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ABSTRACT

It is known that in oxygen concentration pro�les for capillary beds of skeletal muscles,

radial di�usion most likely has considerably more e�ect on oxygen transport in long

and parallel capillary beds than axial di�usion. However, axial di�usion may still

play a signi�cant role in oxygen transport in tissue, especially in relatively short

pathways. Our model adds to known solutions the component of axial di�usion to

multi-capillary beds inside a tissue cylinder, where arbitrary characteristics include

random locations and uneven oxygen strengths. Discussion of the solutions for

oxygen supply in multicapillary beds near the arterial ends, in the central regions,

and near the venous ends in capillaries is introduced in the remainder of the article.

To account for relatively small longitudinal di�usivities, we use perturbation methods

to solve the associated governing equations.
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1 Problem Review and Analysis

1.1 Formulation

Let n be the number of capillaries in a cylinder of tissue with radius Ru. Assume that the capillaries are parallel to each other,
that they all have length L, and that the radius of each capillary is given by Rc

j , where 1 ≤ j ≤ n, as shown in Figure 1, similar
to a Krogh cylinder (Krogh, 1919). In such cylindrical models, axial diffusion may not be neglected (Whiteley, Gavaghan, and
Hahn, 2002).

Oxygen is diffused from the capillaries to the tissue at a constant rate of κ per volume of tissue. Let z denote the centered axis
parallel to the capillaries, and let r denote the radial distance from the center axis of the tissue cylinder, with both normalized
with respect to L, 0 ≤ z ≤ 1, and Ru, 0 ≤ r ≤ 1.

The governing equation for the oxygen concentration in the tissue, cu (r, θ, z), is

1
r

𝜕

𝜕r
r
𝜕c
𝜕r

+
1
r2

𝜕2c
𝜕θ2

+ ε2
𝜕2c
𝜕z2

= κ0, r ≤ 1, 0 ≤ z ≤ 1, (1)

where c = cu/CA is nondimensionalized with respect to the oxygen concentration in the arterial blood,CA; ε =
√︁
Dz/Dr (Ru/L);

Rj = Rc
j/Ru; and κ0 = R2

uκ/DrCA. Here Dr , Dz are the radial and axial diffusivities of the tissue.
On the boundary of the region we require no flux:

𝜕c
𝜕r

= 0, r = 1, 0 ≤ z ≤ 1, (2)

𝜕c
𝜕z

= 0, z = 0, 1, r ≤ 1. (3)

Within the j th capillary, the oxygen substrate per unit volume of blood,Co
j , depends on the quantity of dissolved oxygen,Cj ,

and the oxygen capacity in blood cells. Denote the oxygen capacity at 100% saturation by Vc. The oxyhemoglobin dissociation
curve can be approximated by

S (Cj)∗ =
K (CACj)λ

1 + K (CACj)λ
. (4)

CONTACT Eric Choi echoi5@ggc.edu Lett. Biomath., Vol. 10, Iss. 1 (2023), pp. 63�74.



64 L. SUN, E. CHOI

z

r

L

u
R

c

jR2

Figure 1: N capillaries, with uneven locations and diffusion strengths, surrounded by a cylinder of tissue

 

 

 

Figure 2: (a) General distribution of capillaries in the circular perpendicular cut (b) The coordinate system: O reprensents the
origin of the polar coordinate system.

The relationship above states that the rate approaches 1 for large oxygen concentration and grows without bound for small
oxygen concentration. Alternative forms can be found in (Go, 2007). Particular forms of the representation of oxyhemoglobin
dissociation do not affect the analysis. A linear form of Co

j is then given by Cj + VcS (Cj)∗ (Salathe and Wang, 1980).
The governing equation for the rate of change in oxygen concentration within the j th capillary at location z (0 ≤ z ≤ 1) is

d
dz

[Cj + VS (Cj)] = γ
∮

𝜕c
𝜕ρj

����
ρj=Rj

dϕ + ε2ν
d2Cj
dz2

, (5)

where γ = 2πDrLRj/Q and ν = RjDp/2Dzγ. Q is the blood flow rate and Dp is the diffusivity in blood. The first term on the
right gives the rate of oxygen diffusion from the j th capillary to surrounding tissue as radial diffusion and the second term on
the right represents the axial diffusion along the z axis.

The oxygen concentration at the arterial end is
Cj (0) = 1. (6)

1.2 Perturbation of substrate concentration

Equation (5) will be solved for Rj ≪ 1 and ε ≪ 1. The equation shows that axial diffusion becomes negligible as ε → 0, and
for ε = 0, the equation reduces to a 2-dimensional problem. Perturbation technique will be used for higher orders of ε (ε ≪ 1),
and corresponding solutions will give the effect of axial diffusion. Let C (z) = Cj (z). The solutions for C (z) and c(r, θ, z) will
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be obtained in the form of an asymptotic series, for small ε:

C (z) ∼ C0 (z) + ε2C1 (z) + · · ·
c(r, θ, z) ∼ c0 (r, θ, z) + ε2c1 (r, θ, z) + · · · (7)

The oxyhemoglobin dissociation relationship can be expanded for small ε by using Taylor series expansion to obtain

S (C0 + ε2C1) = S (C0) + ε2C1S′ (C0) + · · · (8)

By letting ε = 0, the equations for the leading termsC0 (z) and c0 (r, θ, z), along with the boundary conditions at the arterial
end, capillary wall, and outer boundary of the cylindrical cut, become

1
r

𝜕

𝜕r
r
𝜕c0
𝜕r

+
1
r2

𝜕2c0
𝜕θ2

= κ, r ≤ 1, z ≤ 1, (9)

𝜕c0
𝜕r

����
r=1

= 0, z ≤ 1, (10)

𝜕c0
𝜕z

����
z=0

= 0,
𝜕c0
𝜕z

����
z=1

= 0, r ≤ 1, (11)

d
dz

[C0 + VS (C0)] = γ
∫ 2π

0

𝜕c0
𝜕ρ

����
ρ=Ru

dϕ, (12)

C0 (0) = 1. (13)

We then need to give solutions forC0 (z) and c0 (r, θ, z) in the above equations. For c0, the oxygen concentration in tissue, we
employ a matching technique similar to the results in (Wang and Bassingthwaighte, 2001). It follows from Equations (9)–(11)
that

c0 (r, θ, z) = r2/4 +
N∑︁
j=1

{C0,j − κ/4 · ln[r2 + a2j − 2raj cos(θ − αj)]} + κ ·
∞∑︁
n=0

rn (An cos nθ + Bn sin nθ) (14)

where An and Bn are constant coefficients:

An =
1
2n

N∑︁
j=1

anj cos(nαj), n ≥ 1, (15)

Bn =
1
2n

N∑︁
j=1

anj sin(nαj), n ≥ 1. (16)

The solution states that the oxygen concentration in tissue is a combination of oxygen diffusion from each capillary within
the circular region parameterized by 0 ≤ r ≤ 1. ρj is the distance from the j th capillary. The effect of oxygen diffusion from
the j th capillary diminishes as ρj increases. A0 is a constant due to the Nuemann boundary condition and can be set to make
c0 > 0. This analytical solution gives a sufficiently good description of oxygen concentration in the cylindrical cross section.
Next, substitute Equation (14) into Equation (12); it follows from boundary condition (13) that the solution forC0, the leading
term of C (z), can be obtained by letting ε = 0:

C0 + VS (C0) =
[
π γ (R − κ

R
−N ) + φ̂0 (R)

]
· z + VS (1) + 1, (17)

where N is the number of capillaries, and φ̂0 (R) is

φ̂0 (R) =
N∑︁
j=1

a2j κ · πR + o(R) for R ≪ 1. (18)

The oxygen concentration in a capillary, C0 (z), can be obtained from Equation (17) through the monotonicity of the oxyhe-
moglobin dissociation function S (C).
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The equations for the second terms, c1 (r, θ, z) and C0 (z), can be obtained by substituting Equation (7) into Equations (1),
(2), (3), (5) and (6) and retaining terms of order ε2. Then (8) gives

1
r

𝜕

𝜕r
r
𝜕c1
𝜕r

+
1
r2

𝜕2c1
𝜕θ2

= −𝜕2c0
𝜕z2

, r ≤ 1, z ≤ 1, (19)

𝜕c1
𝜕r

����
r=1

= 0, z ≤ 1, (20)

𝜕c1
𝜕z

����
z=0

= 0,
𝜕c1
𝜕z

����
z=1

= 0, r ≤ 1, (21)

d
dz
C1 [1 + VS′ (C0)] = γ

∫ 2π

0

𝜕c1
𝜕ρ

����
ρ=R
dϕ + ν

d2C0

dz2
, 0 < z < 1, (22)

C1 (0) = 0. (23)

Note that the system of equations above includes the effect of axial diffusion. The solution for c1 (r, θ, z) in Equation (19)
satisfying boundary conditions (20) and (21) is found to be

c1 (r, θ, z) = r2/4 +
N∑︁
j=1

{C1,j + C ′′
0 (z)/4 · ln[r2 + a2j − 2raj cos(θ − αj)]} − C ′′

0 (z) ·
∞∑︁
n=0

rn (An cos nθ + Bn sin nθ), (24)

where An and Bn are constant coefficients defined as

An =
1
2n

N∑︁
j=1

anj cos(nαj), n ≥ 1, (25)

Bn =
1
2n

N∑︁
j=1

anj sin(nαj), n ≥ 1. (26)

In the above solution, the zero-th order term,C0 (z), has already been found in (17). At this point, the oxygen concentration
c = c0 + ε2c1 at any location z in the tissue cylinder aroundN capillaries is completely known. For the oxygen concentration in a
capillary,C = C0+ε2C1, that takes into account axial diffusion, substitute (24) into Equation (22) with boundary condition (23).
It follows that

C1 [1 + VS ′ (C0 (z))] =
[
π γ (R −N )

]
· z +

(
ν − φ̂1 (R) +

πγ
R

)
· [ C ′

0 (z) − C ′
0 (0) ] + C1 (0) [1 + VS ′ (1)], (27)

where N is the number of capillaries, and φ̂1 (R) equals

φ̂1 (R) =
N∑︁
j=1

a2j · πR + o(R) for R ≪ 1. (28)

C1 can be obtained from the above because S (C) is monotone and concave down. The solutions are valid throughout the
cylindrical region except near z = 0. At the arterial end of the cylinder, radial diffusion, Dr , and axial diffusion, Dp, are of equal
importance. Therefore the small perturbation, ε2, cannot be employed for znear zero, and the solutions from (27) and boundary
condition (23) are no longer valid. The expansions need to be adjusted for a small layer near z = 0. The adjustment also needs
to satisfy the boundary condition with no flux through the end of the cylinder.

1.3 Small z boundary layer

For small z, there exists a boundary layer for which solutions need to be constructed differently. The thickness of the layer
diminishes as ε → 0. Instead of z, we use Z = z/ε (z → 0 as ε → 0 for fixed Z ) as the variable for this boundary layer. The
new functions for oxygen concentration in tissue and capillary now become c̃(r, θ,Z) = c(r, θ, εZ) and C̃ (Z) = C (εZ). The
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governing equations are

1
r

𝜕

𝜕r
r
𝜕 c̃
𝜕r

+
1
r2

𝜕2 c̃
𝜕θ2

+
𝜕2 c̃
𝜕Z2 = κ, r ≤ 1, Z ≥ 0, (29)

d
dz

[C̃ + VS (C̃)] = ε γ
∫ 2π

0

𝜕 c̃
𝜕ρ

����
ρ=R
dϕ + ε ν

d2C̃
dZ2 , Z ≥ 0, (30)

𝜕 c̃
𝜕r

����
r=1

= 0, z ≤ 1, (31)

𝜕 c̃
𝜕Z

����
Z=0

= 0, r ≤ 1, (32)

C̃ (0) = 1. (33)

Equation (30) can be written as

d
dz

[C̃ + VS (C̃)] = ε γ
∫ 2π

0

𝜕 c̃p + c̃s + c̃h
𝜕ρ

����
ρ=R
dϕ + ε ν

d2C̃
dZ2 , Z ≥ 0, (34)

where c̃p, c̃p, c̃p give respectively the particular solution, source solution, and homogenous solution of oxygen concentration in
tissue. Discussion of the explicit expressions is in the next section.

The solutions to c̃(r, θ,Z) and C̃ (Z) near z = 0 should be uniformly consistent with solutions throughout the cylinder
away from the boundary layer. To satisfy

lim
Z→∞

C̃ (r, θ,Z) = lim
z→0

c(r, θ, z), (35)

lim
Z→∞

C̃ (Z) = lim
z→0

c(z), (36)

it is necessary to look at the solutions of c(r, θ,Z) and C (Z) near the boundary layer at z = 0 and match the inside solutions C̃ ,
c̃ to the outside solution C , c at the first few orders of ε. We write c(r, θ,Z) + ε2c(r, θ,Z) and C (Z) + ε2C (Z) in terms of r, θ,
and Z and expand in terms of ε:

C (εZ) = C (0) + ε𝜇1Z + ε2𝜇2Z + o(ε3), (37)

where 𝜇1 = C ′
0 (0) and 𝜇2 = C ′′

0 (0)/2. Expand C0 (εZ) + VS (C0 (εZ)) using Taylor expansion:

C0 (εZ) + VS (C0 (εZ)) = 1 + VS (1) + ε 𝜇1 (1 + VS′ (1))Z + ε2
[
(1 + VS′ (1))𝜇2 +

VS′′ (1)
2

𝜇21
]
Z2 + O(ε3). (38)

From (17), C0 (εZ) + VS (C0 (εZ)) can be explicitly written as

C0 (εZ) + VS (C0 (εZ)) = 1 + VS (1) + ε
[
π γ(R − κ

R
−N ) + φ̂0 (R)

]
Z. (39)

Compare (38) with (39); 𝜇1 and 𝜇2 are found to be respectively

𝜇1 =
π γ(R − κ

R −N ) + φ̂0 (R)
1 + VS′ (1) , (40)

𝜇2 = −
VS′′ (1)

[
π γ(R − κ

R −N ) + φ̂0 (R)
]2

2
(
1 + VS′ (1)

)3 , (41)

where φ̂0 (R) is as given in (18). The oxygen concentration in capillaries is approximated to the order of ε2. Adding the C1 term
to the above gives us

C (z) ∼ C0 (z) + ε2C1 (z)
∼ 1 + ε 𝜇1Z + ε2

(
𝜇2Z2 + C1 (0)

)
+ O(ε3), (42)
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where 𝜇1 and 𝜇2 are given in (40) and (41). The oxygen concentration in tissue, c0 (r, θ, z) + ε2c1 (r, θ, z), can be expanded to

c (r, θ, z) ∼ c0 (r, θ, z) + ε2c1 (r, θ, z)

∼ N + r2/4 − κ/4 ·
N∑︁
j=1

ln[r2 + a2j − 2raj cos(θ − αj)] + κ
∞∑︁
n=0

rn (An cos nθ + Bn sin nθ) + ε
N∑︁
j=1

𝜇1,j Z

+ ε2
{
𝜇2Z2 + r2/4 +

N∑︁
j=1

C1,j (0) + 𝜇2/2 ·
N∑︁
j=1

ln[r2 + a2j − 2raj cos(θ − αj)]

− 2𝜇2
∞∑︁
n=0

rn (An cos nθ + Bn sin nθ)
}
+ O(ε3), (43)

where (for the j th capillary)

𝜇1,j =
π γ(Rj − κ

Rj
−N ) + φ̂0 (Rj)

1 + VS′ (1) . (44)

To match the boundary layer solutions to outside solutionsC and c, expansions of C̃ and c̃ in terms of εmust be in the form

C̃ (z) ∼ 1 + ε 𝜇1Z + ε2H (Z), (45)

c̃(z) ∼ N + r2/4 − κ/4 ·
N∑︁
j=1

ln[r2 + a2j − 2raj cos(θ − αj)]

+ κ
∞∑︁
n=0

rn (An cos nθ + Bn sin nθ) + ε ψ (r, θ,Z) + ε2 φ (r, θ,Z). (46)

H (Z), ψ (r, θ,Z), and φ (r, θ,Z) are to be determined. Use the expansions given in (45) and (46) and substitute into Equa-
tions (29) and (30) with boundary conditions (31)–(34). Match first and second order ε terms corresponding to C̃ and c̃. The
set of differential equations for H (Z), ψ (r, θ,Z), and φ (r, θ,Z) are the following:

I. For H (z), after matching the ε2 terms from Equation (30), we have

dH
dZ

= 2𝜇2Z +
γ

1 + VS′ (1)

∮
𝜕ψ
𝜕ρ

����
ρ→R

dϕ, (47)

H (0) = 0, (48)

and in order to match the outside solution C (z) in (42) for O(ε) terms we have

lim
Z→∞

H (Z) = 𝜇2Z2 + C1 (0). (49)

II. For ψ (r, θ,Z), after matching corresponding terms with respect to ε, we have

1
r

𝜕

𝜕r
r
𝜕ψ
𝜕r

+
1
r2

𝜕2ψ
𝜕θ2

+
𝜕2ψ
𝜕Z2 = 0, r ≤ 1, Z ≥ 0, (50)

𝜕ψ
𝜕r

����
r=1

= 0, Z ≥ 0, (51)

𝜕ψ
𝜕Z

����
Z=0

= 0, r ≤ 1, (52)

Ĉψ (r, θ,Z) = 𝜇1Z, at ρ = R, Z ≥ 0, (53)

where Ĉψ is the capillary source concentration associated with ψ . In order to match the outside solution c(r, θ, z) in (43)
at the ε terms, where 𝜇1,j is defined in (44), we have

lim
Z→∞

ψ =
N∑︁
j=1

𝜇1,j Z. (54)
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III. For φ (r, θ,Z), after matching corresponding terms with respect to ε, we have

1
r

𝜕

𝜕r
r
𝜕φ
𝜕r

+
1
r2

𝜕2φ
𝜕θ2

+
𝜕2φ
𝜕Z2 = 0, r ≤ 1, Z ≥ 0, (55)

𝜕φ
𝜕r

����
r=1

= 0, Z ≥ 0, (56)

𝜕φ
𝜕Z

����
Z=0

= 0, r ≤ 1, (57)

Ĉφ (r, θ,Z) = H (Z), at ρ = R, Z ≥ 0, (58)

where Ĉφ is the capillary source concentration associated with ψ . In order to match the outside solution C (z) in (43) for
the O(ε2) terms, we have

lim
Z→∞

φ = 𝜇2Z2 + r2/4 +
N∑︁
j=1

C1,j (0) + 𝜇2/2 ·
N∑︁
j=1

ln[r2 + a2j − 2raj cos(θ − αj)]

− 2𝜇2
∞∑︁
n=0

rn (An cos nθ + Bn sin nθ). (59)

From Equation (47) and boundary condition (48), we obtain

H (Z) = 𝜇22Z +
γ

1 + VS′ (1)

∫ Z

0

∮
𝜕ψ
𝜕ρ

����
ρ→R

dϕ dZ. (60)

Substituting (60) into matching condition (49), we have

C1 (0) =
γ

1 + VS′ (1)

∫ ∞

0

∮
𝜕ψ
𝜕ρ

����
ρ→R

dϕ dZ. (61)

2 Further Discussion on Matching Solutions

In order to successfully match the inner solution with the outer solution inside the cylindrical tissue region, we need to obtain
the solutions for perturbation functions ψ and φ. To obtain the solutions for ψ , let

ψ =
N∑︁
j=1

Ĉj (z) − 1/2
(
ln ρj − lnRj

)
+ T (r, θ,Z), (62)

where Ĉj (z) = 𝜇1,jZ. The first two terms in (62) give the combination of oxygen diffusion from each capillary source. The
function T , defined in the semi-infinite cylinder r ≤ 1, Z ≥ 0, satisfies Laplace’s equation:

𝜕2T
𝜕r2

+
1
r
𝜕T
𝜕r

+
1
r2

𝜕2T
𝜕θ2

+
𝜕2T
𝜕Z2 = 0, r ≤ 1, Z ≥ 0, (63)

𝜕T
𝜕r

=
𝜕

𝜕r
(1/2

N∑︁
j=1

ln ρj), at r = 1, (64)

𝜕T
𝜕Z

����
Z=0

= −
N∑︁
j=1

𝜇1,j , r ≤ 1. (65)

Notice that on the outer boundary where r = 1, T has no flux in or out of the cylindrical region. T satisfies a well-posed
problem that can be solved first by separation of variables:

T (r, θ,Z) = R(r) Θ(θ) Γ(Z) (66)
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Then for some unknown constant λ, we have

1
Γ
Γ′′ = λ2,

1
Θ

𝜕2Θ

𝜕θ2
= −n2, (67)

r2
𝜕2R
𝜕r2

+ r
𝜕R
𝜕r

+ (r2λ − n2)R = 0. (68)

Equation (63) is reduced to a Helmholtz equation in two variables, with circular supports. T is then solved to be in a general
form:

T (r, θ,Z) =
∫ ∞

0
e−λZ

∞∑︁
n=0

{[
An (λ) sin(nθ) + Bn (λ) cos(nθ)

]
·
[
DnJn (λr) + EnYn (λr)

]}
dλ, (69)

where J∗ and Y∗ are Bessel functions of the first and second kind, and An (λ), Bn (λ), Dn (λ), and En (λ) are constants that are
limited to the boundary conditions.

The radial derivative of Equation (69) is

𝜕T
𝜕r

=
∫ ∞

0
e−λZ

∞∑︁
n=0

{[
Ân (λ) sin(nθ) + B̂n (λ) cos(nθ)

]
· λ

[
D̂n (λ)

(
Jn−1 (λr) − Jn+1 (λr)

)
+ Ên (λ)

(
Yn−1 (λr) − Yn+1 (λr)

)]}
dλ. (70)

The boundary condition (64) gives at r = 1

𝜕T
𝜕r

=
N∑︁
j=1

r − aj cos(θ − αj)
r2 + a2j − 2raj cos(θ − αj)

(71)

⇒
N∑︁
j=1

1 − aj cos(θ − αj)
1 + a2j − 2aj cos(θ − αj)

=
∫ ∞

0
e−λZ

∞∑︁
n=0

{[
Ân (λ) sin(nθ) + B̂n (λ) cos(nθ)

]
· λ

[
D̂n (λ)

(
Jn−1 (λ) − Jn+1 (λ)

)
+ Ên (λ)

(
Yn−1 (λ) − Yn+1 (λ)

) ]}
dλ (72)

Multiplying the above equation by cos(mθ) and integrating from 0 to 2π with respect to θ yield

𝜕T
𝜕r

=
N∑︁
j=1

r − aj cos(θ − αj)
r2 + a2j − 2raj cos(θ − αj)

(73)

⇒ B̂mπ
∫ ∞

0
e−λZ · λ

[
D̂m (λ)

(
Jm−1 (λ) − Jm+1 (λ)

)
+ Ên (λ)

(
Ym−1 (λ) − Ym+1 (λ)

) ]
dλ

=
N∑︁
j=1

∫ 2π

0

1 − aj cos(θ − αj)
1 + a2j − 2aj cos(θ − αj)

cos(mθ) dθ (74)

Letting ϑ = θ − αj and using integration formulas in (Gradshteyn and Ryzhik, 1994), we have

B̂mπ
∫ ∞

0
e−λZ · λ

[
D̂m (λ)

(
Jm−1 (λ) − Jm+1 (λ)

)
+ Ên (λ)

(
Ym−1 (λ) − Ym+1 (λ)

) ]
dλ

=
N∑︁
j=1

∫ 2π

0

1 − aj cos(θ − αj)
1 + a2j − 2aj cos(θ − αj)

[
cos(mϑ) cos(mαj) − sin(mϑ) sin(mαj)

]
dϑ

=
N∑︁
j=1

πamj cos(mαj), m ≥ 1, (75)

and thus, we can achieve

B̂m =

∑N
j=1 amj cos(mαj)

Gm (Z)
, (76)
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where
Gm (Z) =

∫ ∞

0
e−λZ · λ

[
D̂m (λ)

(
Jm−1 (λ) − Jm+1 (λ)

)
+ Ên (λ)

(
Ym−1 (λ) − Ym+1 (λ)

) ]
dλ. (77)

In the same manner, multiplying Equation (74) by sin(mθ) and integrating from 0 to 2π with respect to θ yield

Âmπ
∫ ∞

0
e−λZ · λ

[
D̂m (λ)

(
Jm−1 (λ) − Jm+1 (λ)

)
+ Ên (λ)

(
Ym−1 (λ) − Ym+1 (λ)

) ]
dλ

=
N∑︁
j=1

∫ 2π

0

1 − aj cos(θ − αj)
1 + a2j − 2aj cos(θ − αj)

sin(mθ) dθ

=
N∑︁
j=1

∫ 2π

0

1 − aj cos(θ − αj)
1 + a2j − 2aj cos(θ − αj)

[
sin(mϑ) cos(mαj) + cos(mϑ) sin(mαj)

]
dϑ

=
N∑︁
j=1

πamj sin(mαj), m ≥ 1, (78)

and thus, we can achieve

Âm =

∑N
j=1 amj sin(mαj)
Gm (Z)

. (79)

The axial derivative of Equation (69) is

𝜕T
𝜕Z

����
Z=0

=
N∑︁
j=1

𝜇1,j =
∫ ∞

0
(−λ)

∞∑︁
n=0

D̂n (λ)Jn (λr) + Ên (λ)Yn (λr)
Gn (Z)

N∑︁
j=1

anj
[
(sin(nαj) sin(nθ) + cos(nαj)cos(nθ)

) ]
dλ. (80)

D̂n and Ên can be solved in terms of an eigenfunction expansion involving Bessel functions, where the set of eigenfunctions is{
Jn (λr) sin(nθ), Yn (λr) sin(nθ), Jn (λr) cos(nθ), Yn (λr) cos(nθ)

}
.

Then ψ , which describes the oxygen concentration near the arterial boundary layer to the first order of ε, can be expressed as

ψ =
N∑︁
j=1

Ĉj (z) − 1/2
(
ln ρj − lnRj

)
+
∫ ∞

0

∑︁
i

∞∑︁
n=0

Ai,n (λ)fi,n (r, θ)e−λZdλ, (81)

where

Ai,n ∈


ÂnD̂n
ÂnÊn
B̂nD̂n
B̂nÊn

 and fi,n (r, θ) ∈


Jn (λr) sin(nθ)
Yn (λr) sin(nθ)
Jn (λr) cos(nθ)
Yn (λr) cos(nθ)

 .

The function H (Z) for the oxygen concentration in capillaries can then be determined by substituting the solution for
ψ (r, θ,Z) into Equation (60):

H (Z) = 𝜇22Z + C1 (0) +
γ

1 + VS′ (1)

∫ Z

0

∮
𝜕ψ
𝜕ρ

����
ρ→R

dϕ dZ. (82)

The third term in ψ is well-posed and has a radial derivative in terms of Bessel functions. Denote
∮

𝜕
𝜕ρ (

∑
i fi,j) |ρ→R dϕ by

ξ ; then

H (Z) = 𝜇22Z + C1 (0) −
ξ · γ

1 + VS′ (1)

∫ ∞

0

( ∞∑︁
n=0

∑︁
i

Ai,n

λ

)
e−λZ dλ. (83)

To complete the boundary layer solution (46), compare the oxygen concentration φ in the boundary tissue layer to the
second order of ε. This solution can be written in terms of a new variable W as

φ(r, θ,Z) = W (r,Z) + 𝜇2Z2 + r2/4 +
N∑︁
j=1

C1,j (0) − ξ̂
∫ ∞

0
A(λ) e−λZ dλ

+ 𝜇2/2 ·
N∑︁
j=1

ln[r2 + a2j − 2raj cos(θ − αj)] − 2𝜇2
∞∑︁
n=0

rn (An cos nθ + Bn sin nθ), (84)
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where An, Bn are defined in (15) and (16), and

ξ̂ =
ξ · γ

1 + VS′ (1) and A(λ) =
∞∑︁
n=0

∑︁
i

Ai,n

λ
.

In Equations (55)–(58), W (r,Z) satisfies

1
r

𝜕

𝜕r
r
𝜕W
𝜕r

+
𝜕2W
𝜕Z2 = ξ̂

∫ ∞

0
λ2A(λ) e−λZ dλ, (85)

𝜕W
𝜕r

����
r=1

= 0, Z ≥ 0, (86)

𝜕W
𝜕Z

����
Z=0

= −ξ̂
∫ ∞

0
λA(λ) dλ, r ≤ 1. (87)

Notice that W does not depend on θ. As Salathe and Wang (Salathe and Wang, 1980) show in their paper, the capillary
source concentration is already included in the rest of the expression for φ in (84) to the second order of ε as shown in (43).
The solution to the Poisson equation (85) with boundary conditions (86) and (87) can be constructed by using eigenfunction
expansions gn (r), in the form of

gn (r) = Y0 (λnR)J0 (λnr) − J0 (λnR)Y0 (λnr), (88)

where J0 andY0 are the zero-order Bessel functions of the first and second kind. Using boundary condition (86), the eigenvalues
λn are obtained as the roots of

Y0 (λR) J1 (λ) − J0 (λR) Y1 (λ) = 0, (89)

where J1 and Y1 are first-order Bessel functions of the first and second kind. A solution to Equation (85) with boundary condi-
tions (86) and (87) can be found (Salathe and Wang, 1980) by constructing W (r,Z) in the form

W (r,Z) =
∞∑︁
n
En (Z)gn (r), (90)

where En (Z) is a more general function of Z than e−λZ , and gn (r) are eigenfunctions associated with the equation for r after
separation of variables, defined in (89). The orthogonality property of the eigenfunctions gives∮

rgm (r)gn (r) dr = 0, for m ≠ n, (91)∮
rg2n (r) dr =

(
gn (1)

)2
2

− 2
λ2nπ2

, n = 1, 2, 3, 4, . . . (92)

After applying Equations (91) and (92) to relation (90) and using the orthogonality property and multiplying gm (r) on
both sides of (90), one can conclude that

En (Z) = Pn ·
∮

rW (r,Z)gn (r) dr (93)

with

Pn =
[ (gn (1))2

2
− 2
λ2nπ2

]−1
. (94)

Differentiating En twice with respect to Z gives

E′′
n (Z) = Pn ·

∮
r gn (r)

𝜕2W (r,Z)
𝜕Z2 dr. (95)

Together with the governing equation in (85), this yields

E′′
n (Z) = −Pn ·

∮
gn (r)

𝜕

𝜕r
r
𝜕

𝜕r
W (r,Z) dr + Pn

(̂
ξ
∫ ∞

0
λ2A(λ) e−λZ dλ

)
·
∮

rgn (r) dr. (96)
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By using the boundary conditions for W , applying integration by parts twice, and using Equation (93), the first integral on the
right side of Equation (96) is reduced to∮

gn (r)
𝜕

𝜕r
r
𝜕

𝜕r
W (r,Z) dr = −λ2n

∮
rW (r,Z)gn (r)dr

= −λ2nP−1
n En. (97)

Using properties of Bessel functions (Watson, 1952), the second integral on the right side of Equation (96) can be reduced to∮
rgn (r) dr = − 2

λ2nπ
. (98)

Therefore, combining (96), (97), and (98) we have

E′′
n (Z) = λ2En (Z) −

2̂ξPn
λ2nπ

∫ ∞

0
λ2A(λ) e−λZ dλ. (99)

From property (93) and boundary condition (87), another boundary condition for En (Z) is obtained:

E′
n (0) =

2̂ξPn
λ2nπ

∫ ∞

0
λA(λ) dλ. (100)

General solutions to Equation (99) can be achieved given boundary condition (100).
Calculation of oxygen pressures in tissue with anisotropic capillary orientation are presented in (Hoofd, 1995a) and (Hoofd,

1995b). The solution in cylindrical tissue c and the solution in capillaries C are computed outside the boundary layer where z
is relatively small, as well as the boundary layer at the other end (these are the two end regions of our cylindrical model). The
solutions obtained in the middle region are valid throughout the cylindrical tube except for the two end regions. For the arterial
boundary layer, one can use perturbation by letting Z = z/ε to find the approximate solutions C̃ and c̃ as shown above for the
first and second orders of ε. Similarly, for the venous end, by letting Y = (1 − z)/ε, one can approach the solutions with respect
to the first and second orders of ε. A single solution shall be constructed through the whole cylindrical region from z = 0 to
z = 1, uniformly composed of the outer solutions C , c from section 1 and the inner solutions Ĉ , ĉ from section 2. This can be
done by adding the outer solutions and inner solutions for both the arterial and venous boundary layers and subtracting the
common terms from the expansions:

Cuniform = C + C̃ − Ccommon, cuniform = c + c̃ − ccommon.

The common solutions are needed in order to find the uniform solutions for capillary and tissue oxygen concentration. Note
the oxygen concentration in central regions of capillaries as approximated by (42) and that in small-z boundary-layer regions as
given by (45). These give us

Ccomm = 1 + ε 𝜇1Z + ε2
(
𝜇2Z2 + C1 (0)

)
. (101)

Note the oxygen concentration in the central region of tissue as approximated by (43) and that in the arterial boundary-layer
region as given by (46). These give us

ccomm = N + r2/4 − κ/4 ·
N∑︁
j=1

ln[r2 + a2j − 2raj cos(θ − αj)] + κ
∞∑︁
n=0

rn (An cos nθ + Bn sin nθ) + ε
N∑︁
j=1

𝜇1,j Z

+ ε2
{
𝜇2Z2 + r2/4 +

N∑︁
j=1

C1,j (0) + 𝜇2/2 ·
N∑︁
j=1

ln[r2 + a2j − 2raj cos(θ − αj)]

− 2𝜇2
∞∑︁
n=0

rn (An cos nθ + Bn sin nθ)
}
. (102)

Therefore the uniform composite solution for the oxygen concentration in a capillary through its central region and the small-z
boundary layer, derived from (7) and the above, is

Cucs = C0 (z) + ε2C1 (z) + (C̃ − Ccomm), (103)

where

C̃ − Ccomm = ε2 ·
{
−

ξ · γ
1 + VS′ (1)

∫ ∞

0

( ∞∑︁
n=0

∑︁
i

Ai,n

λ

)
e−λZ dλ

}
. (104)
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From Equations (103) and (104), we have

Cucs = C0 (z) + ε2
{
C1 (z) −

ξ · γ
1 + VS′ (1)

∫ ∞

0

( ∞∑︁
n=0

∑︁
i

Ai,n

λ

)
e−λZ dλ

}
. (105)

This solution is valid throughout both the central region and the arterial boundary-layer region, for the last term of Equa-
tion (105) vanishes as Z becomes arbitrarily large, implying that the dominant effect is given by C0 + ε2C1, which gives exactly
the solutions for oxygen in capillary through the central region.

Similarly, for the uniform composite solution that gives the oxygen concentration in the tissue through the central region
and the arterial boundary layer, we have from (7) and (102)

cucs (r, θ, z) = c0 (r, θ, z) + ε2c1 + ( c̃ − ccomm). (106)

The dominant effect is given by c0 + ε2c1, and solutions for oxygen concentration can be unified through the mixed layer
near the end of the tissue cylinder.

In conclusion, Since capillary length is about 102 times its diameter, in most cases the longitudinal diffusion of solute may
be negligible compared to radial diffusion and therefore can be treated as a small perturbation to the solution. Equations (17)
and (27) are solved implicitly for substrate solution inside the capillaries. The order of small perturbation is determined by the
longitudinal location. At both ends of the capillary cylinder, the axial diffusion constant and the radial diffusion constant are of
the same order. Axial effect should to be treated differently, and a full three-dimensional analysis is required. Then the two sets
of solutions, describing oxygen diffusion in the cylinder and near the two ends of the cylinder, need to be matched completely
to obtain the effect of axial diffusion.
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