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withstanding selective pressures within a population over generations. Under rapid Accepted March 27, 2022

shifts in selective pressures (e.g., introduction of a novel pathogen), evolutionary
rescue may preserve a population, but how it may re-stabilize over generations is also
critical for estimations of population persistence. Here, we present a simple model
that couples EGT with epidemiology to investigate evolutionary rescue under a novel
and epidemiologically-driven dynamic selective pressure from an infectious outbreak.
We consider a hypothetical population where payoffs from competing wild-type and
mutant strategies reflect immune-reproductive trade-offs. Our study shows evolu-
tionary rescue occurs under higher wild-type fecundity and a lower-bounded boost
in mutant immunity prolongs the timescale of evolutionary rescue. Higher disease-
induced mortality in the wild-type and a larger mutant immunity significantly rein-
force the pattern. This model reveals transient synergies between epidemiological
and evolutionary dynamics during evolutionary rescue during novel infectious out-
breaks.
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1 Introduction

The theory of evolutionary games (Smith, 1982) has significantly aided analyses of species interactions and the effectiveness of
wildlife conservation management strategies (Pintor et al., 2011; Tanimoto, 2015; Vincent, 1994). In an evolutionary game,
players represent individuals within or across species, and each player plays (i.e., acts in each situation) by some strategy, whether
genetically determined or learned (Akgay, 2020; Zomorrodi and Segre, 2017; Robertson et al., 2018). Each strategy has an
associated “payoff” quantifying its fitness that ultimately lays bare conditions for stable or unstable strategies and regime shifts,
while imposing minimal assumptions on the interacting players themselves. As a result, evolutionary game theory can predict
changes in the strategic makeup of the population of players over time. These changes become a proxy for evolution, where
pressures come from different strategies and the population’s environment.

In considering the possible trajectories for threatened populations, one likely source of increased viability over time comes
from the potential for evolutionary rescue (Bell, 2013). Evolutionary rescue can occur when novel environmental factor(s) cause
dramatic population decline and act as selective pressures favoring the proliferation of an existing (or recently arisen) beneficial
trait (Bell and Gonzalez, 2011). The new shift to increased representation of that beneficial trait then increases population
growth in the face of the novel environmental factors and “rescues” the overall population from extinction. This rescue pattern
can happen in relatively few generations (Carlson et al., 2014), leading to a rapid evolution occurring on the same timescale as
ecological phenomena (Gonzalez et al., 2013). This inherent eco-evolutionary nature of evolutionary rescue fits well to game the-
oretic methods, where players can have different strategies that reflect different genetically- and behaviorally- derived traits, eco-
logical roles, and physiological processes impacting them (Hammerstein and Selten, 1994; Sigmund, 2017; Vickery and Poulin,
2010).
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There have been recent attempts to develop models combining SIR dynamics with game theory (Reluga, 2010), especially
recently regarding social distancing and vaccination during the Covid-19 Pandemic (Wang et al., 2020). Additionally, there are
studies regarding evolutionary rescue in the context of global warming and other changing environments using fitness gradients
and other concepts adapted from evolutionary game theory (Osmond and de Mazancourt, 2013; Ferriere and Legendre, 2013).
However, the feedback between multiple competing populations in the presence of a disease creates dynamics not captured by
models of evolutionary rescue from other environmental threats. Thus our model, which combines the aspects of disease, game
theory, and evolutionary rescue, is likely to find new dynamics not captured by models only considering two of these features.

Here, we introduce evolutionary game theory to a system in which a devastating infectious disease acts as the selective pres-
sure that could drive evolutionary rescue. We assume that the host species can evolve, but for simplicity, that the pathogen
does not. This system is likely to exist when a new pathogen or disease invades a naive host population (e.g., White Nose Syn-
drome, Ranavirus; see Echaubard et al., 2014; Maslo and Fefferman, 2015). To describe the epidemic that ensues, we use the
susceptible-infected-recovered (SIR) compartmental epidemiological framework (see Keeling and Rohani, 2011). This involves
explicitly quantifying strategies in terms of epidemiological parameters such as transmission, recovery, birth, and death rates,
which govern the movement of individuals into or out of a class (Leigh, 1973; Restif and Koella, 2003). We thereby propose a
model that can consider host evolution on the time scale of the epidemic.

In this paper, we focus on the evolutionary dynamics of a hypothetical iteroparous population of wild types (w¢) and mu-
tants (m¢) with different genetically-based phenotypic strategies in response to a devastating infectious disease. We consider a
scenario in which mutants exhibit stronger resistance to the infection (i.e., have both decreased susceptibility to catching the
disease and more rapid recovery from it; see Roy and Kirchner, 2000) and higher tolerance (i.e., can better ameliorate dam-
age caused by pathogen, including lower disease-induced mortality and less disease-induced decrease in fecundity; see Roy and
Kirchner, 2000). However, in the absence of infection, they have lower fecundity than uninfected wild type individuals. This
trade-off exists in many biological systems (e.g., a more sensitive immune system decreases reproductive output; see Robertson
etal., 2018; Sheldon et al., 2014; Kerr etal., 2010). Payofts from these two competing strategies come from assumed relative birth
rates grouped by infection status. In this paper, we first verify the existence of evolutionary rescue under the chosen parameters
for the system. We then use this model system to explore how immune-reproductive trade-offs can affect the expected likeli-
hood/timescale of evolutionary rescue. Due to the complexity of the model structure, here, we rely on numerical simulation in
MATLAB (2018) and R language (R Core Team, 2013) for model analyses.

2 Methods

2.1 Overview of model

Our deterministic model in MATLAB aims to heuristically capture disease-driven evolutionary dynamics of a hypothetical
iteroparous host population with only two heritable strategies, wild type (w#) and mutant (z¢), that differ in their response
to a devastating disease. We assume that these strategies are heritable and constant throughout an individual’s life. For sim-
plicity, we also assume continuous disease transmission, life-long immunity upon recovery, no differences in susceptibility or
recovery based on life history, and no vertical disease transmission.

Our model takes as parameters the initial wild-type and mutant population sizes and birth and death rates grouped by
strategy and progress of infection, as well as disease transmission and recovery rates grouped by strategy and carrying capacity. We
also specify the frequency of discrete breeding periods for the host. Based on these inputs, the epidemiological component of the
model determines population dynamics whenever breeding does not occur, while the evolutionary game theoretic aspect of the
model determines the number of offspring produced per breeding event, according to the latest host population demographics
(i.e., the relative representation of the different strategies). The number of infected individuals and the disease-induced mortality
rate in the host population serve as measures of the pathogen’s fitness. As the model runs, it transitions from the epidemiological
framework to the game theoretical framework and back again as each breeding cycle passes. For simplicity, we assume that deaths,
transmission, and recovery controlled by the epidemiological framework do not occur during breeding and vice versa.

For the purposes of our research, we consider a population that has one breeding bout per annual cycle, £, = 365 (Table1).
As such, birth rates operate on an annual time scale (Table 1) while all other rates operate on a daily time scale. All simulations
start with an initial population, N'(0), of 14500 individuals with a carrying capacity, K, of 15000. Simulations in the presence
of an epidemic begin with no recovered (i.e., immune) individuals, no infected mutants, and 10 infected and 1000 uninfected
wild type individuals. The remaining 1500 individuals are mutants. The basic reproductive ratio (Ro = /y) exceeds 1 for both
wild type and mutant.
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Table 1: Quantity, description, units and default values for all model variables and parameters.

Quantity  Description Unit Value
Sy (2) susceptible density at time t for wild type indiv. variable
Snr (2) susceptible density at time t for mutant indiv. variable
I, (2) density of infected individuals at time t in wild type indiv. variable
L,:(¢) density of infected individuals at time t in mutant indiv. variable
Ry () recovered density at time t for wild type indiv. variable
R, () recovered density at time t for mutant indiv. variable

Vwr. growth rate of wild type without disease 1/time variable
Vot growth rate of mutant without disease 1/time variable
P, growth rate of wild type with disease 1/time variable
Vomt, growth rate of mutant with disease 1/time variable
Bur transmission in wild type 1/indiv./time  0.008
B transmission in mutant 1/indiv./time  0.005

Vi recovery rate for wild type 1/indiv./time  0.00001
Vot recovery rate for mutant 1/indiv./time  0.003
Huwe_ natural mortality rate of wild type without disease 1/time 0.001
Home_ natural mortality rate of mutant without disease 1/time 0.001
Huwr, mortality rate of wild type with disease 1/time 0.002
Home_ mortality rate of mutant with disease 1/time 0.0011
ot assigned growth rate of wild type without disease 1/time 0.6
Comr assigned growth rate of mutant without disease 1/time 0.55
e, assigned growth rate of wild type with disease 1/time 0.35
e, assigned growth rate of mutant with disease 1/time 0.4

K carrying capacity indiv. 15000

Simulation time is from 1 day to 19 years. Parameter values are consistent with our previous study (Jiao and Fefferman, 2021).
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Figure 1: Boxes represent susceptible (S), infected (), and recovered (R) groups of wild type (w?) and mutant (»2¢) individuals.

Arrows show the direction of movement of a portion of the host population into or out of a disease class, and their corresponding

symbols refer to the rate of this movement. The two pairs of color-coded arrows coming out of the separate boxes for susceptible

wild type and mutants into the single box for the infected class refer to whether the source of infection came from the wild types

or mutant. We assume that the source of infection does not alter the transmission rate, 4. The dotted line dividing the box for the

infected class conveys that wild types and mutants can transmit the disease to each other while reiterating that infected mutants
« » « »

cannot become infected wild types and vice versa. Symbols with a “~” or “+” in the subscript following “wz” and “m¢” refer to
uninfected or infected groups respectively. 4, transmission rate; y, recovery rate; i, death rate; «, birth rate.
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Table 2: Initial values of population variables.

Quantity  Description Initial value
S (2) susceptible density at time t for wild type 1000
Sy (2) susceptible density at time t for mutant 1500
L, (2) density of infected individuals at time t in wild type Oor 10
1,:(¢) density of infected individuals at time t in mutant 0
Ry () recovered density at time t for wild type 0
R,:(¢)  recovered density at time t for mutant 0

2.2 Epidemiological modeling

Applying traditional epidemiological modelling approaches, we created a coupled SIR paradigm for a host population with
wild-type (wt) and mutant () strategies that respond differently to the pathogen and can transmit the pathogen to each other
(Figure 1). We assumed the target’s strategy, rather than that of the source, determines transmission rate. In the presence of a
transmissible pathogen in the host population, the portion of the population called the susceptibles has not yet been infected by
the pathogen. Another portion of the population, known as the infectious, have caught the infection and shed enough pathogen
to potentially spread it to the susceptibles. Once the pathogen has cleared from an infectious individual’s system, that individual
moves into the recovered class, and we assume that the individual is no longer susceptible to the same type of pathogen. In
other words, this movement of individuals to the recovered class assumes that recovery confers lifelong immunity. Susceptibles
move to the infectious class according to B, the transmission rate (including the probability of rates of contact), and infected
individuals into the recovered class according to y, the recovery rate. We treated the infected class as one category, regardless
of strategy, to better reflect the fact that, oftentimes, individuals regardless of their strategy can transmit the pathogen to each
other. All offspring fed into the susceptible wild type or mutant population based on the birth rates for the four parental types,
Qur_s At > Come_» Ay, - For simplicity, we assume that only maternal type influences reproductive outcome; this assumption is
easily relaxed in future studies. Uninfected individuals from the susceptible and recovered groups die at the natural background
death rate ({y;_ OF [y, ) and at rate fiy,y, OF Uy, in the infectious group to account for disease-induced mortality. Note, this
framework may not reflect diseases where hosts experience differential susceptibility and recovery based on life history stage or
current body condition.

To implement the conceptual framework above, we used ordinary differential equations to approximate the number of
individuals in each class:

ds, dSom
dtt = _(Bthwz([wt + [mt) - ,uwt,Swt dt L = _(gmtSmt(]wt + ]mt) - /Jmt,Smt
dl, dly,
dl’t = [@thwt (]wt + ]mz) - }/wtlwt - ﬂwt+1wt dtt = ﬂszmt(]wt + Imt) - ?/mt[mt - ﬂmt+1mt
det dle‘

= 7wt[wt - ,uwt,th = 7mzlmz - /Jmt,Rmt

dt dt

Given wild-type and mutant strategies in the host population, the model runs two systems of SIR equations, one for each strat-
egy, using the appropriate corresponding rates. To couple these systems so that wild type and mutant individuals can transmit
the disease to each other, the number of infected individuals obtained from S (£, + I,,x) pools the number of infected wild
types and mutants. We computed the number of individuals from each class using MATLAB’s ode45 function. In reality,
disease transmission may not always be continuous, especially for animals that do not spend the majority of their time in close
proximity to other members of their species. In these cases, the transmission rate can be considered an average.

2.3 Evolutionary game theoretic modeling

For each breeding cycle, our model accounts for competition from different strategies by using a zero-sum game matrix 2

) L w. oW, M. M,
w_ 0 0 a b
W, 0 0 — | —d
M_ | —a c 0 0
M, | =b d 0 0
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where W and M represent wild and mutant types respectively, and the subscripts — and + represent uninfected and infected.
This matrix represents the change in fitness an individual in group 1 receives when interacting with others of the corresponding
type in group 2 (Cressman and Tao, 2014). For example, when J#_ in group 1 interacts with A/_ in group 2, then W¥_ receivesa
fitness increase as “4”. Without loss of generality, we assume that all interactions within a species type have zero change in fitness.
This is because individuals for one type give birth to individuals of the same type, so any fitness gained by one is cancelled by
a corresponding loss in the other, leading to no net effect on births for that type. Here we constrain 0 < 4, b,¢,d < 1 (here
weuseda = b = ¢ = d = 0.001 in all simulations) to fit the assumptions that uninfected hosts have an advantage in fitness
against infected hosts, wild-type hosts having an advantage compared to mutant when both are uninfected, and mutant-type
hosts having an advantage versus wild type when both are infected. In addition, the values being less than 1 prevents negative
birthrates in the following replicator equation.

If we assume that x is the vector (length 4) of current population frequencies, for type 7 within the four groups (uninfected
wild type, infected wild type, uninfected mutant, and infected mutant), the average fitness of individuals in that type (i.e., f;(x))
is the 7™ coordinate of the vector resulting from P multiplied by x, in particular:

fi(x) = [P x];

where P is the above zero-sum fitness matrix. We further modify to get the relative birth rate for type 7 : 7;:

ri = [1 +ﬁ'(x)]“i

where 2, is the user-defined natural birthrate of type 7 in the absence of competition (when in a population of only their own
species). This relative birth rate corresponds to the average number of births each individual of type 7 will have. The results
from the replicator equations then replenish the susceptible populations after each round of the game. The number of recovered
and infectious individuals of both strategies remain constant during the game phase, reflecting the “no vertical transmission”
assumption of the model; individuals are born only into the susceptible class. Whenever the number of offspring would cause
the total population size to exceed carrying capacity, the model caps the population size at carrying capacity by uniformly scaling
with ¢ the number of offspring produced from each group.

Spr(t+1) =8, (2) + cASy, Sy (2 +1) = 8,,:(2) + cAS,,
Lyt (£ +1) = L, (2) Ly (2 +1) = L, (2)
Ryt (£ +1) = Ry (2) Ry (t+1) = Ry (2)
ASwr = Fwr_ (Sue(2) + Rue(2)) + 7o, L (2) ASit = Ve (St (8) + Rne () + 7ome, Le (2)
.o {5—1]\}[((;)) ifz>K
1 ifz <K

2=80) +ASy +ASyy + I(t+1) + R(2 + 1)
N(z) =S(2) +1(z) + R(¢)
Since our model assumes iteroparous (rather than semelparous) hosts, the mothers do not die directly after producing offspring.

Both they and their offspring get passed back into the SIR part of the model.

2.4 Immune-reproductive trade-offs and boundary conditions

To implement the scenario where a more sensitive immune system acts counterproductive to reproduction (as described at the
end of the Introduction), we defined the following bounds on parameter values in our model:

Bur > Bone 1)
Yor <Yme (2)
Huweo = Home- < Koz, < M, (€)
Qe > Cme_ > Omr, > Ry, (4)

Bounds (1) and (2) are assumed trade-offs due to stronger immune function in mutants that allows for the stronger resistance
and higher tolerance to the pathogen as compared to wild type individuals. Death rates (3) for uninfected mutants and wild types
were assumed to be equivalent in the absence of disease.

Wild types and mutants both experience decreases in birth rate (4) when infected. However, since wild types exhibit weaker
tolerance to the pathogen than mutants, we assumed that infected mutants are better at reproducing than infected wild types.
The enhanced immune system acts as a trade-off trait: mutants can better protect themselves from the pathogen but produce
fewer offspring under normal circumstances as a resul.
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Figure 2: Dynamics of the total host population, mutant and wild type, over 19 breeding cycles in the absence of an epidemic
and interpolated by midpoint. The corresponding parameters and initial values are in Tables 1 and 2. The black horizontal line
indicates carrying capacity.

3 Results

In the case in which mutants exhibit stronger resistance and higher tolerance but have lower fecundity than wild types in the
absence of disease, we chose the following parameter values and initial values of variables (Tables 1 and 2; see also the parameters
of Edmunds et al., 2016; Maslo and Fefferman, 2015). We first verified that these parameter values can produce evolutionary
rescue in our model. We then investigated the combined effects of three pairs of example trade-off traits to analyze how they can
change the timescale of observed rescue patterns.

3.1 Verifying evolutionary rescue in the model

To confirm that the parameter values shown above create conditions for evolutionary rescue in our model, we first observed the
dynamics of the hypothetical host population in the absence of the epidemic by running the model with the same parameter
values shown in Table 1 and initial value in Table 2 without infected individuals. Under this scenario, we expect the wild type to
dominate, and the model supports this (Figure 2).

In the presence of an epidemic starting with 10 infected wild types, evolutionary rescue occurs (Figure 3) (Note that all
graphs in this section show interpolation using the midpoint of each year). As a result, the curves seem to approach a limit
below carrying capacity, when in actuality, the population oscillates with carrying capacity as the upper bound (within the
Supplemental Materials see Figure S1in Appendix 1 for raw simulation dynamics and see Figure S2 in Appendix 2 for a heatmap
showing the sharp transition in outcome from no infection to infection).

3.2 Investigating the timescale of evolutionary rescue

Given the capacity for evolutionary rescue, we also explored the timescale for population decline and recovery. A high ratio of
mutants to wild types early after the introduction of the disease would correspond to a rescue pattern occurring over a short time
span, while a low ratio over that same time horizon would reflect a prolonged rescue pattern, which could leave the population
vulnerable to stochastic die-out for longer (i.c., faster selection on mutant when mutant has higher proportion than wild type;
see Jiao et al,, 2020). Therefore, to conduct our analyses, we used heat maps showing the ratio of mutants to wild types 20 years
(19 breeding cycles) after the introduction of infection into the population, across three pairs of trade-off traits relative to the
wild-type and mutant populations: recovery rate and disease-induced mortality (Figure 4), recovery rate and uninfected (natural)
birth rate (Figure 5), and disease-induced mortality and uninfected birth rate (Figure 6).

When the infected death rate in wild type (indicated by ttyr+ / s+ With p,,.4 fixed) increases, the mutant population grew
faster than the infected wild type, leading to a larger ratio of mutant vs. wild type individuals (see the color progression along
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Figure 3: Dynamics of the total host population, mutant and wild type, over 19 breeding cycles in the presence of an epidemic
and interpolated by midpoint. The corresponding parameters and initial values are in Tables 1 and 2. The black horizontal line
indicates carrying capacity.

the y-axis in Figure 4 and x-axis in Figure 6). Conversely, when the relative uninfected birth rate of the wild type (2w — /@m:—
with a,,,_ fixed) increased, the wild type showed faster growth, thereby slowing down the rescue pattern (see the decrease in the
ratio of mutant vs. wild type along y-axis in Figures 5 and 6). Overall, these changes in timescale reveal varying how sensitive
evolutionary rescue outcomes might be to the specific demographic and etiological traits represented in the population.

We also found an interesting unimodal pattern in outcomes when varying the infected recovery ratio (within the Supple-
mental Materials see Appendix 3 and its Figure S3).

4 Discussion

By incorporating evolutionary game theory into an existing epidemiological framework, we have demonstrated how the com-
bined dynamics of epidemiological and evolutionary forces, can shape the viability of populations over the course of days,
months, and decades following the introduction of a novel pathogen (see Maslo and Fefferman, 2015; Saunders et al., 2018).
In addition, this model also provides a flexible framework to incorporate the ecological factors of population dynamics and per-
sistence, leading to further exploration of the combined effects of epidemiological and ecological effects on host conservation.
This adds to the growing literature quantifying eco-evol interactions (Lambrinos, 2004; Brown and Hastings, 2003; Schreiber
et al., 2018; Lion and Gandon, 2015; Best et al., 2011). Specifically, we found in our model that evolutionary rescue can occur
under immune-reproductive trade-offs (Table 1; Figures 2 and 3) and that the timescale of evolutionary rescue is highly sensitive
to the magnitude of these trade-offs.

An increase in disease-induced mortality of wild types relative to that of mutants (indicated by feys+ / e+ With f1,,, fixed)
increased the ratio of mutants to wild types (see the color intensity increase along the y-axis in Figure 4 and from left to right
along the x-axis in Figure 6). This result occurs due to the reduction in competition (Gause, 1970; Tilman, 1990) for mutants
in the population, allowing them to quickly overtake the wild-type as part of an evolutionary rescue pattern. In contrast, an
increase in the uninfected wild-type birth rate relative to that of the mutants (@,— /et~ with a,,,_ fixed) increases competition
against mutants, thus decreasing the proportion of mutants in the population (see color fade along y-axis in Figures 5 and 6) and
potentially prolonging or delaying evolutionary rescue. The cascading impacts of these dynamics mean that a short-term increase
in the mutant population (due to high mortality rates in infected wild-type individuals) would then also weaken the increase
in the wild-type population. This is because the birth rate will shift due to the increasing reliance on uninfected reproductives
(Figure 6).

Due to the complexity of analytical solutions, we have relied on the outcomes of simulations in this first effort. It is possible
that bifurcation points determining evolutionary rescue exist, but analytical results stemming directly from the model are diffi-
cult to achieve due to the nature of a continuous epidemiological system tied to a discrete, evolutionary game theoretic one, and
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Figure 4: The effects of the recovery ratio (¥, /u:) and infected death ratio (ttuz+/ tme+) on the mutant to wild-type popu-
lation ratio after 19 breeding cycles of post-disease introduction. On the x-axis, the wild-type recovery rate stays fixed while the
mutant recovery rate varies. On the y-axis, the infected death rate of the mutant stays fixed while the wild-type infected death

rate varies.
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Recovery Ratio (Vine/Vwe)

Figure 5: The effects of the recovery ratio (¥,,/7u:) and uninfected (natural) birth ratio (;— /@) on the mutant to wild-
type population ratio after 19 breeding cycles of post-disease introduction. On the x-axis, the wild-type recovery rate stays fixed
while the mutant recovery rate varies. On the y-axis, the mutant uninfected birth rate stays fixed while the wild-type uninfected
birth rate varies.
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Figure 6: The effects of the infected death ratio (t4,s4 / s+ ) and uninfected (natural) birth ratio (2,;— /2~ ) on the mutant
to wild-type population ratio after 19 breeding cycles of post-disease introduction. On the x-axis, the mutant infected death rate
stays fixed while the wild-type infected death rate varies. On the y-axis, the mutant uninfected birth rate stays fixed while the
wild-type uninfected birth rate varies.

are outside of the scope of this paper. Future work to more seamlessly integrate these models and allow for such analysis is under
way. However, even simulations can yield notable findings applicable to wildlife conservation. Unlike the inevitable recovery in
our simulations, factors delaying or prolonging the timescale of evolutionary rescue in a species can lower the chance of species
recovery in the real world (i.c., the “small population paradigm”; see Caughley, 1994; Mattsson et al., 2008; Ouborg et al., 2006;
Weeks et al., 2016).

Moving forward, models such as this should explore additional scenarios to characterize the potential influence of epi-
evolutionary dynamics, starting with the case where the mutant population can stably coexist with the wild type population
in the absence of an epidemic (Note that parameters in Figure 2 only consider the situation where mutants would die out with-
out the epidemic). Simple next-step additions to our model include relaxing the breeding assumptions to include semelparous
hosts, exploring dynamic/seasonal carrying capacity, and considering different types of infections via different compartmental
epidemiological frameworks (e.g., SI, SIS, SIRS, and intermittent outbreaks where we might analyze the Red Queen hypothesis;
see Leigh, 1973; MacPherson and Otto, 2018). Together, this understanding will lay the groundwork for more detailed bio-
logical models to understand the full spectrum of coevolutionary dynamics through nonlinear functions for epidemiological
parameters (Restif and Koella, 2003), involve more players and strategies that might incorporate ecological interactions between
host populations (Best, 2018), and disease vectors (North and Godfray, 2017); and creating migration within metapopulations
(Jiao et al., 2016, 2018; Diffendorfer et al., 1995; Revilla and Wiegand, 2008). Alternatively, we could reimplement the evolu-
tionary game to operate more strictly on genotypic strategies (Hashimoto and Aihara, 2009; Rowe, 1988), which would open
the possibility for modeling mutations, genetic drift, and gene flow and understanding their contribution to evolutionary rescue
(Carlson et al., 2014; Mills et al., 2018; Orr and Unckless, 2014; Oziolor et al., 2019).

Thorough investigation of epidemiological and evolutionary patterns requires a qualitative understanding of host, pathogen,
(and potentially parasite and vector) evolution in changing environments. The model we present provides a first set of tools
by which to understand and predict these dynamics. The scarcity of relevant data to detect evolutionary rescue (Carlson et al.,
2014), the presence of potentially confounding environmental factors, as well as the effects of inter- and intra-species interactions
in the host’s environment can complicate interpretation of population dynamics even if they arose, in theory, from evolutionary
rescue. As theoretical investigations into evolutionary rescue continue and await definitive confirmation from lab and field
experiments, keeping evolutionary game theory in mind can bring us closer to understand the roles natural and human activities
(e.g., Suarez et al., 2020) may play in evolutionary dynamics over short timescales and their long-term effects.
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