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ABSTRACT

We introduce a model for the expectation of occupancy as a function of spatial

scale variables and variables related to characteristics of sites for avian and bat

habitat quality assessment. We utilized a unique functional representation for the

joint density based on the estimated modes of the univariate distributions to model

the expectation of occupancy. Unlike binary classi�cation methods, the proposed

construction does not require a clear distinction of used versus unused habitats. It

also allows extending variable ranges for spatial generalization. We demonstrate

how one could utilize the expectation of occupancy to reliably predict habitats a

particular avian species may choose for nesting or roosting, to compare various tree

species and sites, and to identify prominent characteristics that govern the selection

of a site by avian and bat species. The methods can be utilized in the management

of suitable sites and the conservation of endangered species.
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1 Introduction

Management of suitable habitats that a species can occupy is important for the conservation of threatened and endangered

species. Evaluating a habitat for suitability requires an understanding of the expectation of occupancy that quantifies the asso-

ciation between habitat conditions and the selection of the habitat by the focal species. In this paper, we introduce a unique

model for the expectation of occupancy of a habitat to compare potential avian nesting or roosting sites or qualitative habitat

properties for threatened species. While all the applications of the methods here are related to avian and bat nesting and roosting

habitats, one could easily use the proposed methods for any threatened species population.

Various empirical and statistical methods have been utilized in evaluating avian and bat habitat selection (Carter and Feld-

hamer, 2005; DeBoer and Diamond, 2006; Doherty et al., 2010; Emrick et al., 2010; Keating and Cherry, 2004; Manly et al.,

2002; Pauli et al., 2015; Phillips et al., 2006). The common objective of these studies is either to identify the primary charac-

teristics of the nesting or roosting habitats or to model the probability of use of a tree or a forest by the focal species. Habitat

selection studies often utilize location information and resource availability of the sites that are used versus available (or not

used) to assess which habitat characteristics are important (Boyce et al., 2002; Emrick et al., 2010; Kroll, 1980). Such analyses

are essential in modeling species habitats and the likelihood for occupancy. The most important conservation and management

implications of modeling the probability of use is to reliably predict the habitats that a particular avian species may choose for

nesting or roosting. However, there are various challenges that impact the reliability of models that characterize the habitats and

the likelihood of occupancy for threatened and endangered species:

1. Location and tree characteristics can create a relatively large feature space that requires a large number of observations

to generate a reliable probability function. Yet data for available habitats can be limited when the species population is

minimal (Aldridge et al., 2012; Emrick et al., 2010; Schroder et al., 2017).

2. Many factors may govern avian and bat habitat selection, including food abundance (Burke and Nol, 1998; Kusch et al.,

2004; Livingston et al., 1990; Verner and Willson, 1966), proximity to water sources (Andrew and Mosher, 1982; Mundahl
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et al., 2013), protection from predators (Kelly, 1993; Lima, 2009; Martin, 1993; Quinn et al., 2003), ease of defense (Bern-

stein and McLean, 1980; Sonerud, 1985), and offspring survival (Gibson et al., 2016; Newlon and Saab, 2011; Willson,

1966). Many spatial scale variables and habitat characteristics may support several of these factors, making it difficult to

distinguish the variables that are most important for predicting site selection.

3. Data sets can be burdened with correlations among variables (Battin and Lawler, 2006; Lichstein et al., 2002; Schroder

et al., 2017). Spatial patterns, stand age, and fragmentation in the landscape create correlated variables. For example, an

area measure can be highly correlated with distance to the forest and water boundaries; tree size can be correlated with

stand age; canopy cover can be correlated with surrounding trees’ status as live versus dead; and distance from the habitat

to water bodies can be correlated with distance between water bodies.

4. Most of the data ranges are restricted by region-dependent geographical, biophysical, or ecological constraints, limiting

prediction reliability over spatial distributions. Examples include: distance measures, restricted by landscape features; area

measures, restricted by fragmentation; and tree characteristic measures, restricted by the tree species. Spatial generalization

of the model may be essential when the prevalence of the species is minimal.

5. Habitat classifications are usually based on estimating a resource selection function (RSF) using data from locations that

are used by the species versus those that are either unused or available (Manly et al., 2002). Effective classification by RSF

models derived from used versus available habitats requires a clear distinction of the characteristics of each of the two

categories so that one can estimate the probability of use given the data. While used locations are always confirmed, many

sites may be unused only because of the scant population size of a threatened or endangered species, and the possibility

that many available sites may be rather classified as used in the presence of a larger population may impact the accuracy of

the classification.

We introduce a model for the expectation of use, using mode-based density estimations, to address the challenges that result from

the various aforementioned limitations. The proposed methods reduce redundancy and overfitting, expand model usefulness

for spatial generalization and avoid the need of clear distinction between used versus unused or available data sets.

In avian habitat studies, variables are chosen either because they have already been utilized in previous literature or based

on hypotheses relating species abundance and the ecology of the species. However, because of the existence of correlated and

irrelevant features, not all data sets can support a meaningful integration of the chosen variables in a model for expectation

of occupancy. The difficulty of distinguishing unsuitable habitats and the infrequent use of sites by the focal species limit the

usefulness of many existing subset selection methods that are based solely on relevance to the response. We model the expectation

of occupancy by utilizing a variable set that reduces redundancy. In the example section, we demonstrate that the minimum

redundancy maximum relevance (MRMR) algorithm (Ding and Peng, 2005) is a good fit to identify model variables. In some

cases, only the locations that were used by the threatened or endangered species population are available (presence-only data

points; see Pauli et al., 2015; Hammond et al., 2016; Schroder et al., 2017 for some examples), for which case the MRMR

algorithm is not applicable. Here we introduce a variable filter based on presence-only data points alone. The proposed filter

algorithm follows the minimum description length principle (Rissanen, 1978), in which the best model for a data set is the

one that provides the best compression of the data set. Subsequently, the expectation of occupancy can be effectively modeled

without explicit variable selection analysis. Using both simulated and real data sets, we demonstrate the fitting performance of

the algorithm for the task.

We combine presence-only data points with data from random locations to model the expectation of occupancy (given the

variables). The conditional expectation is the regression function for Bayes classifiers. When the features are conditionally inde-

pendent, Bayes classifiers minimize the probability of incorrect binary classifications (Devroye et al., 1996). As we demonstrate

in Section 3, the proposed method is capable of performing better than logistic regression models when comparing used versus

random habitats. The most direct and functional application of the proposed method is for micro-scale investigations. For exam-

ple, the expectation of occupancy can be utilized for statistical inferences in identifying preferred tree species for nesting habitats,

evaluating the impact of forest fragmentation or human developments, and evaluating preference for specific tree characteristics

for maternity roosts.

If data ranges are restricted by geographical or ecological constraints, data may not be available for a large portion of the do-

main. Such data sets do not support the identification of the population mean or median. We propose a unique representation

of the joint density of the site characteristic and spatial scale variables, based on the estimated modes of the univariate distribu-

tions. The underlying assumption is that the value at which the probability density function has a maximum (the mode of the

distribution) is within the restricted data range and can be obtained from the empirical density function. The proposed approx-

imations are robust for data sets with limited ranges and allows extending the variable ranges for predictions. Here we present

the construction, related theory, and applications that can be useful in the management of suitable sites and the conservation of

endangered species.
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2 Model

In this section we discuss the construction of the model for the expectation of occupancy. We denote the variables associated

with the habitats of interest by Xi , i = 1, . . . , n, and the low dimensional subset of characteristics containing the variables of

greatest importance by the random vector X = [X1,X2, . . . ,Xk]T , where superscript T denotes the transpose and k ≤ n. For

a given region, suppose S ∈ {0, 1} represents the use (no = 0, yes = 1) of a site by the focal species. We write E [S | X = x] to

represent the expectation of occupancy given X = x for some x ∈ Rk
. We have the following result.

Lemma 2.1. Suppose S ∼ Bernoulli(p) and X = [X1,X2, . . . ,Xk]T . Then

E [S | X = x] = p
fX | S (x | 1)

fX (x)
, (1)

where x = [x1, . . . , xk]T , p is a constant, fX (x) is the probability distribution function of X, and fX | S (x | 1) is the conditional joint
probability distribution of x given S = 1.

Proof. Let R (x) =

∏k
i=1 [0, xi] ⊂ Rk

+
be the nonnegative k-orthotope generated by the Cartesian product of k intervals

[0, xi], i = 1, . . . , k. We may describe the joint distribution of X and S by P(S = s,X ≤ x) =

∫
R (x) fS,X (s, t) dt, where

x ≥ 0, t = [t1, . . . , tk]T , dt = dt1dt2 . . . dtk is a hypervolume element in Rk
, and fS,X is the density of the mixed distribution.

Then pS (1) = P(S = 1) =

∫
Rk
+

fS,X (1, t) dt and the probability density of X is fX (x) = fS,X (0, x) + fS,X (1, x). If ps (1) > 0,

fX |S (x|1) = fS,X (1, x)/pS (1), and if fX (x) > 0, pS |X (1, x) = fS,X (1, x)/fX (x). Subsequently, pS |X (1|x) = fX |S (x|1)pS (1)/fX (x)

and hence, E [S |X = x] = pS |X (1|x) = p
fX |S (x|1)
fX (x)

. □

Next we modelE [S | X = x] based on unimodal smoothing approximations for the univariate probability density function

of each variable Xi using

ϕ(x) ≜ ζe−4α(x−γ)(
1 + e−β(x−γ)

)
4
, α/β ∈ (0, 1). (2)

Lemma 2.2. Let
{
xj
}m
j=1
,m ≥ 7, be adistinct observation set of the randomvariableX arranged inascending order,xxx =

{
xj
}m−3
j=4

andyyy =
{
yj
}m−3
j=4

, yj = 28/n(3xj+3+2xj+2+xj+1−xj−1−2xj−2−3xj−3). If (ζ , α, β, γ) = argmin

ϕ(xxx) − yyy

2
subject toα/β ∈ (0, 1),

then ϕ is a unimodel approximation for the empirical probability density function of X .

Proof. Define η ≜ α/β. Since ϕ(x) ≥ 0 and 0 <
∫ ∞
0

ϕ(τ) dτ ≤
∫ ∞
−∞

ζe−4α(τ−γ)

1 + e−4β(τ−γ)
dτ =

ζ

4β
Γ
(
η
)
Γ
(
1 − η

)
< ∞, by choosing ζ

appropriately, the function ϕ(x) is well suited as a density function for η ∈ (0, 1), where Γ represents the gamma function. For

η ∈ (0, 1), ϕ′ (x) has one zero, max ϕ(x) = ζ
(
1 − η

)
4(1−η)

η4η at x = γ + ln

(
1−η
η

)
1/β

and ϕ(x) is unimodel. Suppose f ∈ C1 (Ω)
is a strictly increasing smoothing approximation for the empirical distribution on Sj such that f (xj) = j/n, where Ω is an open

set containing [xj−3, xj+3]. Then we have f ′ (x) > 0 for all x ∈ Ω. Let J be the image of Ω under f . From the inverse function

theorem, function f has an inverse g : J → Ω such that g ∈ C1 (J ) with derivative g′ (s) = 1

f ′ (g(s)) , s ∈ J . Here we let f (x) be

linear and, using the slope of the simple linear regression equation g(s) = ms + b, we find

yj = f ′ (xj) =
1

m
=

∑
3

p=−3
(
p/n

)
2∑

3

p=−3 j
(
xj+p − x

)
/n

where x is the mean of Sj . □

With an appropriate scaling, function ϕ(x) approximates well many distributions within the exponential family (see Fig-

ure 1).

Suppose X1,X2, . . . ,Xk are independent. Let ϕXi | S (xi | 1) and ϕXi (xi) be the probability density approximations of Xi

using data for the locations selected by the focal species (presence-only data) and for available locations, respectively. Then

fX | S (x | 1) ≈ ∏k
i=1 ϕXi | S (xi | 1) and fX (x) ≈

∏k
i=1 ϕXi (xi). Suppose 𝜇Xi and 𝜇Xi | S are the sample means for Xi and Xi | S,

respectively, and 𝜇Xi < 𝜇Xi | S . Let

Ei = ai
ϕXi | S (xi | 1)

ϕXi (xi)
1[0,mi ) (xi) + 1[mi ,∞) (xi),
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where mi is the mode of the unimodal approximation ϕXi |S , 1 is the indicator function, and ai is chosen such that Ei is contin-

uous. If 𝜇Xi ≥ 𝜇Xi | S , we set

Ei = 1[0,mi ) (xi) + ai
ϕXi | S (xi | 1)

ϕXi (xi)
1[mi ,∞) (xi).

Figure 2 represents two examples.

We obtain a model for the expectation of occupancy by E [S | X = x] = ∏k
i=1 Ei . For each Xi , suppose the value at which

the probability density function has a maximum (the mode of the distribution) is within the data range. Then any range re-

striction beyond the mode does not change the expectation of occupancy. If we were to include features that do not have much

relevance to site selection, then the corresponding ratio ϕXi | S (xi | 1)/ϕXi (xi) would be closer to one, limiting their impact on

the expectation of occupancy.

Consider the binary classification problem of identifying suitable habitats for conservation. The primary goal is to min-

imize the error of incorrectly failing to identify the suitable habitats (false negative). We identify the decision boundary for

E [S | X = x] by finding a value q for which at least 100π% of the presence-only data points have the label S = 1. Suppose

for the presence-only data set, argminq∈[0,1] P
(
E [S | X] ≥ q

)
≥ π, where P represents the probability. The corresponding

classifier CL is the function given by

CL (x) =
{
1 if E [S | X = x] > q,

0 if E [S | X = x] ≤ q.
(3)

With the proposed classifier CL , we set the false negative rate to at most 1 − π for a presence-only data set.

2.1 Variable �lter

The model for E [S | X = x] uses an uncorrelated variable set X = [X1,X2, . . . ,Xk]T from the variables Xi , i = 1, . . . , n, as-

sociated with the habitats of interest. Unknown class labels for the available data points make it difficult to employ a variable

selection algorithm. When the proportion of S = 1 labels is expected to be small, we may utilize a robust variable selection

method such as lasso regularization (Tibshirani, 1996). Otherwise, we may use an algorithm to reduce redundancy among the

variables, such as the MRMR algorithm (Ding and Peng, 2005). However, for the proposed model, the inclusion of irrelevant

features has minimal impact, circumventing the need for a variable selection algorithm. Here we propose a variable filter based

on reducing redundancy, which is particularly useful for presence-only data sets (see Section 3). The filter construction is similar

to a rank-revealing QR factorization, which is useful in determining the rank of a matrix (Chan, 1987; Gu and Eisenstat, 1996).

Supposem×nmatrix A represents a standardized (z-scores calculated along each column) presence-only data set withn variables

and m observations, where n < m. We find a column permutation matrix Π such that AΠ = [A1 , A2], where A1 represents

important and linearly independent features and A2 represents features to be discarded. We seek to find an appropriate subset

of variables by minimizing the distance between the subset data matrix A1 ∈ Rm×k
and the standardized data matrix A (defined

as minv ∥A1v − A∥F , where v is any k × n real matrix, and F represents the Frobenius norm) so that A1 captures a significant

amount of information from A. Suppose the QR decomposition of A is given by

AΠ = [A1 , A2] = QR =

[
Q1 , Q2

] [ Ak Bk
0 Ck

]
, (4)

where Q1 ∈ Rm×k
, Q2 ∈ Rm×(m−k)

, matrix Ak ∈ Rk×k
is upper triangular with nonnegative diagonal elements, Bk ∈ Rk×(n−k)

,

and Ck ∈ R(m−k)×(n−k)
.

Lemma 2.3. The minimizer forminv ∥A1v − A∥F is given by Trace(CT
k

Ck) = ∥Ck∥2F .

Proof. Suppose v̂ = A+

1
A, where A+

1
is the Moore-Penrose inverse of A1. Then

∥A1v − A∥2F = ∥A1v − A1v̂ + A1v̂ − A∥2F
= ∥A1v̂ − A∥2F + ∥A1 (v − v̂)∥2F + Trace

(
(A1 (v − v̂))T (A1v̂ − A)

)
= ∥A1v̂ − A∥2F + ∥A1 (v − v̂)∥2F + Trace

(
(v − v̂)T

( (
A1A+

1
A1

)T A − AT
1

A
))

= ∥A1v̂ − A∥2F + ∥A1 (v − v̂)∥2F .

We have ∥A1v − A∥F ≥ ∥A1v̂ − A∥F and the equality holds if and only if v = v̂ = A+

1
A. Therefore, the minimizer for

minv ∥A1v − A∥F is given by v = A+

1
A. From Equation 4, A1 = Q1Ak and A2 = Q1Bk + Q2Ck. Since Q is orthogonal,

Im = QTQ =

[
Q1 , Q2

]T [
Q1 , Q2

]
=

[
QT

1
Q1 QT

1
Q2

QT
2

Q1 QT
2

Q2

]
=

[
Ik 0
0 Im−k

]
,
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Figure 1: Approximations of distributions in the exponential family by ϕ(x). In the left column, N (𝜇, σ), Γ(k, θ), W (k, λ),

and Exp(λ) represent the approximations ϕ(x) for the normal, gamma, Weibull and exponential distributions, respectively; in

the right column, they represent the error f (x) − ϕ(x), where f (x) denotes the true distribution. The absolute error in the

approximations is less than 0.05 for all the distributions.
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Figure 2: Two examples of Ei . Here ϕXi | S (xi | 1) and ϕXi (xi) are scaled to be one at the respective modes.
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where Im and Im−k are m×m and (m− k) × (m− k) identity matrices, respectively. Assuming that A1 has full column rank, Ak

is invertible, and hence, A+

1
=

(
AT
1

A1

)−1AT
1
=

(
AT
k

QT
1

Q1Ak

)−1AT
k

QT
1

=

(
AT
k

Ak

)−1AT
k

QT
1

= A−1
k

QT
1

. Using the fact that

∥A∥2F =

∑
j

∑
i |aij |2,

min

v
∥A1v − A∥2F = ∥Q1AkA−1

k QT
1

A − A∥2F
=

(Q1QT
1
− Im)

[
Q1Ak, Q1Bk + Q2Ck

]2
F

=

[Q1QT
1

Q1Ak − Q1Ak, Q1QT
1

Q1Bk − Q1Bk + Q1QT
1

Q2Ck − Q2Ck

]2
F

= ∥Q2Ck∥2F = trace(CT
k QT

2
Q2Ck) = trace(CT

k Ck) = ∥Ck∥2F . □

To identify A1, we find the minimum k that satisfies the inequality

Trace

(
CT

k Ck

)
≤ k(m − 1) 1 − t2

t2
, t ∈ [0.75, 1]. (5)

We then select as A1 the first k columns of AΠ. Since A is standardized along each column, we have ∥A1∥2F = k(m − 1) and

∥A∥2F = n(m−1). From inequality (5), we obtain ∥Ck∥F ≤
√︁
kt̃/n∥A∥F , t̃ = (1−t2)/t2. Then

∥A1∥F
∥R∥F

=

∥Ak∥F
∥Ak∥F + ∥Ck∥F

≥ t.

We select the minimum number of variables that, when combined, account for 100t% or more of the Frobenius norm of the

upper triangular matrix R. If we utilize both presence-only data points and data from random locations, then we may choose a

value of t closer to one. If the data set is limited to presence-only points, we choose a t closer to 0.75 to remove as many redundant

features as possible.

3 Examples and Results

In this section, we demonstrate various applications of the proposed method for the expectation of occupancy. We start with a set

of simulation examples to show the superior performance of the proposed classifier, regardless of the level of correlation between

variables and the proportion of S = 1 labels in the unclassified data set. Then we show the applicability of the MRMR algorithm

for variable selection for the model. We also demonstrate that the minimum redundancy algorithm proposed here performs

comparably to the MRMR algorithm. Next we use a bald eagle nesting habitat data set to identify suitable nesting habitats,

to obtain an RSF model, and to show that cottonwood trees have the highest expectation of occupancy as nesting habitats in

the Upper Mississippi River National Wildlife and Fish Refuge. Finally we use an Indiana bat maternity roost (presence-only)

data set to demonstrate variable selection using the proposed filter algorithm and to show that its bark structure gives shagbark

hickory the highest expectation of occupancy as maternity roots. All computations were carried out on a 64-bit laptop with a

Core i7 - 4 core processor at 1.8 GHz and 8 GB memory. All examples are completed using Matlab version R2020a.

For the simulated data examples, we generate a random (unclassified) data set M0 using a multivariate normal distribution.

Then we construct a binary response vector using a logistic function and obtain a subset associated with the label 1 to use as the

presence-only data set, M1. Next, we create a random nonstratified partition, M3, using 30% of the rest of the data points for

holdout validation. Finally, we strip the labels from the remaining data points to create a second data subset, M2, to be used for

comparison with binary classification methods. We use M0 and M1 as the training data sets to obtain the classification model,

CL . We evaluate the predictive performance on the held-out validation set using classification error P
(
CL (M3) ≠ y3

)
as the

performance evaluation metric for comparisons, where y3 is the responses associated with M3.

For micro-scale investigations, we use E [S | X = x] to compare the suitability of each member in a collection (tree species

or potential sites for conservation) as nesting or roosting locations for the focal species. Suppose that a presence-only data set

is available for a given region and let {At : t = 1, . . . ,N } be a partition of the data points. Suppose that each partition At =

{x(t1)
, x(t2)

, . . . , x(tm) } ⊂ Rk
contains distinct data points. Then

E[S | At] =
m∑︁
j=1

P(S = 1 | x(tj) )P(x(tj) | At) ≈ C
m∑︁
j=1

∏k
i=1 ϕXi | S (x

(tj)
i | 1)∏k

i=1 ϕXi (x
(tj)
i )

for some constant C > 0. Hence, the expectation of occupancy can be compared between partitions by simply comparing the

averages of

(∏k
i=1 ϕXi | S (xi | 1)

)
/
(∏k

i=1 ϕXi (xi)
)

for each partition. We use the Kruskal-Wallis H-test to compare the partitions

based on tree species for the real data sets. For the corresponding examples, we assume that the sample data can be partitioned

using the given categorical variable and there is no relationship between the observations within each partition, nor between the

partitions. We further assume that the shapes of the distributions of E [S | X = x] for each partition are unknown and thus the

null hypothesis for each test is that the distribution of E [S | X = x] does not differ between the partitions.
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Example 1

In this simulation example, we compare classifications using the expectation of occupancy and logistic regression. We gener-

ate the random data matrix M0 using 500 independent realizations from a 50-dimensional multivariate normal distribution.

Consider the correlation matrix Σ with entries Σij = ρ |
√
i−
√
j |

for i, j ∈ {1, . . . , 50}, where ρ ∈ (0, 1) controls the level of corre-

lation. By choosing matrix Σ as the correlation matrix (with Pearson product-moment correlation coefficients), we model high

correlation for observations which are close together in the correlation matrix, decreasing correlation for observations which are

increasingly far away, and slightly increasing correlation among sets of variables as one moves to the right within the matrix. We

draw the rows of matrix M0 ∈ R500×50
from a Normal(𝜇,Σ) distribution, where 𝜇 = [3, 3, . . . , 3]T is a constant mean vector

chosen such that almost all the data points are nonnegative.

Let β = [β1, β2, . . . , β50]T with βi = 1 for 10 indices i from set {1, 2, . . . , 50}, as explained in each simulation experiment

below, and otherwise βi = 0. Let z =

1

1 + e−M0β+β0
, where the choice of β0 controls the class sizes. We define the categorical

response y by

yi =

{
1 if zi > 0.5,

0 if zi ≤ 0.5,

and y = [y1, y2, . . . , y500]T and z = [z1, z2, . . . , z500]T .

With this model, we generate a best-suited data set for logistic regression to compare to the performance of the classifier CL .

To produce the presence-only data set M1, we take the first 50 data points with the label “1”. As explained earlier, we randomly

partition the remaining data points to obtain the second data sample M2 and the nonstratified held-out validation set M3.

We obtain the decision boundary for CL by setting π = 0.975. We use M1 and M2 to obtain the logistic regression model

assuming that the second data set represents the class with “0” labels. We obtain one logistic classifier (Logistic 1) by setting the

false negative rate for the presence-only data set to 2.5% (the same boundary criterion as used for CL ). For reference, we also

include the logistic classifier that minimizes the classification error for the training set (Logistic 2). We use the validation set M3

to evaluate the performance by comparing the classification error between the actual responses y3 and the predicted responses

CL (M3). We repeat the simulation for 25 randomly generated data matrices M0,M1,M2 and distinct pairs of validation sets

(M3, y3), and then average the results to obtain the predictive performance.

Simulation experiment 1. In this experiment, we compare the classification performance by assuming that the subset of

variables that generates the output is known. We choose βi = 1 for 10 equality spaced variables Xi , i = 5, 10, 15, . . . , 50. By

choosing nonzero coefficients spaced as far apart as possible, we force the least possible correlation among the model variables.

We set increasing correlation levels, ρ = 0.5, 0.7, 0.9, and use β0 = 28, 30, 32, 34, so that the proportion of “1” labels in the

validation set, M3, decreases from about 60% to about 20% as β0 increases. The classification errors and the false negative rates

are given in Figure 3 and in Table 1 of Appendix A. The classification error for CL is always less than 0.09, and for the majority

of the cases, the method accurately classifies more than 94% of the responses. The errors for the logistic classifiers are always

larger than 0.09. The large classification errors associated with Logistic 2 show the inapplicability of classifiers that assume the

two data sets belong to two distinct classes. Also, the false negative rate for the proposed method is always better than the other

two methods (see Table 1). While the accuracy of CL increases with an increase in correlation, the accuracy does not show a

dependent relationship with the percentage of “l” labels in the validation set. The logistic classifiers, however, show a significant

increase in classification error with an increase in the proportion of “1” labels.

Next we evaluate the performance of the classifier when the percentage of “1” labels in the data sets is very small. We set

ρ = 0.5, 0.7, 0.9 and, for each value of ρ, we find two appropriate β0 values such that the proportion of “1” labels in the validation

set is about 5% and 10%, respectively. In this case, a 2.5% false negative rate results in a larger classification error. We obtain the

decision boundary for CL by setting π = 0.9 and, for the first logistic regression model, by setting the false negative rate for

the presence-only data set to 10%. The classification errors are given in Figure 4 and in Table 1 of Appendix A. The proposed

method accurately classifies more than 96% of the responses and outperforms the logistic classifiers except when ρ = 0.5. Also,

CL accurately classifies more than 99% of the responses at a higher correlation (using ρ = 0.9), with no more than 40% of the

classification error of the other methods.

Simulation experiment 2. For the second simulation experiment, we set βi = 1 for the first 10 coefficients, i = 1, 2, 3, . . . , 10.

By choosing consecutive nonzero coefficients, we increase the possible correlation among the model variables. We again set the

correlation levels ρ = 0.5, 0.7, 0.9 and β0 = 34, 32, 30, 28. The classification errors and the false negative rates are given in

Figure 5 and in Table 3 of Appendix A. The proposed classifier accurately classifies at least 95% of the responses for every case.

The classification error for the logistic classifiers is always higher than that of CL : at least 4 times higher for all but one case. In

fact, the classification error of CL is almost always smaller than the respective cases in simulation experiment 1, even though the

derivation of the method assumes uncorrelated variables. If we set βi = 1 for the last 10 coefficients, i = 41, 42, 43, . . . , 50,where

the correlation among model variables is maximized within this data matrix, CL does an even better job of outperforming the

other methods by classifying more than 97% of the responses accurately for each value of ρ.



124 D. B. EKANAYAKE, I. WASALA MUDIYANSELAGE, N. WICKRAMASINGHE

28 30 32 34
0

0.2

0.4

0.6

C
la

ss
ifi

ca
tio

n 
E

rr
or Proposed

Logistic 1
Logistic 2

28 30 32 34
0

0.2

0.4

0.6
Proposed
Logistic 1
Logistic 2

28 30 32 34
0

0.2

0.4

0.6
Proposed
Logistic 1
Logistic 2

28 30 32 34
0

0.05

0.1

F
al

se
 N

eg
at

iv
e 

R
at

e

Proposed Logistic 1

28 30 32 34
0

0.05

0.1
Proposed Logistic 1

28 30 32 34
0

0.05

0.1
Proposed Logistic 1

Figure 3: Classification performance for tests of the proposed classifier CL and the logistic classifier for simulation experi-

ment 1. The decision boundary for Logistic 1 is obtained by setting the false negative rate for the presence-only data set to 2.5%.

The decision boundary for Logistic 2 is obtained by minimizing the classification error for the training set assuming the two

data sets belong to two distinct classes.
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Figure 4: Classification performance for tests of CL and the logistic classifier using simulation experiment 1 when the pro-

portion of “1” labels in the validation set is about 5% and 10%. The decision boundary for Logistic 1 is obtained by setting the

false negative rate for the presence-only data set to 10%. The decision boundary for Logistic 2 is obtained by minimizing the

classification error for the training set assuming the two data sets belong to two distinct classes.
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Figure 5: Classification performance for tests of CL and the logistic classifier for simulation experiment 2. The decision

boundary for Logistic 1 is obtained by setting the false negative rate for the presence-only data set to 2.5%. The decision boundary

for Logistic 2 is obtained by minimizing the classification error for the training set assuming the two data sets belong to two

distinct classes.
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Figure 6: Classification performance for tests of CL and the logistic classifier for simulation experiment 2, for which the

proportion of “1” labels in the validation set is about 5% and 10%. The decision boundary for Logistic 1 is obtained by setting

the false negative rate for the presence-only data set to 10%. The decision boundary for Logistic 2 is obtained by minimizing the

classification error for the training set assuming the two data sets belong to two distinct classes.
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Figure 7: Comparison of the proportion of classification errors between four variable selection methods that have been applied

to the data set described in the setup of simulation experiment 1. The classification error for the exact model variables is compared

with the variable selection from Laplacian scores (Lapl), lasso regularization (Lasso), the MRMR algorithm (MRMR), and the

proposed variable filter (VF).

As in simulation experiment 1, next we find two appropriate β0 values such that the proportion of “1” labels in the validation

set is about 5% and 10%, respectively. The classification errors are given in Figure 6 and in Table 3 of Appendix A. The proposed

classifier CL outperforms the others by accurately classifying more than 98% of the responses. The classification error for the

logistic classifiers is always higher than that of CL : at least 2 times higher for all but one case. These simulations demonstrate

the superior performance of the proposed method compared to logistic classifiers for the correlation spectrum considered here.

Simulation experiment 3. In this experiment, we evaluate the variable filter performance by applying it to the data sets de-

scribed in the setup of simulation experiments 1 and 2. We compare the classification error produced by the exact model variables

with the variables selected by the proposed filter, Laplacian scores (He et al., 2005), the MRMR algorithm, and lasso regulariza-

tion. Laplacian scores produce a variable ranking with unsupervised learning, and are thus suitable for filtering variables using

a presence-only data set alone. Since both the MRMR algorithm and lasso regularization need a response vector, we assign all

entries in the the unclassified data set to the “0” class. For the proposed filter, we use t = 0.9 to account for 90% of the variation

within the presence-only data matrix. Let n0 be the number of variables from the filter. We select the first n0 variables from the

ranking generated by Laplacian scores and by the MRMR algorithm for comparison. We use lasso regularization to remove re-

dundant predictors using 10-fold cross-validation to identify the model that corresponds to the minimum cross-validated mean

squared error (MSE). First we choose β and ρ as in simulation experiment 1, but we set β0 = 32 so that only 30-35% of the vali-

dation data set has “1” labels. Since we force the least possible correlation among the model variables, we have the most favorable

setting for the proposed variable filter. The classification errors are given in Figure 7 and in Table 2 of Appendix A. The MRMR

algorithm combined withCL produces the least classification error, with more than 88% accurate classifications. In comparison,

the proposed variable filter produces only a marginally greater classification error, but by using only the data set with “1” labels,

whereas both MRMR and lasso require both classes.

Next we choose β and ρ as in simulation experiment 2 and β0 = 32. Since we force a higher correlation among the model

variables, we have an unfavorable setting for proposed variable filter. Also, since we choose consecutive variables for the model,

we reduce the likelihood of choosing a highly correlated adjacent variable in place of a model variable. Subsequently, we expect

that methods producing lower classification errors will have chosen more of the true model variables and any method producing

variables far away from the true model variables will produce much larger classification errors. The proportion of classification

errors are given in Figure 8 and in Table 4 of Appendix A. As in the previous experiment, the MRMR algorithm combined
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Figure 8: Comparison of the proportion of classification errors between four variable selection methods that have been applied

to the data set described in the set up of simulation experiment 2. The classification error for the exact model variables is com-

pared with the variable selection from Laplacian scores (Lapl), lasso regularization (Lasso), the MRMR algorithm (MRMR),

and the proposed variable filter (VF).
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Figure 9: Density estimations of presence-only (continuous line) and random sample (dashed line) sites for the bald eagle

nesting data from Mundahl et al. (2013) using ϕ(x) (Equation 2). The plots demonstrate a preference for larger and taller trees

near water bodies.

with the proposed classifier CL produces the least classification error for all the cases, with accuracy above 90%. Lasso produces

the second best solutions and the proposed filter solutions closely follow. In contrast, variable ranking from Laplacian scores

produces classifications with more than 40% errors. These simulations demonstrate that, while the MRMR algorithm may be

the best to use in conjunction with the proposed classifier, the proposed filter is a reasonable alternative when the variables must

be selected using presence-only data sets.

Example 2

In this example, we useE [S | X = x] to predict bald eagle nesting habitats in the Upper Mississippi River National Wildlife and

Fish Refuge using data from Mundahl et al. (2013). The presence-only data set (45 data points) is comprised of four variables:

tree diameter at breast height (DBH), tree height, nest height, and distance to water. While the placement of the nest is an

important variable for habitat characterization, it cannot be utilized for assessing potential habitat selections. Therefore, we do

not use it in this analysis. A random sample of unclassified data (380 data points) is comprised of DBH and tree height. Since the

distance to the water is not included in the random sample, we cannot use variable selection methods. Using the presence-only

data set, all three variables (DBH, height, and distance to water) are selected by the variable filter at t = 0.75. Figure 9 shows

the probability density function approximations for each variable using ϕ(x). The plots demonstrate a preference for larger and

taller trees near water bodies, supporting the significance of the variables selected by the filter.

Next we use CL to identify suitable nesting habitats among the unclassified data set. We create a random nonstratified

partition for 4-fold cross-validation on the presence-only data set. The folds are chosen randomly but with roughly equal size.

We first find an appropriate false negative rate by comparing the classifications. The classification results for the test data for three

false negative rates are depicted by means of confusion matrices in Figure 10. Each figure contains four confusion matrices, each

representing the test data for the four iterations of 4-fold cross-validation. Both rates 1% and 2.5% produce only one instance of

a false negative and we choose 2.5% for classifications.

To compare the classification results, we use the binary support vector machine (SVM) model. We compare the SVM results

obtained by assigning the entire unclassified data set to the “0” class against the results obtained by assigning to the unclassified

data the classifications predicted by the proposed classifier. We use the held-out presence-only partition and the unclassified
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(a) 1% false negative rate
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(b) 2.5% false negative rate
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Figure 10: Confusion matrices for the three false negative rates for each test data set in the four iterations of 4-fold cross-

validation. The random nonstratified partition for 4-fold cross-validation on the presence-only data set is created using the

presence-only sites for the bald eagle nesting data from Mundahl et al. (2013).
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(c) Held-out presence-only

Figure 11: Confusion matrices for the SVM models for each test data set in the four iterations of 4-fold cross-validation in

Example 2. Confusion matrices for the test data in (a) are from the SVM model when the entire unclassified data set is assigned

to the “0” class. Confusion matrices for the test data in (b) and for the held-out partition in (c) are from the SVM model using

CL -assigned classifications for the unclassified data set.

data as the test data set. The classification results for the test data for each model are depicted by means of confusion matrices in

Figure 11. Assigning label “0” to the entire unclassified data set results in a 100% false negative rate for every held-out presence-

only partition (Figure 11a), whereas the SVM model that uses CL -assigned classifications for the unclassified data set produces

at most one false negative occurrence for each held-out presence-only partition (Figure 11c). In fact, the SVM model produces

classifications that are almost identical to the proposed classifier (see Figure 11b). The trained SVM model correctly classifies at

least 98% of the test data. This result demonstrates how the proposed classification method clearly distinguishes the two classes

without explicit information about both classes.

Next we use the logistic regression model with the classifications assigned byCL to obtain an appropriate RSF model for the

data set. The resulting model is given by RSF = 1/
(
1 + e−2.24x1−0.423x2+82.99

)
, where x1 and x2 correspond to DBH and height,

respectively. Using the decision boundary that produces the minimum error, the classification results for the presence-only and

the complete data sets produced by the RSF function are given by the confusion matrices in Figure 12. Only 4 instances out of

425 classifications differ between the two classifiers, suggesting an excellent RSF function for the data set.
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Figure 12: Confusion matrices for the RSF model for each test data set in the four iterations of 4-fold cross-validation.
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We conclude this example by including a micro-scale analysis. It is noteworthy that, even though tree species was not included

in the calculation ofE [S | X = x], 65% of the random trees with label “1” assigned byCL are cottonwood trees. For comparison,

only 30% of the sample of unclassified trees are cottonwood. This is not a coincidence. In the data set from Mundahl et al. (2013),

bald eagle nesting trees were of four species: cottonwood (Populus), silver maple (Acer saccharinum), swamp white oak (Quercus
bicolor), and red maple (Acer rubrum). We test whether there is a preference for cottonwood over the other species using tree

height and DBH data alone. The Wilcoxon rank sum test indicates that there is enough evidence to reject the null hypothesis that

the distribution of E [S | X = x] for cottonwood trees does not differ from the distribution of E [S | X = x] for other species

(p-value = 0.00018 and ranksum = 886). Estimations for the average expectation of occupancy for cottonwood trees is more

than 4 times higher than for the other species. Cottonwood has the highest expectation of occupancy given the tree height and

DBH.

Example 3

We conclude the example section with a micro-scale example using a single class data set. We investigate tree bark structure

preference for Indiana bat maternity roost selection using the presence-only data set (19 data points) from Schroder et al. (2017).

The data set includes variables: tree species, height, DBH, distance to forest edge, distance to water, percentage of peeling bark,

canopy opening, distance between maternity colonies, and potential maternity colony habitat area. Since there is no data for a

random sample, we cannot use any variable selection algorithm, such as MRMR or lasso. If we use Laplacian scores, the distance

between maternity colonies and potential maternity colony habitat area rank as the most important variables, and the distance to

water and percentage of bark cover rank as the least important variables. Although distance to water and percentage of bark cover

have been shown to be important (Carter and Feldhamer, 2005; Schroder et al., 2017; Kurta et al., 2002), there is no known

correlation between maternity roosts and the variables distance between maternity colonies and colony habitat area. In contrast,

five variables are selected by the proposed variable filter algorithm with t = 0.8, all of which have strong evidence of relevance

in the literature: DBH, tree height, percentage of peeling bark, distance to forest edge, and distance to water. See Schroder et al.

(2017) for a comprehensive discussion.

In this example, we do not have an unclassified data set. Therefore, we cannot directly calculate E [S | X = x]. However,

we may use the conditional joint probability distribution to compare partitions. We choose only tree DBH and percentage of

peeling bark as the variables and analyze the difference between the joint distribution

∏k
i=1 ϕXi | S (xi | 1) for shagbark hickory

(Carya ovata) versus the other three species: black locust (Robinia pseudoacacia), red oak (Quercus rubra), elm (Ulmus spp.),

black oak (Quercus velutina), and walnut (Juglans nigra). We remove one outlier with respect to the chosen variables, which is

located zero distance from both the water boundary and the forest edge, producing very favorable conditions for roosting. The

Wilcoxon rank sum test indicates that there is enough evidence to reject the null hypothesis that the distribution ofE [S | X = x]
for shagbark hickory does not differ from the distribution of E [S | X = x] for the other species (p-value = 0.0142 and ranksum

= 58). Estimation for the average expectation of occupancy for shagbark hickory is more than 5 times greater than for the other

species. Shagbark hickory has the highest expectation of occupancy given only the bark structure and DBH.

4 Conclusion

In this paper, we introduced a model for the expectation of occupancy for the purpose of making comparisons based on variables

that are most important in predicting habitat quality. We proposed the construction of a joint probability estimation, having

taken into account the possibility that the ranges of some variables may be restricted by geographical or ecological constraints.

We combined presence-only data with a sample of random unclassified data to model the expectation of occupancy. We included

various examples of the expectation of occupancy to demonstrate the suitability of the proposed methods for avian nesting and

roosting habitat quality assessments.
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A Example 1 Simulation Results

Table 1: Simulation Experiment 1. Classification performance for tests of the proposed methodCL and the logistic classifier

using simulation experiment 1 in Example 1. Logistic 1 and Logistic 2 correspond to the classification performance of the logistic

regression function. The decision boundary for Logistic 1 is obtained by setting the false negative rate for the presence-only data

set to 100 × (1 − π)%. The decision boundary for Logistic 2 is obtained by minimizing the classification error for the training

set assuming the two data sets belong to two distinct classes. The solution with the least classification error for each case is in

boldface. CE - Classification error, FN - Proportion of false negatives.

Percentage Proposed Logistic 1 Logistic 2

π β0 ρ
“1” labels CE FN CE FN CE FN

0.975 34 0.5 18.3 0.088 0.037 0.091 0.101 0.110 0.596

32 0.5 31.5 0.072 0.051 0.149 0.087 0.289 0.916

30 0.5 45.2 0.087 0.069 0.190 0.099 0.437 0.966

28 0.5 58.1 0.074 0.036 0.212 0.079 0.567 0.976

34 0.7 22.2 0.050 0.063 0.115 0.087 0.150 0.663

32 0.7 32.4 0.040 0.041 0.141 0.065 0.295 0.906

30 0.7 43.1 0.051 0.054 0.190 0.093 0.413 0.960

28 0.7 55.7 0.055 0.052 0.169 0.077 0.541 0.971

34 0.9 25.5 0.015 0.039 0.120 0.063 0.220 0.858

32 0.9 34.3 0.018 0.040 0.154 0.057 0.320 0.929

30 0.9 43.5 0.018 0.034 0.182 0.080 0.417 0.956

28 0.9 55.1 0.027 0.048 0.191 0.080 0.538 0.974

0.9 36.75 0.5 4.9 0.033 0.100 0.019 0.141 0.018 0.115

35.75 0.5 9.4 0.037 0.123 0.042 0.188 0.035 0.303

38.00 0.7 5.1 0.018 0.120 0.019 0.164 0.022 0.151

36.50 0.7 9.7 0.022 0.084 0.042 0.116 0.039 0.316

39.75 0.9 5.0 0.007 0.130 0.021 0.173 0.020 0.158

38.25 0.9 9.9 0.009 0.092 0.033 0.166 0.039 0.274

Table 2: Variable selection for Simulation Experiment 1. Comparison of classification errors between four variable

selection methods for the simulation experiment 1 setup. The classification error for the exact model variables is compared

with the variable selection from Laplacian scores (Lapl), lasso regularization (Lasso), the MRMR algorithm (MRMR), and the

proposed variable filter (VF). CE - Classification error, FN - Proportion of false negatives.

% 1 labels in Proposed Logistic 1 Logistic 2

Method ρ
validation set CE FN CE FN CE FN

Exact 0.5 31.0 0.073 0.065 0.107 0.073 0.287 0.926

Laplacian 0.172 0.059 0.201 0.108 0.267 0.863

Lasso 0.135 0.088 0.127 0.112 0.269 0.872

MRMR 0.115 0.084 0.179 0.077 0.263 0.848

VF 0.121 0.075 0.176 0.104 0.263 0.851

Exact 0.7 33.7 0.054 0.038 0.141 0.090 0.320 0.951

Laplacian 0.132 0.023 0.180 0.108 0.308 0.916

Lasso 0.116 0.066 0.104 0.098 0.314 0.935

MRMR 0.087 0.067 0.167 0.092 0.311 0.927

VF 0.102 0.051 0.174 0.103 0.313 0.929

Exact 0.9 33.8 0.018 0.040 0.148 0.073 0.326 0.964

Laplacian 0.102 0.024 0.192 0.089 0.324 0.960

Lasso 0.077 0.058 0.096 0.074 0.327 0.967

MRMR 0.039 0.066 0.146 0.083 0.325 0.963

VF 0.054 0.051 0.164 0.072 0.324 0.958
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Table 3: Simulation Experiment 2. Classification performance for tests of the proposed method and the logistic classifier

using simulation experiment 2. Logistic 1 and Logistic 2 correspond to the classification performance of the logistic regression

function. The decision boundary for Logistic 1 is obtained by setting the false negative rate for the presence-only data set to

100 × (1 − π)%. The decision boundary for Logistic 2 is obtained by minimizing the classification error for the training set

assuming the two data sets belong to two distinct classes. The solution with the least classification error for each case is in

boldface. CE - Classification error, FN - Proportion of false negatives.

Percentage Proposed Logistic 1 Logistic 2

π β0 ρ
“1” labels CE FN CE FN CE FN

0.975 34 0.5 24.4 0.042 0.060 0.104 0.075 0.164 0.675

32 0.5 32.1 0.037 0.050 0.148 0.075 0.292 0.911

30 0.5 43.5 0.041 0.048 0.189 0.073 0.422 0.969

28 0.5 54.6 0.042 0.047 0.200 0.070 0.534 0.978

34 0.7 24.6 0.019 0.037 0.112 0.073 0.208 0.847

32 0.7 34.4 0.026 0.040 0.143 0.077 0.324 0.941

30 0.7 43.4 0.020 0.040 0.156 0.085 0.421 0.968

28 0.7 54.6 0.029 0.047 0.192 0.075 0.534 0.977

34 0.9 27.1 0.010 0.034 0.126 0.085 0.233 0.853

32 0.9 34.8 0.011 0.029 0.149 0.099 0.318 0.912

30 0.9 45.3 0.020 0.044 0.163 0.067 0.444 0.981

28 0.9 53.2 0.023 0.041 0.193 0.104 0.521 0.979

0.9 38.50 0.5 4.9 0.013 0.093 0.021 0.127 0.022 0.123

37.00 0.5 9.9 0.017 0.128 0.039 0.175 0.039 0.278

39.25 0.7 5.2 0.008 0.083 0.018 0.131 0.023 0.134

37.75 0.7 10.1 0.013 0.101 0.039 0.140 0.037 0.272

40.00 0.9 5.0 0.005 0.082 0.016 0.175 0.019 0.185

38.25 0.9 10.0 0.008 0.085 0.040 0.215 0.037 0.298

Table 4: Variable selection for Simulation Experiment 2. Comparison of classification errors between four variable

selection methods for the simulation experiment 2 setup. The classification error for the exact model variables is compared

with the variable selection from Laplacian scores (Lapl), lasso regularization (Lasso), the MRMR algorithm (MRMR), and the

proposed variable filter (VF). CE - Classification error, FN - Proportion of false negatives.

% 1 labels in Proposed Logistic 1 Logistic 2

Method ρ
validation set CE FN CE FN CE FN

Exact 0.5 33.2 0.035 0.041 0.143 0.090 0.305 0.918

Laplacian 0.556 0.069 0.411 0.110 0.305 0.896

Lasso 0.127 0.071 0.142 0.123 0.298 0.889

MRMR 0.099 0.061 0.162 0.114 0.283 0.852

VF 0.111 0.061 0.180 0.108 0.289 0.868

Exact 0.7 35.6 0.023 0.039 0.142 0.077 0.333 0.936

Laplacian 0.534 0.043 0.398 0.079 0.334 0.925

Lasso 0.120 0.063 0.127 0.085 0.335 0.941

MRMR 0.080 0.060 0.158 0.093 0.326 0.912

VF 0.128 0.063 0.182 0.078 0.327 0.916

Exact 0.9 35.2 0.012 0.032 0.133 0.080 0.324 0.924

Laplacian 0.430 0.031 0.388 0.068 0.334 0.945

Lasso 0.097 0.043 0.097 0.077 0.327 0.925

MRMR 0.048 0.038 0.153 0.069 0.326 0.927

VF 0.120 0.030 0.160 0.075 0.320 0.906
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