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ABSTRACT

According to the Target Theory, the tumor population is divided into multiple di�er-

ent subpopulations, called targets, based on the diverse e�ects of ionizing radiation

on human cells. Radiation particles can cause single or double-strand break(s). As

such, cells are divided into three subpopulations, namely cells with no DNA frag-

mentation, cells with DNA single-strand breaks, and cells with DNA double-strand

breaks. This work introduces a hybrid di�erential equation model, with coe�cients

described by random variables representing transition rates between targets. The

model is utilized to simulate the dynamics of targets and describes the cell damage

heterogeneity and the repair mechanism between two consecutive dose fractions.

Therefore, a new de�nition of tumor lifespan based on population size is achieved.

Stability and bifurcation analysis are performed. Finally, the probability of target

inactivity after radiation and the probability of target re-activation following the

repair mechanism are evaluated with respect to the tumor lifespan.
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1 Introduction

Cancer affects millions of people in the world, and the appearance of mathematical modeling in cancer research has steadily
increased over time. Multidisciplinary collaboration is essential in cancer research, and mathematical applications significantly
contribute to many areas of cancer research by providing a deeper insight and establishing a framework for understanding prop-
erties of cancer cells.

Radiation therapy (RT) is one of the most common methods of cancer treatment. Modeling the effects of radiation on cancer
cells is one of the most challenging areas in mathematical biology and by applying the Target theory and DNA fragmentations,
a variety of models have been created to describe the influence of radiation on tumor cells.

There exists a vast literature on mathematical models proposed for the population dynamics of tumors and the tumor
growth. Among them, we refer reader to review articles Araujo and McElwain (2004); Bellomo and Preziosi (2000); Bellomo
et al. (2008); Byrne et al. (2006); Martins et al. (2007); Nagy (2005); Roose et al. (2007); Chaplain (2008); Oroji et al. (2016).
Partial Differential Equations (PDEs) are one of the most popular methods to describe spatial models. Many different PDE
models are proposed for tumor growth. Among them, we refer the reader to Araujo and McElwain (2004); Roose et al. (2007);
Chaplain (2008).

Mathematical models based on kinetic theory are known as the second class of mathematical models for tumor growth
(Bellomo and Delitala, 2008). The other important class of models for the population dynamics of tumor cells and tumor
growth are Ordinary Differential Equations (ODEs) models, which are used to describe non-spatial models (Adam and Bellomo,
2012; Dullens et al., 1986; Bajzer et al., 1996; Sachs et al., 2001; Nagy, 2005). These models contain a simple and intuitive
structure, and they are able to explain the interaction between tumor cells with each other, tumor cells and normal tissues, and
the response of tumor cells to the different treatments (Bajzer et al., 1996; Sachs et al., 2001). ODE models can be classified based
on the compartments of the model (e.g., one compartment Gompertz, 1825; two Sachs et al., 2001; three Bajzer et al., 1996; six
or more compartments Piantadosi et al., 1983). The other models focus on the practical features of the tumor growth (Nagy,
2005).
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The earliest models for the fractionated radiation therapy were developed based on the Target theory, Hit theory (Cohen,
1971), and Power Law equation of the Nominal Standard Dose theory of fractionated cells (Ellis, 1969). In fractionated radio-
therapy, radiotherapy is applied in a number of doses called fractions given in a period of time. Target theory is associated to
ionization of cells during the process of radiotherapy and Hit theory is based on the idea that there are sensitive targets in the cell
that can go through ionization during radiotherapy, which is called a hit event. The novelty of the current work is in including
cell damage heterogeneity and the repair mechanism between two consecutive RT dose fractions by considering single and dou-
ble strand DNA breaks. Ionizing radiation not only causes Double-Strand Breaks (DSBs) but also causes a substantial extent
of DNA base lesions, which are called Single-Strand Breaks (SSBs) (Khoronenkova and Dianov, 2015; Vilenchik and Knudson,
2000). One Gray of irradiation will produce approximately 105 ionizations, 1000DNA base damages, 1000 single-strand DNA
breaks (SSBs), and 20 to 40 double-strand DNA breaks (DSBs) (Joiner and van der Kogel, 2009). Specialized repair systems have
consequently developed to detect and repair base damage, e.g., base excision repair (BER), and single-strand breaks, or single-
strand break repair (SSBR). SSBR is closely associated with BER. Single-strand breaks can result in DSB development in two
ways. In the first way, ionizing radiation damage frequently takes place in groups, and subsequently, a number of SSBs will also
exhibit damage to neighboring DNA bases. During base damage, repair via BER, SSBs forms temporarily. Upon the occurrence
of a strand opposite to a radiation-induced SSB incurring base damage, the temporarily created break during BER may join the
radiation break on the opposite strand, which results in a DSB.

The second way happens if a SSB has come upon a replication fork in the S phase, and if the fork and single-ended DSB
will disintegrate (Joiner and van der Kogel, 2009). Mutations, genomic instability, and cell death may result from failing to
mend DNA breaks like DSBs. Due to the critical effects of DSBs, cells have developed homologous recombination (HR) and
non-homologous end joining (NHEJ) as two principal repair mechanisms (Ohnishi et al., 2009). In the course of HR, a double-
strand break may transform into a single strand break because the single-strand DNA production is essential for HR (Joiner and
van der Kogel, 2009).

As target and hit theories play the central role in radiotherapy, therefore in this work, we study the significance of including
single and double strand breaks in the treatment by radiotherapy to be able to understand the effectiveness of the treatment. As
such, we propose a tumor population dynamics model via a system of ordinary differential equations with coefficients repre-
sented by random variables representing transition rates. Then, we evaluate these transition rates using a Markov chain. Based
on the effect of radiation, cells are divided into three subpopulations, which are cells with no effect (x0), cells with single-strand
breaks (x1), and cells with double-strand breaks (x2). We analyze the system and its stability numerically. In addition, we have
studied the bifurcation of the system with respect to the two parameters, q and r, where q represent the probability of a target
deactivation after a dose fraction and r shows a target revival probability between two conservative doses.

The paper is organized as follows: Section 2 introduces the general theory and preliminary findings. The tumor growth
model is discussed in terms of a system of ordinary differential equations with Markov chain coefficients. In Section 3, the model
is probed with two and three subpopulations based on the DNA fragmentation. Then, the system stability and numerical system
bifurcation is studied. A discussion and a comparison with previous studies in the literature are presented in Section 4. Finally,
Section 5 concludes the study.

2 Assumptions and Modeling

2.1 Assumptions

The following assumptions are adopted in our modeling framework (Oroji et al., 2018):

1. Cells act independently but they have the same phenotype.

2. The magnitude of each dose fraction (u0) is considered constant during treatment by RT (i.e., u0 = 2Gy). The time-lag
of two consecutive dose fractions is 24 hours.

3. It is assumed that each cell consists of m targets. Targets may be deactivated with probability q after each dose fraction.
P = [pij] describes the treatment probability matrix elements in the transition from i to j inactive targets, i.e., deactivating
j targets when i targets were disabled before that (Keinj et al., 2011). This probability matrix is written as

P = [pij] =
{(m−i

j−i
)
qj−i (1 − q)m−j if i ≤ j,

0 if j < i.
(2.1)

4. The revival probability for an inactive target during the period between two consecutive fractions is r. It is assumed that
targets can be repaired independent from each other. As such, R = [rij] describes the repair probability matrix in the
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transition from i to j, where i − j targets among the i inactive targets are considered to be repaired (Keinj et al., 2011):

R = [rij] =
{(i

j
)
ri−j (1 − r)j if j ≤ i < m,

0 if i < j,
(2.2)

where rmm = 1 and rmj = 0 for m ≠ j.

5. Cells can reproduce if all targets become active. For simplicity, we assume that just before the repair mechanism acts,
cells in subpopulation x0 can give birth to new cells proportional to subpopulation x0 with a constant rate of µ(1 − q)m.
As such, each cell in subpopulation x0 can divide into exactly two daughter cells with probability µ or it can remain
unchanged with probability (1 − µ) between two consecutive dose fractions.

6. Tumor lifespan is defined as the minimum necessary dose fractions for the elimination the entire tumor. If N (t) repre-
sents the total target population in the tumor then the tumor lifespan is described by the following (Oroji et al., 2016):

L = min
{
⌊t⌋ : ⌊N (t)⌋ = 0

}
, (2.3)

where, e.g., ⌊t⌋ is the greatest integer less than or equal to t.

7. Following Keinj et al. (2011), the dynamic of the involved Markov chain is characterized by matrix Π = [πij], which takes
the effect of dose fractions first and then the repair. Therefore, Π = PR.

2.2 Model

Based on the assumption considered in Section 2.1, the proposed model is written as follows (Oroji et al., 2018). In our model,
each cell has m targets. In the numerical simulations, there are three targets, x0, x1 and x2. x0 represents the population of not
being affected by radiation, x1 having single strand breaks (SSB) and x2 having double strand breaks (DSB). Each targets can be
deactivated with probability q after each dose fraction. Each target can be revived with probability r.

dx0 (t)
dt

= [π0,0 + µ(1 − q)m − 1]x0 (t) +
m−1∑︁
i=1

πi,0xi (t)

dx1 (t)
dt

= [π1,1 − 1]x1 (t) +
m−1∑︁
i=0
i≠1

πi,1xi (t)

...

dxm−1 (t)
dt

= [πm−1,m−1 − 1]xm−1 (t) +
m−2∑︁
i=0

πi,m−1xi (t)

(2.4)

with initial conditions x(0) = (n0, 0, . . . , 0)⊤. Here, πi,j represents the transition probability from the state x(i) to x(j). In the
matrix form, System (2.4) can be rewritten as

¤x(t) = A(q, r) x(t) (2.5)

where matrix A is defined as

A = [aij] =


π0,0 + µ(1 − q)m − 1 if i = j = 1,
πi,i − 1 if i = j ≠ 0,
πj,i if i ≠ j.

(2.6)

3 Simulation and Results

3.1 Cells with single-strand breaks and double-strand breaks as two subpopulations

In applying a dose fraction, a realistic scenario is cells having only four possibilities: not being affected by radiation particles (cells
in subpopulation x0), incurring Single-Strand Breaks (SSB) (cells in subpopulation x1), incurring Double-Strand Breaks (DSB)
(cells in subpopulation x2), or dying. In this regard, we study a system with three targets, m = 3. We study the stability of the
zero solution and establish the necessary conditions for this stability. Then we report the numerical simulation results. These
results can characterize the effectiveness of the RT treatment.
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3.1.1 Stability analysis

We examine the stability of the System (2.4) for the parameter value µ = 1. We have used numerical simulations for verifying the
necessary stability conditions. In this case, System (2.4) is reduced to

dx0 (t)
dt

= [π0,0 + (1 − q)3 − 1]x0 (t) + π1,0x1 (t) + π2,0x2 (t)
dx1 (t)
dt

= π0,1x0 (t) + [π1,1 − 1]x1 (t) + π2,1x2 (t)
dx2 (t)
dt

= π0,2x0 (t) + π1,2)x1 (t) + [π2,2 − 1]x2 (t)

(3.1)

with the initial condition x(0) = (n0, 0, 0). Now, suppose thatA denotes the coefficient matrix of System (3.1), which is written
as follows:

A(q, r) =

[3qr(q − 1)2 − 2(q − 1)3 − 3q2r2 (q − 1)] − 1 r(q − 1)2 − 2qr2 (q − 1) −r2 (q − 1)
3q2r(2r − 2) (q − 1) − 3q(q − 1)2 (r − 1) [2qr(2r − 2) (q − 1) − (q − 1)2 (r − 1)] − 1 r(2r − 2) (q − 1)

−3q2 (q − 1) (r − 1)2 −2q(q − 1) (r − 1)2 −[(q − 1) (r − 1)2] − 1

 .
Theorem 3.1. System (3.1) has only one equilibrium point at the origin if 0 < r < 1, q = 0.5 and µ = 1.

Proof. Substituting q = 0.5 in the matrix and evaluating its determinant results in det(A) = 9(r−1)
32 , which is nonzero for

0 < r < 1. □

Remark 3.1 (Routh-Hurwitz criterion). Routh-Hurwitz criterion is necessary and sufficient condition for a matrix to have
strictly eigenvalues with the negative real parts. This condition forces the linear system with constant coefficients X ′ (t) = AX (t) be
asymptotically stable at the origin provided that det(A) ≠ 0. If the characteristic polynomial of A is

p(λ) = det(A − λI) = λn + a1λn−1 + a2λn−2 + · · · + an,

then the necessary and sufficient condition for stability in the case of n = 3 is a3 > 0, a1 > 0, and a1a2 > a3. For the general case we
refer the readers to Coppel (1965, p. 158).

Theorem 3.2 (Stability result). System (3.1) is stable at the origin for 0 < r < 1, q = 0.5 and µ = 1.

Proof. Let P (λ) be the characteristic polynomial of matrix A. By using the Routh-Hurwitz criterion, System (3.1) is stable if
and only if

a1 > 0, a3 > 0, a1a2 > a3 (3.2)

where a1, a2 and a3 are the corresponding coefficients of the characteristic polynomial of matrix A, i.e.,

P (λ) = λ3 + a1λ2 + a2λ + a3 (3.3)

For q = 0.5, the characteristic polynomial of matrix A is written as

P (λ) = λ3 +
1
8
(r2 − r + 4)λ2 + 1

32
(−r3 + 7r2 − 16r + 42)λ + 9

32
(1 − r). (3.4)

It is clear that a1 > 0 and a3 > 0. Therefore, it is sufficient to show that a1a2 > a3 for 0 < r < 1. By considering

g(r) = a1a2 − a3 =
1

256
(−r5 + 8r4 − 39r3 + 170r2 − 226r + 600) (3.5)

it can be verified that g(r) > 0 for 0 < r < 1 (see Figure 1a). Therefore, the Routh–Hurwitz criterion is satisfied. □

Theorem 3.3. For q < 0.5, there exists 0 < r < 1, such that System (3.1) is unstable at the equilibrium point (0, 0, 0).

Proof. Suppose that h > 0 is an arbitrary real number. Corresponding to q = 0.5 − h and r = 1 − h,

P (λ) = λ3 + a1λ2 + a2λ + a3 (3.6)

represents the characteristic polynomial of the coefficient matrix in System (3.1), where

a3 = − h
32

(64h8 + 96h7 + 32h6 − 80h5 + 52h4 − 74h3 + 4h2 − 18h + 39). (3.7)
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Figure 1: Verification of the Routh–Hurwitz criteria for the stability of origin.
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Figure 2: (r, q) stability region for the System (3.1) at the origin for µ = 0.1, µ = 0.5 and µ = 1.

According to the Routh-Hurwitz criterion, the System (3.1) is stable at (0, 0, 0) if and only if

a1 > 0, a3 < a1a2, a3 > 0. (3.8)

But by using the graph of a3, we find that a3 < 0 for all h > 0 (see Figure 1b) because a3 (0) = 0 and a3 (h) is a decreasing
function on [0, 1]. Hence

a3 (h) < 0. (3.9)

Therefore, System (3.1) is unstable at the equilibrium point (0, 0, 0). □

The following corollary is a direct result of Theorem 3.3.

Corollary 3.1. Suppose that S denotes the set of all values q such that System (3.1) is stable at equilibrium point 0 ∈ R3 corre-
sponding to all 0 < r < 1. Then

inf
q
S = 0.5. (3.10)

Remark 3.2. As the system is linear and has only one equilibrium point the stability results are global. This stability result plays
a crucial role in the treatment as it can be interpreted as the cancer cells population will vanish, which means the radiation therapy
is effective.

3.1.2 Bifurcation analysis

The system parameters stability ranges for cases µ = 1, µ = 0.5, and µ = 0.1 are depicted in Figures 2(a), 2(b), and 2(c),
respectively. There are no significant differences observed in the stability regions of the System (3.1) for different values of µ.

Regarding the bifurcation value of the parameter q, we have studied several cases. The value of q is changed with different
values of r. The results demonstrate that the system is stable for q ≥ 0.5 (see Figures 3, 4, and 5).
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Figure 3: 3-D graph for time-evolution of x0, x1, and x2 where n0 = 1000, q varies from 0.4 to 0.6 with step size 0.05, and
r = 0.4, r = 0.5, and r = 0.6.
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Figure 5: Bifurcation analysis: r = 0.9 and q varies between 0.4 and 0.6. The system is stable at zero equlibrium when q ≥ 0.5.



LETTERS IN BIOMATHEMATICS 147

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

4

qr

z
 =

 a
1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

qr

z
 =

 a
3

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

2

4

6

8

10

qr

z
 =

 a
1
 a

2
 −

 a
3

(a) |a1 (q, r) | (b) |a1 (q, r)a2 (q, r) − a3 (q, r) | (c) |a3 (q, r) |

Figure 6: 3-D plot for |a1 (q, r) |, |a1 (q, r)a2 (q, r) − a3 (q, r) | and |a3 (q, r) |. System (3.1) is stable at the origin if and only if
these functions are positive.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

2

4

6

8

10

 

qr
 

z

z = a
1

z = a
3

z = a
1
 a

2
 − a

3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q

r

 

 

(a) a1, a1a2 − a3 and a3. (b) The Stability Region.

Figure 7: Intersection of the area in which functions a1 (q, r) and a3 (q, r) are positive and a1 (q, r) a2 (q, r) > a3 (q, r). The
Routh-Hurwitz Criterion is satisfied for all values of q and r in the blue region.

According to the discussion provided in Section 3.1.1, the system is generally stable when the Routh-Hurwitz criterion is
satisfied. In this case, the three conditions of Theorem 3.2 can be represented as 3D graphs with respect to parameters q and
r, which are depicted in Figure 6. A stability region is characterized by the intersection of these surfaces, which is illustrated in
Figure 7.

3.2 Cells with single-strand breaks and double-strand breaks as one subpopulations

There are several different methods to recognize single-strand breaks (SSB) and double-strand breaks (DSB) such as PCR (poly-
merase chain reaction), comet, halo, TUNEL (Terminal deoxyribonucleotidyl transferase-mediated deoxyuridine triphosphate
nick end labeling) assay, HPLC-Electrospray tandem mass spectrometry, FISH (Fluorescence in situ hybridization), FCM (Flow
cytometry), annexin V labeling, immunological assays including immunofluorescent and chemiluminescence thymine dimer
detection, immunohistochemical assay, Enzyme-linked immunosorbent assay (ELISA), Radio immunoassay (RIA), Gas chro-
matography-mass spectrometry, and electrochemical methods (Kumari et al., 2008). The main drawback of these methods is
that they are not able to distinguish between SSDs and DSBs. As a result, we can take both populations (DSBs and SSBs) as one
subpopulation. Therefore, we can consider m = 2, i.e., the tumor population is divided into two subpopulations: cells without
DNA fragmentation and cells with DNA fragmentation (SSBs and DSBs).

3.2.1 Stability analysis

Based on Equation (2.6), the matrix A in the System (2.4) is defined as

A(q, r) =
[
2(q − 1)2 − 2qr(q − 1) − 1 −r(q − 1)

2q(q − 1) (r − 1) (q − 1) (r − 1) − 1

]
(3.11)

where 0 ≤ q, r ≤ 1.
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Theorem 3.4. Suppose that the matrix A is defined as Equation (3.11) and q = 0.5. Therefore, the System (2.4) is stable at
equilibrium point (0, 0)⊤ for all 0 < r < 1.

Proof. For q = 0.5

A =

[
r
2 −

1
2

r
2

1
2 −

r
2 − r

2 −
1
2

]
(3.12)

In addition
λ1 + λ2 = −1 (3.13)

and
λ1 λ2 =

1 − r
4

(3.14)

Therefore, for any 0 < r < 1, the eigenvalues of the matrix A have negative real parts. Hence, the System (2.4) is stable for all
0 < r < 1. □

3.2.2 Bifurcation analysis

In this section, we will show how the change in parameters of the model is influencing the lifespan. Due to the complexity of
the system, most of our results in this section are based on the numerical simulations. Figures 8–10 show the stability region
of the system with respect to parameter µ. Figure 8 shows a significant difference among the stability region of the system, for
m = 2 where µ = 0.1, µ = 0.5, and µ = 1. The same results are shown where m = 5 in Figure 9. The difference among stability
regions for m = 10 is insignificant (depicted in Figure 10). Therefore, it can be inferred that the parameter µ is not an influential
parameter when the number of targets is greater than 10.

As seen in Figures 11 and 12, the stability region experiences significant change if the number of targets varies from m = 4
to m = 50. However, for larger values of m, the stability region is changing slightly (see Figure 12). For instance, stability
regions corresponding to m = 10 and m = 20 are different only in one point. In contrast, the difference in the stability region
corresponding tom = 4 andm = 2 cases is significant. As a result of this study, we can say that for lower values ofm the stability
area are quite different, while for the higher values of m, the stability areas are the same.

The next parameter of the model is the probability that a cell gives birth after the application of a dose fraction µ. First,
we consider m = 2, q = 0.6. The effect of parameter µ on the tumor lifespan L are shown in Figure 13, in which the initial
number of cells varies among n0 = 103, 107 and 1010. The blue and red solid lines show the tumor lifespan, when the parameter
0 ≤ r ≤ 1 corresponding to µ = 0.1 and µ = 1, respectively.

Now, suppose that q = 0.6, n0 = 107 and µ = 1. Figure 14 represents the influence of parameter m on the tumor lifespan L.
The blue and red solid lines are corresponding to the values µ = 0.1 and µ = 1 in which m changes among 3, 5 and 7. As seen,
the tumor lifespan corresponds to different values of µ that are almost the same if m is large enough (for instance m = 7).

For fixed values of q = 0.8, and n0 = 103, the tumor lifespan remains unchanged for m = 2 and m = 3 (see Figure 15). In
addition, for m = 6, and m = 7, the changes in the tumor lifespan are insignificant (see Figure 16). However, a big gap in the
tumor lifespan is visible, for m = 2, m = 7, and 0.3 ≤ r ≤ 1.

As seen in Figures 15 and 16, the lifespan corresponding to the values of q = 0.8, and m = 2 is fairly similar to the tumor
lifespan associated with q = 0.9, and m = 7. This shows that, although the repair mechanism (r) and the number of a cell’s
target (m) are important in this model, controlling the parameter (q) is the most important fact.

Now, suppose that m = 2, and n0 = 103. For low, middle, and high values of the repair mechanism probability, if q = 0.5,
the tumor lifespan changes between 30 and 130. However, for q ≥ 0.6, the changes in the values of repair mechanism parameter
(r) affect the tumor lifespan insignificantly (see Figure 17).

Suppose that m = 2, and n0 = 103. However, the System (2.4) is stable when q = 0.5; this value of (q) is not suitable (see
Figure 18). In addition, the tumor lifespan is stabilized and constant for q = 0.6 and q = 0.8, respectively.

Finally, it is clear that the treatment parameter (q) is more important than the repair mechanism parameter (r) because if we
can control the treatment parameter in an acceptance range of 0.8 ≤ q ≤ 1 then the tumor lifespan will be stabilized for any
value of the repair mechanism value r. As a result, the treatment process will be more effective.

Table 1 shows the change of the tumor lifespan (L) for a fixed value ofn0 = 103 and a small value of r (r = 0.3) corresponding
to the different values of parameters q and m. The tumor lifespan is clearly stabilized when q ≥ 0.8.

In contrast, Table 2 shows the variation in tumor lifespan for a fixed value of n0 = 103 and large value of r (r = 0.9) and
different values of parameters q and m. As seen before, q = 0.5 is not a suitable value for the treatment parameter. In Figures
19 and 20 the 3-D simulation of the tumor lifespan for q ≥ 0.6, and 0 ≤ r < 1 for two values m = 2, m = 6 are represented,
respectively. Moreover, we compare the values of L corresponding to different values of 0.6 ≤ q ≤ 1 and 0 ≤ r ≤ 1 for m = 2
and m = 6 in Figure 21. Finally, 3-D stability region of the System (2.4) where m = 2, 5 and m = 10, 20 and µ = 1 in Figures 22
and 23, respectively.
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Figure 8: (r, q) stability region at zero equilibrium for m = 2.
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Figure 9: (r, q) stability region at zero equilibrium for m = 5.
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Figure 10: (r, q) stability region at zero equilibrium for m = 10.

Table 1: Influence of the parameters q, m on the Tumor Lifespan L, where n0 = 103 and r = 0.3.

q = 2 q = 3 q = 4 q = 5 q = 6 q = 7
m = 0.6 18 18 21 24 28 33
m = 0.7 13 14 15 17 19 21
m = 0.8 11 11 12 13 14 15
m = 0.9 9 9 10 10 10 11
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Figure 11: Stability Region at zero equilibrium for m = 4 and m = 10.
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Figure 12: Stability Region at zero equilibrium for m = 20 and m = 50.
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Figure 13: Influence of µ on the tumor lifespan for m = 2.

Table 2: Influence of the parameters q, m on the Tumor Lifespan L, where n0 = 103 and r = 0.9.

q = 2 q = 3 q = 4 q = 5 q = 6 q = 7
m = 0.6 31 39 54 81 124 193
m = 0.7 17 21 27 54 50 69
m = 0.8 12 14 16 27 24 30
m = 0.9 9 10 11 16 13 14
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Figure 14: Influence of µ on the tumor lifespan for q = 0.6 and n0 = 107.
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Figure 15: Compare the lifespan trend for m = 2 and m = 3, where q = 0.8 and n0 = 103.
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Figure 16: Compare the lifespan trend for m = 6 and m = 7, where q = 0.9 and n0 = 103.
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Figure 17: The influence of the repair mechanism probability (r) on the tumor lifespan where m = 2 and n0 = 103.
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Figure 18: The influence of the treatment probability (q) on the tumor lifespan where m = 2 and n0 = 103.
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Figure 19: The tumor Lifespan where m = 2, n0 = 103, 0.6 ≤ q ≤ 1, and 0 ≤ r ≤ 1.
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Figure 20: The tumor Lifespan where m = 6, n0 = 103, 0.6 ≤ q ≤ 1, and 0 ≤ r ≤ 1.
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Figure 21: Comparing the tumor lifespan where m = 2 and m = 6.
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Figure 23: 3-D stability region.
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Figure 24: The influence of parameter µ on tumor lifespan for q = 0.6 and r = 0.2.

3.3 Numerical analysis on the tumor lifespan

In this section, we study the influence that system parameters have on the tumor lifespan and also provide a numerical bifurcation
analysis of the System (3.1). This is a linear system with three parameters, q, r, and n0. The numerical simulations were carried
out using the MATLAB software package. Based on the tumor lifespan definition provided in Equation (2.3), we demonstrate
that parameter q has the highest impact on the lifespan. Figure 24 shows the effect of parameter µ on the tumor lifespan for
r = 0.2, which is similar to the result of Keinj et al. (2012). Figure 25 depicts the effect of parameter µ on the tumor lifespan
for different initial condition values: n0 = 103, 107 and 1010. The blue solid line and red dash line represent the tumor lifespan
corresponding to µ = 0.1 and µ = 1, respectively. In this case, it is clear that when µ changes from 0.1 to 1, there is a slight change
in tumor lifespan L.

Table 3 shows the variation in the tumor lifespan for the fixed value of n0 = 100 and different values of parameters q and r.
The tumor lifespan is clearly stabilized for q ≥ 0.8.

These results emphasize that the effect of parameter q on the tumor lifespan is more dominant than the other parameters
(see Figure 26). In addition, corresponding to the fixed parameter value q = 0.9, the tumor lifespan changes are insignificant for
0 < r < 1 and 102 < n0 < 105 (see Table 4). The variations in tumor lifespan (L) with respect to the changes in the initial tumor
cell numbers, n0, are depicted in Figure 27 and are in very good agreement with the results of Keinj et al. (2012).
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Figure 25: Influence of µ on tumor lifespan where n0 changes from 103 to 1010 when q = 0.6 and 0 < r < 1.

Table 3: Influence of parameters (q) and (r) on the tumor lifespan (L) for n0 = 100.

r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5 r = 0.6 r = 0.7 r = 0.8
q = 0.5 14 16 19 23 28 36 50 77
q = 0.6 11 12 13 14 16 17 20 23
q = 0.7 9 9 10 10 11 11 12 13
q = 0.8 7 8 8 8 8 8 9 9
q = 0.9 6 6 6 6 7 7 7 7
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Figure 26: Influence of inactivation (q) and reactivation probabilities (r) on tumor lifespan (L).

Table 4: Tumor lifespan for q = 0.9 when n0 varies between 102 and 105.

r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5 r = 0.6 r = 0.7 r = 0.8
n0 = 102 6 6 6 6 7 7 7 7
n0 = 103 9 9 9 9 9 10 10 10
n0 = 104 12 12 12 12 12 12 13 13
n0 = 105 14 15 15 15 15 15 16 16
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Figure 27: Variations in tumor lifespan (L) with respect to changes in the initial number of tumor cells (n0) for r = 0.1 and
q = 0.5.

4 Discussion

In this paper, we have proposed a hybrid differential equations model for the evolution of single and double strand breaks in
the treatment by radiotherapy. The proposed model comprises the dynamics of a tumor cell population due to the effect of
the treatment on cells through each cell’s reaction to radiation. For instance, after applying the first dose fraction and after the
repair mechanism, a cell may remain in subpopulation x0 or move to other sub-populations, xi , i = 1, . . . , (m− 1), or it may die.
Therefore, the cells’ reaction to treatment is different in this model and can be interpreted as heterogeneity. Using this model,
we confirmed that the treatment effect parameter q has a more important role than the repair mechanism parameter r. We have
demonstrated that q = 0.5 is a the bifurcation value, which results in the stability of the System (3.1) for all 0 < r < 1. We
showed that the death rate of subpopulation xi has less impact than that of subpopulation xj when i < j, which means that
cells with j deactivated targets are more radiosensitive than cells with i deactivated targets. Therefore, damaged cells are unable
to resist radiation, which is in complete agreement with evidence provided by Keinj et al. (2011) and by Keinj et al. (2012). The
model also presents formula for the tumor lifespan.

5 Conclusion

In this study, the population dynamics of tumor cells in the process of radiotherapy was studied. A system of differential equa-
tions with random variable coefficients was introduced to capture the heterogeneity of cell damage and the repair mechanism
between two consecutive dose fractions. The effect of radiation in the case of single-strand and double-strand breaks was con-
sidered as a special instance of the model when m = 3 and m = 2. Moreover, the stability of this system was assessed both
analytically and numerically, when each cell contains two and three targets (m = 3, m = 2). Based on the tumor lifespan, the
effects of the probability that a target will be inactive after a dose fraction q and the probability that a target will reactivate after
the repair mechanism r were investigated numerically. Our results are in good agreement with previous results presented by
Keinj et al. (2012).
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