barto, 1998; Bertsekas, 2019), we can use the value iteration
algorithm to calculate the optimal control policy. The equation for the value iteration algorithm is

Vt (x) = min
a∈A

[
C (x, a) + γ

∑︁
y∈S

P a
x,yVt−1 (x)

]
. (11)

For any initial bounded cost function V0, the recursion will converge to V ∗.

2.6 Time to absorption

Consider the transition matrix of a Markov chain in canonical form:

A =
(
Q 0
R I

)
where0 is the zero block matrix and I is the identity submatrix. The fundamental matrix N is defined as the inverse of (I −Q).
That is,N = (I−Q)−1. The time to absorption for a transient state j is defined as the expected number of steps before absorption
and can be calculated as the sum of the jth row of N (see Grinstead and Snell, 1997, Theorem 11.5).

2.7 Mixing time

The mixing time tmix of a Markov chain is the number of steps required for the chain to be within a fixed threshold of its
stationary distribution (Levin and Peres, 2017). More precisely, we define

tmix (ε) = min{t : d(t) ≤ ε}

where d(t) is the total variation distance which is defined by d(t) = maxx∈S | | P t (x, ·) −π | |TV . The maximum in the previous
formula is taken over all states in the state space S, P represents the transition matrix, and π denotes the stationary distribution.

Several estimates and bounds exist for mixing times of Markov chains. For irreducible Markov chains, one can show that
(see Levin and Peres, 2017, Chapter 12)

tmix (ε) log
(
1
λ∗

)
≥ log

(
1
2ε

)
(12)

where λ∗ is the eigenvalue with the second highest absolute value. In this paper, we will use the following estimate which can be
obtained from Equation 12:

tmix ≈ −1/log(λ∗).

3 Results

In this section we provide results from our analysis using a Boolean model where optimal control policies have been calculated.
We will apply the optimal control method described in Section 2.5 and study its effectiveness at different propensities and dis-
count factors. We will also study the effect of changes in the level of noise for simulations.

3.1 T-LGL model

Here we consider the reduced model of the T-cell large granular lymphocyte, orT-LGL (Saadatpour et al., 2011) with nodes and
functions described in Figure 1. This model has two fixed points: 000001 and 110000, where we represented a state of the system
by x1x2x3x4x5x6 for each xi ∈ {0, 1} for i = 1, . . . , 6. Here, a state of 0 means that the corresponding gene is inactive while the
state 1 indicates that the corresponding gene is active. Thus, the state 000001 represents the desired state (with the apoptosis
node ON, x6 = 1) and 110000 represents the disease state (with the apoptosis node OFF, x6 = 0). The optimal control problem
here is that we want to obtain a policy to ensure the system transitions to the desired state. Note that this system has 64 possible
states (since 26 = 64) as indicated in the x-axis of Figure 2.

Given a Boolean network model, different methods for phenotype control can be used to identify edge and node controls,
including those of Murrugarra et al. (2016); Zañudo and Albert (2015); Zañudo et al. (2017). For theT-LGLmodel discussed in
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(a) Wiring Diagram

x1 = S1P,
x2 = FLIP,
x3 = Fas,
x4 = Ceramide,
x5 = DISC,
x6 = Apoptosis.

f1 = x4 ∧ x6,
f2 = x5 ∧ x6,
f3 = x1 ∧ x6,
f4 = x3 ∧ x1 ∧ x6,
f5 =

(
x4 ∨ (x3 ∧ x2)

)
∧ x6,

f6 = x5 ∨ x6.

(b) Nodes and functions

Figure 1: Reduced T-LGL network adapted from Saadatpour et al. (2011).

Figure 2: Heatmap of stationary distributions given all propensities are 0.9 using single-step optimal policies from the value
iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. At a discount of 0.8
or higher, the stationary distribution consistently goes to state 2 (000001), so this is when the policy becomes effective. The
numbers (1 or 2) shown in each row correspond to the action specified by the policy for the corresponding state below the
number. The two actions are: (1) no intervention and (2) knock-out of S1P. The shading gradient on the right of the heatmap
correspond to the proportion of time the process ends in one of the possible states.
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Figure 3: Heatmap of the stationary distribution given all propensities are 0.5 using single-step optimal policies from the
value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. The policies for
these choice of parameters are always ineffective.

this section, we use the approach of Murrugarra et al. (2016) to identify control nodes that can stabilize the system into one of its
attractors. Specifically, we will use the control node S1P = OFF . This control was predicted to be 100% effective by Saadatpour
et al. (2011). That is, the application of this control (i.e, setting the node S1P to 0) will result in a controlled network with a single
desired fixed point (i.e., 000001). Thus, at each state of the system, we will get access to two actions: (1) no intervention and (2)
knock-out of S1P. Here we say that a policy is effective if this always leads the model to the fixed point 000001. In what follows,
we study the effect of changes in the propensity parameters p↑

k
and p↓

k
of the SDDS framework on optimal control policies. Two

commonly used set of values for the propensities are 0.9 and 0.5. Setting all propensity parameters p↑
k

and p↓
k

to 0.9 gives equal
(90%) chance of update to each variable and therefore this model will highlight the synchronous transitions. Likewise, setting
all propensities p↑

k
and p↓

k
to 0.5 gives equal (50%) chance of update to each variable and therefore this model will be closer to

the fully asynchronous case.
In all heatmap figures we consider that state 2 (i.e., 000001) as the desired state while state 49 (i.e., 110000) as the undesired

state. The numbers (1 or 2) shown in each row of the heatmap correspond to the action specified by the policy for the corre-
sponding state below the number. The two actions are: (1) no intervention and (2) knock-out of S1P. The shading gradient on
the right of the heatmaps correspond to the proportion of time the process ends in one of the possible states.

In our first result, shown in Figure 2, we have set all propensities p↑
k

and p↓
k

to 0.9. Allowing the discounting factor to vary,
we see the policy becomes effective when the discount is at least 0.8. This coincides with a change in the action at the disease
node 110000 (state 49 in the horizontal axis) that indicates that the intervention is active.

Setting the propensities p↑
k

and p↓
k

to 0.5 as in Figure 3, we see that the policy is never effective. Note that the action at state
110000 (state 49 in the horizontal axis) does not change to include the control node (i.e., action number 2) for any discounting
factor.

For our third case, we considered a set of propensity parameters given by Murrugarra and Aguilar (2019, Table 5.3). (We
reproduced these propensities here in Table 1.) These propensities were obtained from a genetic algorithm to maximize the
probability of reaching state 110000. When the value iteration is applied to the model with these propensities as in Figure 4, we
see that the policy is never effective. We also note that the action at state 110000 (state 49 in the horizontal axis) does not change
to include both interventions for any discounting factor.

Next, we examined the effect of the noise in the results shown in Figures 2–4. In Figures 5–7 we considered noise levels
of 1%, 5%, 10%, and 15% when calculating the optimal policies. In the first case, when we set all propensities p↑

k
and p↓

k
to 0.9,
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x1 x2 x3 x4 x5 x6

p↑i 0.4792 0.4826 0.7098 0.3911 0.0549 0.0314

p↓i 0.0274 0.9602 0.5195 0.7758 0.8373 1.0000

Table 1: Propensity values computed with a genetic algorithm by Murrugarra and Aguilar (2019).

Figure 4: Heatmap of the stationary distribution given propensities from Table 1 using single-step optimal policies from the
value iteration method. The states are on the x-axis and the y-axis gives the discount used to find the policy. The policies for
these choice of parameters are always ineffective.
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Figure 5: Heatmap of stationary distributions given all propensities are 0.9 using single-step optimal policies from the value
iteration method. The states are on the x-axis and the y-axis gives the level of noise used to find the optimal policy. The discount
factor was fixed to 0.9 for all policies, the stationary distribution consistently goes to state 2 (000001), so changing the noise in
this case does not affect the effectiveness of the policies. The shading gradient on the right of the heatmap correspond to the
proportion of time the process ends in one of the possible states.

Figure 6: Heatmap of the stationary distribution given all propensities are 0.5 using single-step optimal policies from the value
iteration method. The states are on the x-axis and the y-axis gives the level of noise used to find the optimal policy. The discount
factor was fixed to 0.9 for all policies. For noise level of 0.05 or smaller, the stationary distribution consistently goes to state 2
(000001), so small levels of noise the policies becomes effective.
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Figure 7: Heatmap of the stationary distribution given propensities from Table 1 using single-step optimal policies from the
value iteration method. The states are on the x-axis and the y-axis gives the level of noise used to find the optimal policy. The
policies for these choice of parameters are always ineffective, so changing the noise in this case does not affect the ineffectiveness
of the policies.

allowing the noise level to vary while maintaining the discount factor fixed at 0.9, we see that the policies are still effective as
shown in Figure 5. Thus, changing the noise level in this case does not affect the effectiveness of the policies.

In the second case, when all propensities are set to 0.5, allowing the noise level to vary while maintaining the discount factor
fixed at 0.9, we see that some policies become effective while other are still ineffective as shown in Figure 6. Thus, changing the
noise level in this case does affect the effectiveness of the policies. For noise level of 0.05 or smaller, the stationary distribution
consistently goes to state 2 (000001), so for small levels of noise the policies becomes effective.

Finally, when we used propensities from Table 1, allowing the noise level to vary while maintaining the discount factor fixed
at 0.9, we see that the policies for these choice of parameters are always ineffective. Thus, changing the noise level in this case
does not affect the ineffectiveness of the policies.

We also computed optimal policies that have a duration period of L steps that are followed by a recovery period (without
intervention) of L − W steps as described by Yousefi et al. (2012); Aguilar et al. (2020). In Supplemental Figures 1–12 (see
Supplemental Materials) we show results for optimal policies with L = W for L = 2, 4, 6, 8. We see that for the case of all
propensities equal to 0.5, the policies become effective for a discount factor of 0.9 or higher. However, for the propensities
in Table 1, the policies are still ineffective. For policies with four steps or higher, even the propensities in Table 1 will produce
effective policies.

3.2 The Repressilator

The Repressilator is a gene regulatory network consisting of 3 genes, each expressing a protein that represses the next gene in
the loop. Its wiring diagram is a cycle of three repressors as shown in Figure 8(a). This model has been studied using differential
equations (Alon, 2019). The Repressilator has been used for the design and construction of synthetic networks to understand
different cell functions (Elowitz and Leibler, 2000). Here we create a Boolean model for the Represillator using three update
functions given in Figure 8(b). Then we examine the effect the propensities have on its long term dynamics using the SDDS
framework. The synchronous dynamics (i.e., without stochasticity) of this model is given by two cycles: a 2-cycle and a 6-cycle
as shown in Figure 9(a). We note that the 6-cycle represents a biological attractor that describes the stable oscillations of the three
repressors that was shown to exist with other model types (Elowitz and Leibler, 2000; Alon, 2019). The 2-cycle is an artificial
attractor which a product of the synchronous update. Once we add stochasticity to the model using the SDDS framework, the
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(a) Wiring Diagram.

f1 = x3 = x3 + 1,
f2 = x1 = x1 + 1,
f3 = x2 = x2 + 1.

(b) Regulatory Functions

Figure 8: Boolean model of the Represillator.

(a) No stochasticity. (b) With stochasticity.

Figure 9: The synchronous dynamics are given by a 6-cycle and a 2-cycle in (a) without noise. With stochasticity using the
SDDS framework, one may leave the 2-cycle for the 6-cycle, but not the other way around.

states in the 2-cycle became transient states (that is, it was possible to escape from the 2-cycle). However, the 6-cycle was still
an attractor as shown in Figure 9(b). We highlight the fact that the biological attractor is robust to the update mode. Thus, we
consider the 6-cycle to be the absorbing state for calculating time to absorption. We note that for this example we do not consider
control actions and therefore this example is not a Markov decision process. However, we will study the effect of changes in the
propensity parameters on the time to absorption and the mixing time of this model.

In Figure 9(b) we can see the effect the propensities have on the transition from one state to another. In this particular
example the propensities are (

0.2 0.9 0.5
0.9 0.2 0.5

)
,

where the top row is the activation propensity for each function and the bottom row is the degradation propensity for each
function. We note that in this selection of propensities we are specifying a slow activation rate for the variable x1 and a fast
degradation rate for variable x1. Inversely, we are specifying a fast activation rate for the variable x2 and a slow degradation rate
for variable x2. The mixing time is 4.5547 steps with the repressilator spending 6.85% of the time in each state 001 and 101,
12.33% of the time in each state 011 and 100, and 30.82% of the time in each state 010 and 110. Negligible time is spent in states
000 and 111. We want to investigate the range of mixing times for the Repressilator.

First, we examine the mixing time when both propensities for all variables are the same. In Figure 10, the top line in blue
represents the mixing times when all propensities are the same. We find the lowest mixing time when all of the propensities are
0.5. The red line represents when we only change the propensities inversely for p↓2 and p↑3 while keeping all other propensities
0.5. In this case, we find that the mixing time is lowest at the ends of the graph. That is when p↓2 = 0.9 and p↑3 = 0.1 and vice
versa, we achieve the lowest mixing time.

It is intuitive that when all of the propensities are low, the states in the Repressilator are less likely to change their current
states. In particular, since the 2-cycle is less likely to change states, the time to absorption becomes larger which causes the mixing
time to be higher as well—see Figure 11(a). A similar effect is seen with high propensities where the 000 and 111 alternate before
being absorbed as in Figure 11(b). The smallest mixing time appears to occur when the propensities are at 0.5 when the system
has the highest change to leave the 2-cycle and be absorbed—see Figure 12(a). However this mixing time is 6.9521, which is
higher than the mixing time for the starting example. The minimum mixing time seems to occur when the propensities are not
equal.

To further analyze the effect of changes in propensities, we start by setting all propensities to 0.5 and allowing one propensity
to differ. The lowest mixing time for propensities tested from 0.1 to 0.9 is 4.8887 at 0.1 and remains the same for all variables.
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Figure 10: A comparison of the mixing times. The x-axis represents the value of the propensities. The y-axis represents the
mixing time. The blue line represents the mixing times when all propensities are the same. We find the lowest mixing time when
all of the propensities are 0.5. The red line represents when we only change the propensities inversely for p↓2 and p↑3 while keeping
all other propensities 0.5. In this case, we find that the mixing time is lowest at the ends of the graph. That is when p↓2 = 0.9 and
p↑3 = 0.1 and vice versa, we achieve the lowest mixing time.

(a) All propensities 0.1 (b) All propensities 0.9

Figure 11: Same propensities comparison: When the propensities are all 0.1, the network has a tendency to stay at the state it
started on and when the propensities are all 0.9, it has a tendency to go to the next state in the cycle more quickly. In both cases,
the probability to leave the 2-cycle is low.
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(a) All propensities 0.5 (b) x2 deactivation, x3 activation

Figure 12: When all of the propensities are 0.5, the system has the fastest mixing time of all same propensities. When p↓2 = 0.9
and p↑3 = 0.1, we see that state 001 has a much higher probability to go to state 100 in comparison to all other probabilities in
the network. This is when the mixing time is fastest overall.

Figure 13: Transition matrix of the Repressilator model.

Allowing two functions to have differing inverse propensities yields more interesting results. For example, if the propensities are(
0.5 0.5 0.1
0.5 0.9 0.5

)
,

we get a mixing time of 4.3157. The mixing times for propensities for this inverse relationship between the activation propensity
for the third function and the deactivation propensity for the second function can be seen in Figure 12(b) starting at 0.1 and
0.9 respectively. Setting all other propensities to 0.9 allows an even shorter mixing time of 2.8627 at endpoints 0.1 and 0.9, but
setting all other propensities to 0.1 forces the mixing time to be even longer with 11.9877 being the smallest mixing time at 0.5.
Finally, it is worth noting that the time to absorption remains low even when mixing times are large. For instance, when the
mixing time is 11.8977 for propensity matrix (

0.1 0.1 0.5
0.1 0.1 0.5

)
,

the time to absorption is 1.6949. In summary, we have observed that the mixing times of this model are sensitive to changes
in the propensity parameters while the time to absorption remained stably low. This means that it is always possible to escape
from the artificial attractor and then to transition into the biologically-relevant attractor relatively quickly, and after a number
of steps given by the mixing time the stable oscillations will be achieved.

We show the transition matrix (obtained using Eq. 2) of the Boolean Repressilator model in Figure 13 and their eigenvalues
in Equation 13. When all the propensities are the same (i.e., p = p↑

k
= p↓

k
for all k), we see that the absolute value of all eigenvalues

are minimized when p = p↑
k
= p↓

k
= 0.5 as shown in Figure 14.

λ1 = 1,

λ2 = 1 − 2p,

λ3 = 3p2 − 3p + 1,

λ4 = 1 −
3(1/2)p ∗ i

2
−

p

2
,

λ5 = 1 +
3(1/2)p ∗ i

2
−

p

2
,

λ6 = 1 −
3(1/2)p ∗ i

2
−
3p
2
,

λ7 = 1 +
3(1/2)p ∗ i

2
−
3p
2
,

λ8 = −2p3 + 3p2 − 3p + 1.
(13)
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Figure 14: Here we show the plots of eigenvalues from the transition matrix in Figure 13, where all propensities are assumed to
be the same. Eigenvalues (listed in order in Equation 13) are all minimized when the propensity is p = 0.5, and graphical results
can easily be confirmed analytically or numerically with MATLAB’s fminsearch function.

4 Conclusion

In this paper, we studied the effect of changes in model parameters on optimal control policies, time to absorption, and mixing
times by focusing on a class of Markov decision processes that is obtained by considering stochastic Boolean networks equipped
with control actions. The stochastic framework that we used is the one called Stochastic Discrete Dynamical Systems (SDDS).
The SDDS framework introduces stochasticity by assigning two propensity parameters to each function in a Boolean network.
Using the SDDS framework and their control actions, we have performed an analysis of the effect of changes in propensity
parameters on optimal control policies, time to absorption, and mixing times on specific Boolean models.

In the first part of the results, we studied how the choice of propensity parameters affects the effectiveness of optimal control
policies where, depending on the range of values of certain parameters (e.g., the discount factor, level of noise, and the period
of control policy duration), some policies became ineffective. We have also shown that by tuning the noise level and duration of
the control policies one can still guarantee the effectiveness of some of the policies that we have considered.

In the second part of the results, we have studied the effect of changes in the propensity parameters on the time to absorption
and the mixing time for a Boolean model of the Repressilator. We have shown that the mixing time of Repressilator model was
very sensitive to changes in the propensity parameters while the time to absorption remained stably low. This means that in this
model, regardless of the propensities, it will always be possible to reach the biologically-meaningful attractor relatively quickly,
and after a number of steps specified by the mixing time the stable oscillations will be achieved.

To conclude, the results of this paper will help us understand the sensitivities of model parameters in similar models and
their results and might help us inform the selection of different parameters in other models.
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