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Abstract

The net maternity function represents the chance of a newborn female surviving
to a certain age class, multiplied by the average number of female babies she is
likely to bear while sojourning in that age class. Although the net maternity func-
tion does not lend itself well to modeling in terms of conventional time, it may be
parametrized effectively as a function of the logarithm of a mother’s age. Choice
of this independent variable leads to absolute dimensionless quantities that do
not have to be rescaled when the units of time are changed. The parametrized
model provides a close fit to the real net maternity function for stable popula-
tions, while divergences between the model and actual function may serve as a
diagnostic for new features within a population. Reduction of the specification
of the net maternity function to a small number of parameters enables those
parameters to be tracked in long-term historical studies, and also serves as the
basis of techniques for predicting future states of a population. Among the pa-
rameters, a new logarithmic generation time emerges as an important population
variable.

Keywords: net maternity function, generation time, organic time, physiological
time, lognormal distribution

1 Introduction

In a given human population, the discrete net maternity function is a function of the age of a
mother, describing the chance of a newborn female surviving to a certain age class (say from
20 to 25 years), multiplied by the average number of female babies she is likely to bear while
sojourning in that age class. Modeling and parametrization of the net maternity function
has always posed a challenge, since it does not appear to fit any of the usual distribution
patterns [6].

In this paper, it is argued that the logarithm of a mother’s age a is the most appropriate
reference variable for the net maternity function (x3.1). With this choice, the key quantities
become dimensionless, and thus have an absolute numerical significance independent of any
specific choice of units (x3.2). The continuous version ϕ(a) of the net maternity function
may then be parametrized (x3.4), with a high degree of accuracy in stable populations (x3.5),
as
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R−1

u
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2π
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)2]
(1)

in terms of just three parameters (xx3.2–3.3): a renormalization constant R−1 (per annum),
a logarithmic generation time t (in years), and u as a dimensionless deviation. The loga-
rithmic generation time emerges as an important population variable in its own right, and
not just a proxy for the classical generation time (x3.3.1).
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Section 2 reviews the standard features of the net maternity function that are required.
Section 3 then presents the new parametric modeling approach, based on the logarithmic
time. Section 4 examines three interrelated applications of the new model: diagnostics (x4.1,
x4.2.1), prediction (x4.2), and long-term tracking (xx4.3–4.4). A remarkable conservation
principle that emerges experimentally from such long-term tracking of the Swedish popula-
tion over the period from 1780 to 1925 (x4.4.4) enables one to eliminate the deviation u from
the parametrization (1), reducing to a dependence only on the renormalization constant and
the logarithmic generation time.

2 The net maternity function

This section provides a quick review of the net maternity function as it is known from the
literature, in order to establish a background for the new approach presented in the paper.

2.1 The Leslie matrix

The development of a human population over time has traditionally been modeled using five-
year age classes and the Leslie or projection matrix, although other essentially equivalent
formulations, e.g., using continuous variables, are also used [6, 7]. The Leslie matrix is the
incidence matrix 
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of the weighted graph displayed in Figure 1 (truncating the infertile age classes)1. The
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Figure 1: Age classes in a female population. The weight bi is the rate of survival from the
i-th age class to the (i + 1)-st. The weight mi is the expected number of girls born to a
mother during her time in the i-th age class.

graph depicts the various demographically relevant age classes within a population of human
females, based on intervals of 5 years. In the center are the newborns, less than 5 years old.
The path from the center leading round the outside of the picture describes the passage of
a female through the various age classes. The arrows on this path are weighted by rates of
survival b�1, b0, b1, . . . from each age class to the next, bi being the proportion of females
from age class i who survive and move into age class i + 1. (In terms of the quantities
computed from census data and tabulated in [8, 9], bi = 5Lx+5/5Lx, where x denotes the

1If one works with column vectors and matrices multiplying from the left, the Leslie matrix will appear
as the transpose of (2).
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age at which the age class i begins.) The arrows leading in towards the center from each
reproductive age class indicate the daughters born to a female during her time in that class.
These arrows are weighted by the average number mi of female babies that are born to the
mothers in the class.

2.2 The generation time

Let pi denote the probability that the mother of a randomly chosen newborn female lies
in age class i. Although the data for real populations are presented discretely in terms of
these age classes, it is often convenient to pass to a continuous age variable a (in years) for
some theoretical analyses, and to replace the dimensionless probabilities pi by a probability
density p(a). In other words, if the i-th age class covers the interval t1 � a < t2, one has

pi =

∫ t2

t1

p(a) da. (3)

Using the integral formalism, the generation time (in years) is defined as

T =

∫ 1
0

ap(a) da, (4)

the expected age of the mother of a randomly chosen newborn. In typical populations, the
generation time normally ranges between 20 and 35 years.

2.3 The net maternity function

In the discrete formalism of the Leslie matrix, the net maternity function at an age class i
is given by the dimensionless product

φi = b�1b0b1 . . . bi�1mi (5)

which represents the chance of a newborn female surviving to age class i, multiplied by the
average number of female babies she is likely to bear while sojourning in that age class.
Passing to the continuous age variable a (in years), the net maternity function is described
by a density function φ(a) having the dimensions of inverse time (per annum units). In
analogy with (3), one has

φi =

∫ t2

t1

φ(a) da (6)

when the age class i covers the age interval t1 � a < t2. The solid line and points + in
Figure 2 illustrate a typical net maternity function, in this case for peninsular Malaysia
in 1985. The data are taken from [9].

2.3.1 Remark

It is important to note that the functions p(a) and φ(a), or their “binned” discrete versions
pi and φi, share no direct common relationship in general. Equation (5) gives the discrete
net maternity function value φi directly from the entries of the Leslie matrix for the current
population. On the other hand, the probability value pi depends on the relative number of
mothers occupying the i-th age class. In many population states, this number may depend
on historical or external factors that are not fully reflected in the current Leslie matrix.

2.4 Moments of the net maternity function

Since

1 6=
∫ 1
0

φ(a) da
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Figure 2: Net maternity functions for Malaysia, 1985. Solid: actual φ(a). Dotted: the
lognormal model ϕ(a).

in general, the net maternity function φ(a) is not a probability density. Nevertheless, one
may define its moments

Rk =

∫ 1
0

akφ(a) da (7)

for non-negative integers k. In particular, the dimensionless moment R0 is known as the
reproductive potential or net reproduction rate, “the expected number of girl children by
which a girl child now born will be replaced under the observed regime of mortality and
fertility” [6, p.140]. Since ∫ 1

0

φ(a)

R0
da = 1,

it is natural to raise the question whether φ(a)/R0 forms a recognizable probability distri-
bution. However, the consensus appears to offer no single satisfactory answer [6, Ch. 6].

3 Modeling the net maternity function

This core section outlines the new approach to the net maternity function, leading up to
the parametrized model presented in x3.4.1.

3.1 Logarithmic life-history time

The starting point for the new approach is the use of a logarithmic time scale for the life
history of a mother as the natural independent variable for the net maternity function, in
contrast to the usual age a in years that is measured by calendar time or universal time.
The practical effectiveness of this choice is demonstrated in x3.5 below. However, there are
also three conceptual issues that lead in the same direction, and that are generally relevant
for many modeling situations in mathematical biology:

3.1.1 Physiological time

Founded on consideration of a wide range of higher organisms, Backman [2] introduced
the concept of organic time as a certain linear function of the logarithm of the age of an
organism. Although he studied organisms with a spectrum of calendar lifetimes from 3 to
105 days, the lifespans of the various organisms became closely comparable in terms of the
organic time. Backman and others used this organic time in comparative life cycle studies
of different species. Later, the term physiological time gained currency [1, 13].
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3.1.2 Thermodynamic time

Prigogine [12] defined the thermodynamic time τ of a physical system as the time scale
with respect to which the rate of thermodynamic entropy production in the system was
constant. Given that this rate σ(t) of entropy production generally decreases monotonically
with respect to universal time t, and tends to zero as t tends to infinity, as at least a
first Padé approximation to σ(t) one may take the rational function p0/(q0 + q1t). This
yields the thermodynamic time τ as a linear function of the logarithm of the universal
time. Subsequently, Prigogine’s thermodynamic time has reappeared under the name eigen
time [1].

3.1.3 Dimensional considerations

The differential of universal time t is dt, which again has the dimensions of time. On the
other hand, the differential of logarithmic time is d log t = dt/t, a dimensionless reference
measure. Thus densities referred to logarithmic time are themselves dimensionless, intrinsic
quantities which do not need to be rescaled when units are changed. An additional advantage
is seen to accrue when information-theoretic techniques are invoked (x3.4.2 below).

3.2 Renormalization

By analogy with the specification (7) of the moments, define the renormalization constant

R�1 =

∫ 1
0

a�1φ(a) da (8)

in per annum units. The renormalization constant is used to normalize the net maternity
function φ(a) to a dimensionless probability density φ(a)/R�1 with respect to the dimen-
sionless logarithmic measure da/a. Thus a formal random variable X lies in the usual time
interval [t1, t2) with probability

P(t1 � X < t2) =

∫ a=t2

a=t1

φ(a)

R�1
� da
a

=

∫ y=log t2

y=log t1

φ(ey)

R�1
dy

involving the mutually inverse substitutions a = ey and y = log a. In other words, φ(a)/R�1
is a density for the logarithmic time y = log a inherent to the life history of a mother. It is
this natural interpretation of φ(a)/R�1 which makes it more amenable to parametrization
than the awkward per annum density φ(a)/R0 considered in x2.4.

3.3 Logarithmic generation time and deviation

With respect to the density φ(a)/R�1, the expected value of the logarithm of the age is

log t =

∫ 1
0

φ(a) log a

R�1a
da (9)

in terms of the logarithmic generation time t (units of years). The variance of the logarithm
of the age is

u2 =

∫ 1
0

φ(a)[log(a/t)]2

R�1a
da (10)

in terms of the dimensionless, positive (standard) deviation u.
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3.3.1 Comparing classical and logarithmic generation times

Generally (based on computations with several dozen historic populations from [8, 9]), the
logarithmic generation time t will be less than the classical generation time T of (4). Note the
values for t and T in the 1970–1985 Malaysian populations displayed in Table 1, for example.
In that table, it is also interesting to compare the two generation times for 1970 and 1980.
While the classical generation time decreases from 27.83 to 27.75 years, the logarithmic
generation time increases from 27.09 to 27.24 years. Thus the logarithmic generation time
should be considered as an important independent population variable in its own right, and
not merely as a proxy for the classical generation time.

3.4 The (log)normal distribution

Suppose that nothing is known about the density φ(a)/R�1 except the mean log t and
variance u2. Then the appropriate density is normal with respect to logarithmic time. In
statistical settings, the normal distribution is usually justified by the Central Limit Theo-
rem, but that justification does not appear to be relevant in the present context. Rather,
one observes that amongst all well-behaved non-negative functions q(a), the problem of
maximizing the information-theoretic or “Shannon” entropy

�
∫ 1
0

q(a) log q(a)
da

a
(11)

subject to the constraints

log t =

∫ 1
0

q(a) log a
da

a
(12)

and

u2 =

∫ 1
0

q(a)[log(a/t)]2
da

a
(13)

corresponding to (9) and (10) respectively, along with the constraint

1 =

∫ 1
0

q(a)
da

a
(14)

of seeking a probability distribution, has

q(a) =
1

u
p

2π
exp

[
� 1

2u2

(
log

a

t

)2]
as its unique solution [14, p.629]. Note that q(a)/a is a lognormal probability density with
respect to the measure da (compare [3]). A game-theoretical approach, more general than
the entropy maximization from certain points of view, is discussed in [4].

3.4.1 The lognormal model net maternity function

As a summary of the preceding observations, one may explicitly display the model net
maternity function ϕ(a) in terms of the parameters R�1, t, u as

ϕ(a) =
R�1

u
p

2π
exp

[
� 1

2u2

(
log

a

t

)2]
. (15)

This is the lognormal model net maternity function.
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3.4.2 Correctness of the entropy formula

The general “Shannon” entropy formula

�
∫
p(x) log p(x) dx

is not well defined when x has a dimension, since the dimensioned density p(x) may not then
be used as an argument for the logarithm [11, 15]. However, as argued in x3.1.3 and x3.2,
the formula (11) is immune from this issue, due to the use of the logarithmic time that
renders the density q(a) dimensionless.

3.4.3 Correctness of the constraints

In the constraint (12), and in its prototype (9), arguments a and t with the dimensions of
time are explicitly used in logarithm functions. Thus it might appear that the issue raised
with the “Shannon” entropy in x3.4.2 would also arise in (12) and (9). However, one may
regard (12) and (9) as respective simplified equivalents to the dimensionally correct formulas

log
t

T
=

∫ 1
0

q(a) log(a/T )
da

a

and

log
t

T
=

∫ 1
0

φ(a) log(a/T )

R�1a
da

where the ages are normalized with respect to the classical generation time T of (4).

3.5 Two case studies

For the majority of stable populations, one observes close agreement between the actual
net maternity function φ(a) and the lognormal model net maternity function ϕ(a) given
in x3.4.1. Typically, there is a slight discrepancy in the most fertile age range, where the
model overestimates the fertility. This overestimate is compensated by an underestimate
elsewhere. The two case studies exhibited in this section use the data tabulated in [9], which
are based on 5-year age classes.

3.5.1 1985 Malaysia

Figure 2 compares the actual net maternity function φ(a) for peninsular Malaysia in 1985
(solid lines, points +) with the lognormal model function ϕ(a) that the formula (15) pro-
vides (dotted lines, points o). The numerical parameters R�1 = 0.0642 per annum, t =
27.81 years, and u = 0.215 are computed from the data in [9] using respective “binned”
or discretized versions of (8), (9), and (10). For the 1985 Malaysian population, the clas-
sical generation time (4) was T = 28.48 years (see Table 1 below). As noted in x3.3, the
logarithmic generation time t = 27.81 years is less than the classical generation time.

3.5.2 1985 USA

The discrepancy between the reality and the lognormal model, as an overestimate at the
fertile ages and corresponding underestimate elsewhere, becomes more pronounced for the
USA population in 1985. The significance of such discrepancies is discussed in x4.1 below.

The actual and lognormal model net maternity functions for the USA in 1985 are illus-
trated by Figure 3, which uses the same conventions as Figure 2, and is obtained the same
way. The numerical parameters for this case are R�1 = 0.0354 per annum, t = 24.34 years,
and u = 0.230. The classical generation time was T = 26.39 years.
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Figure 3: Net maternity functions for USA, 1985. Solid: actual φ(a). Dotted: the lognormal
model ϕ(a).

3.6 Beyond the lognormal model

If discrepancies between a model and the reality are to be diminished or eliminated (to within
the accuracy of the experimental observations), a more exact model than the lognormal
could be derived by imposing additional constraints, beyond (12), (13), and (14), in the
information-theoretic entropy maximization procedure of x3.4. This provides a topic for
future research, and will not be discussed further here.

4 Using the model

This section discusses three interrelated applications of the lognormal parametrization of
the net maternity function: diagnostics, prediction, and long-term tracking.

4.1 Immediate diagnostics

As observed at the beginning of x3.5, most historic populations present a close agreement
between the actual net maternity function φ(a) and the lognormal model net maternity
function ϕ(a) of x3.4.1, comparable to that seen in the 1985 peninsular Malaysian popu-
lation in Figure 2. Comparison between the two functions, revealing potential significant
divergences, offers a diagnostic procedure for detecting various influences that may be act-
ing within the population. This comparison, which only involves the data for one particular
time period, may be described as immediate diagnostics.

4.1.1 Diagnosing 1985 USA

The divergence between the two functions observed within the 1985 USA population is
displayed in Figure 3. The actual fertility for the 20–25-year-old age class falls noticeably
short of what the model predicts. This discrepancy may be indicative of families postponing
childbirth while younger potential mothers were focusing on their immediate career goals.
In the 15–20-year-old age class, the excess of actual fertility relative to the model may reflect
the United States’ notoriously high teenage birth rate in the nineteen-eighties, the “highest
in the developed world” [16].

4.2 Predicting future states

Taken together, the triple (R�1, t, u) of parameters forms a vector which may be used for the
prediction of future states of a population. This technique is illustrated by Table 1, which
displays the vector for the peninsular Malaysian population (based on [9]) for five-year
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intervals from 1970 to 1985. The individual components for 1970–1980 were extrapolated
quadratically to obtain estimated components for 1985, as shown on the table. These
components compare closely to the true components for 1985, the largest error being a 6%
underestimate for the deviation. Figure 4 then compares the lognormal model net maternity
function determined by these estimated parameters (dotted lines, points o) with the actual
1985 net maternity function (solid lines, points +). Of course, the agreement is not as close
as that observed in Figure 2.

R�1 ( /yr.) t (yrs.) u T (yrs.)

True 1970 0.0781 27.09 0.2361 27.83

True 1975 0.0692 27.04 0.2331 27.55

True 1980 0.0642 27.24 0.2220 27.75

True 1985 0.0642 27.81 0.2150 28.48

Est. 1985 0.0630 27.69 0.2022

Error -2% -1% -6%

Table 1: Parameter vectors and generation times for peninsular Malaysia.

Figure 4: Net maternity functions for Malaysia, 1985. Solid: actual φ(a). Dotted: the
lognormal model ϕ(a) projected from 1970–1980 (compare x4.2).

4.2.1 Predictive diagnostics

Just as the discrepancy between the the real net maternity function and the lognormal
model net maternity function at a given time period formed the basis for the immediate
diagnostics of x4.1, so the kind of discrepancy observed in Figure 4, between the actual
net maternity function and a projected lognormal model net maternity function based on
previous parameter values, may also serve as the basis for a predictive diagnostic procedure.
For example, using Figure 4 to diagnose the 1985 Malaysian population predictively, one
observes a shift in fertility from the 25–30-year-old age class to the 35–45-year-old age
classes. This shift gives a more detailed picture of the effect that is observed in the increased

– 189 –



Parametrizing the Net Maternity Function Smith, Zhang

generation times (both classical and logarithmic) of the 1985 population, as displayed in
Table 1.

4.3 Long-term tracking

Using five-year age classes, the sheer number of distinct discrete net maternity function
values (5) at a given point, e.g., 9 for Malaysia or 8 for the USA in 1985 (Figures 2–3),
makes it hard to use these values for comparison of the state of a population at differing
stages. On the other hand, the parametrization (15) of the net maternity function allows
one to analyze the entire history of a population by tracking the parameters over time. The
following section examines a notably well-documented example, that of Sweden.

4.4 The Swedish dataset

Among the demographic data tabulated by Keyfitz and Flieger [8, 9] for specific human
populations at varying times over the preceding centuries, the most complete set is for
Sweden. Figure 5 shows the record of the logarithmic generation time t (in years) and
deviation u for this population over 5-year steps from 1780 to 1985. Recall that the deviation
u is dimensionless. To compare t and u for common display, the latter has been multiplied
by a proportionality factor k (with the dimension of time). The specific choice of 102 years
as the value for k is discussed in x4.4.4 below.

Figure 5: Tracking the parameters t and u for the Swedish population over the 1780–1985
time period. The upper curve depicts the logarithmic generation time t (in years). This
quantity reaches its maximum at around 1860 and then starts to decrease as industrialization
sets in. The lower curve depicts the dimensionless deviation parameter u multiplied by the
proportionality factor k (set at a value of 102 years). The intermediate curve records the
average (t + ku)/2, which remains remarkably constant (to within demographic accuracy)
from the beginning in 1780 to the onset of the modern era around 1930.

4.4.1 The demographic transition

The logarithmic generation time t shows a general increase up to 1860, but then declines
steadily until 1965. The demographic transition measured by t in the 1860–1870 time period
coincides with the onset of industrialization:
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In the case of Sweden, however, it seems reasonable to use the term “industrial
transformation” to define the period from the mid-nineteenth century until the
First World War. Here, we can establish with certainty both an accelerating
average growth rate, a substantial increase in the industrial sector’s share of the
economy, and important organisational changes in the industrial sector. [10]

A more precise time point, correlating with the maximum of the logarithmic generation
time t, is determined by the initial imports of railway locomotives to Sweden in 1856–
1872 [5].

4.4.2 Comparing the generation times

Overall, the logarithmic generation time t behaves in similar fashion to the classical gen-
eration time T , but appears to smooth out some of the more random fluctuations of the
latter.

4.4.3 Duality between t and u

In general, as t increases, u decreases, and vice versa. Given an upper age limit on fertility
of around 45–55 years, this relationship is indeed to be expected: Increasing the mean in
the normal distribution forces the variance to decrease.

4.4.4 A conservation principle

Nevertheless, an unexpectedly tighter relationship between t and u, a form of conservation
principle, is observed from 1780 until the onset of the modern era around 1930: The existence
of a value for the proportionality factor k such that t+ ku is approximately constant. The
particular k-value used in Figure 5 (namely 102 years) was obtained by minimizing the
variation of t+ ku over the time points from 1780 to 1925.

4.4.5 Dimension reduction

In effect, the conservation principle means that two parameters alone, the renormalization
constant R�1 and the logarithmic generation time t, are sufficient to determine the loga-
rithmic model net maternity function over time periods within the validity of the principle.
Specifically, the experimental relation

t+ 102u

2
= 26

observed from Figure 5 allows one to substitute u = (52� t)/102 in (15).
Note that while in theory one might equally choose R�1 and u as the two basic parame-

ters within the purview of the conservation principle, the resultant substitution t = 52�102u
would be less stable with respect to errors in the value of u and the experimental determi-
nation of the constant 26 years via Figure 5.

5 Conclusions

While the net maternity function does not lend itself well to modeling in terms of universal
time, it has been parametrized effectively as a function of the logarithm of a mother’s age.
Choice of this independent variable leads to dimensionless quantities that do not have to be
rescaled when the units of time are changed. The parametrized lognormal model provides
a close fit to the real function for stable populations, while divergences between the model
and real function may serve as a diagnostic for new influences on a population. Reduction
of the specification of the net maternity function to a small number of parameters enables
those parameters to be tracked in long-term studies of a population, and also serves as the

– 191 –



Parametrizing the Net Maternity Function Smith, Zhang

basis of techniques for predicting future states of a population. Among the parameters, the
logarithmic generation time emerges as an important population variable.
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