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Perturbations in Epidemiological Models:
When zombies attack, we can survive!
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Abstract

In this paper, we investigate the existence of stability-changing bifurcations in
epidemiological models used to study the spread of zombiism through a human
population. These bifurcations show that although linear instability of disease-
free equilibria may exist in a model, perturbations of model parameters may result
in stability. Thus, we show that humans can survive a zombie outbreak.
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1 Introduction

Consider a disease for which an individual, once recovered, receives “immunity” (either
death or immunity from reinfection). To study the spread of such a disease in a healthy
population, we often start by considering the Kermack-McKendrick model [5] (commonly
referred to as the SIR model). Each individual in the population can be classified into one
of three categories: susceptible, infectious, or recovered. Let S(t), I(t), and R(t) denote the
number of individuals in the susceptible, infectious, and recovered categories, respectively,
at time t.

The transmission of the disease is governed by a linear mass action law, i.e., the disease
is spread at a rate proportional to the number of susceptible and infectious, with individuals
infected at a rate of rSI where r is a positive constant. The rate of recovery is proportional
to the number of infectious individuals, with individuals recovering at a rate of aI where a
is a positive constant. The SIR model is depicted in Figure 1.

This model is developed with three fundamental assumptions. The first being the pop-
ulation is closed, meaning the total population N = S(t) + I(t) +R(t) is constant. Diseases
to which this model is applied are short-lived in comparison to the population lifespan.
The second assumption is that the individuals are homogeneously mixed, that is, every two
individuals have equal probability of coming into contact. The last assumption is that the
incubation period of the disease is negligible, and so upon infection, individuals immediately
move into the infectious category. If we consider the populations to be continuous in time,
we can describe the SIR model by the system of differential equations (1). The literature
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Figure 1: Kermack-McKendrick (SIR) model.

S′ = −rSI
I ′ = rSI − aI
R′ = aI

(1)

on the application of this model to epidemiology is too vast to cite here. However, the
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interested reader is directed to [1], [3], [8], and [9] for further references.
More recently, the use of such mathematical models has been applied to the introduction

of zombies into a human population, due in part to the rise (forgive the pun) of zombies in
pop culture. In the seminal work [7] on modeling zombie infections, Munz et al. used the
SIR model, and its variations, to determine if humans can survive an outbreak of zombiism.
Since then, the mathematical models of zombies has taken off (see [11]).

We will consider two models used in [7]: the basic model, denoted by SZR, and a
quarantine model, denoted by SEZQR. Both are continuous time models with a closed
total population of size N . For the basic model, each individual can be classified as either
susceptible, zombie, or removed zombie. Let S(t), Z(t), and R(t) denote the number of
susceptible, zombies, and removed zombies, respectively, at time t. In this model, humans
are infected, and immediately turned into zombies, at a rate of βSZ, there β is a positive
constant. Also, zombies are removed, i.e., killed by humans, at a rate of αSZ, where α is a
positive constant. In this model, the zombies are not removed through “natural” causes such
as starvation, but only through an interaction with the human population. Finally, removed
zombies can be resurrected and returned to the zombie category at a rate of ζR, where ζ is
a positive constant. The model is depicted by the compartment diagram in Figure 2 as well
as by the system of differential equations (2).

S Z R
βSZ

αSZ

ζR

Figure 2: SZR model.

S′ = −βSZ
Z ′ = ζR+ (β − α)SZ

R′ = αSZ − ζR
(2)

For the quarantine model, two new categories are added: an infected stage and a quaran-
tine stage. Susceptible individuals who are infected do not immediately turn into zombies.
They become infected but are not infectious. Let E(t) denote the number of infected (ex-
posed) individuals at time t. In this model, humans are infected at the same rate βSZ as
in the basic model. Also, zombies are removed at the same rate αSZ as in the basic model.
The infected individuals become zombies at a rate proportional to the number of infected,
with individuals transitioning at a rate of ρE, where ρ is a positive constant. In addition,
exposed individuals, as well as zombies, can be quarantined at a rate proportional to the
populations. Let Q(t) denote the number of quarantined human and zombies. The exposed
humans are quarantined at a rate of κE, where κ is a positive constant, while zombies are
quarantined at a rate of σZ, where σ is a positive constant. Finally, quarantine zombies
transition to the removed category at a rate of γZ, where γ is a positive constant. This
model is depicted by the compartment diagram in Figure 3 as well as by the system of
differential equations (3).
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Figure 3: SEZQR model.

S′ = −βSZ
E′ = βSZ − (ρ+ κ)E

Z ′ = ρE + ζR− σZ − αSZ
Q′ = κE + σZ − γQ
R′ = αSZ + γQ− ζR

(3)

In both models, removed zombies are allowed to be resurrected, returning them to the
zombie stage. Thus, the immunity from reinfection present in the original SIR model has
been removed. The parameters of the two models are summarized in Table 1. Estimates for
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the parameters are the same as those used in [7], and were used in the numerical solutions
of the systems of differential equations. Estimates for κ, σ, and γ were not explicitly stated
in [7], so we provide values used in the numerical analysis.

Parameter Description Estimate
β transmission rate of zombie infection 0.0095
α removal rate of zombies 0.005
ζ resurrection rate of zombies 0.0001
ρ conversion rate of infected to zombie 0.005
κ quarantine rate of infected humans 0.001
σ quarantine rate of zombies 0.001
γ removal rate of quarantined zombies 0.0001

Table 1: Parameters and estimates for SZR and SEZQR models.

In [7], the authors considered the linear stability of the disease-free equilibrium of the
SZR and SEZQR models, among others, to determine the survivability of the human race.
It was shown that the disease-free equilibria are not linearly stable and verified numerically
that the introduction of zombies brings about the demise of the human race.

In this paper, we wish to determine the severity of the situation. Our strategy is to
determine the sensitivity to model parameters of the linear stability of the disease-free
equilibrium. We perturb the ability to remove zombies by changing the removal mechanism
to be a nonlinear mass action (as described in the next two sections). We determine the
existence of stability-changing bifurcations for the disease-free equilibria. With this, we
conclude that it is possible for humans to survive a zombie infection.

2 Perturbing the Basic Model

In this section, we will consider a modification to the basic model as depicted in Figure 2
and system (2). We wish to see how the stability of the disease-free equilibrium of the
system is affected by perturbing the removal rate of the zombies. In this model, the ability
for humans to remove zombies is being perturbed by the parameter µ ∈ (0,∞), as depicted
in Figure 4 and system of ordinary differential equations (4). We can reduce system (4) to

S Z R
βSZ

αS1+µZ

ζR

Figure 4: Peturbed SZR model.

S′ = −βSZ
Z ′ = ζR+ βSZ − αS1+µZ

R′ = αS1+µZ − ζR
(4)

the following system of two ordinary differential equations

S′ = −βSZ
Z ′ = ζ(N − S − Z) + βSZ − αS1+µZ

(5)

by substituting R = N − S − Z.
There are two equilibria for this system, namely the epidemic equilibrium (0, N) and

the disease-free equilibrium (N, 0). If µ = 0, then the perturbed system is the basic model
studied in [7]. Figure 5 shows the phase portrait of the basic model. The trajectories in the
phase portrait show that a small perturbation off the x-axis (the disease-free equilibrium)
will result in the extinction of the human population.

However, the phase portrait in Figure 6 shows that with a slight increase in µ, small
perturbations from the disease-free equilibrium can lead to the extinction of the zombie
population. So part of the x-axis (human population) is an attracting set.
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Figure 5: Phase portrait of perturbed
SZR model with µ = 0.
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Figure 6: Phase portrait of perturbed
SZR model with µ = 0.175.

We will now determine the values of µ for which the x-axis contains an attracting set. We
will linearize the system about the disease-free equilibrium and use the determinant-trace
plane to determine linear stability.

The Jacobian of system (5) is given by

J(S,Z) =

[
−βZ −βS

−ζ + βZ − α(1 + µ)SµZ −ζ + βS − αS1+µ

]
,

and evaluated at the disease-free equilibrium (N, 0), the Jacobian is

J = J(N, 0) =

[
0 −βN
−ζ −ζ + βN − αN1+µ

]
.

From this, we have

det(J) = βζN,

tr(J) = −ζ + βN − αN1+µ.

Since β and ζ are positive, we have det(J) > 0. So for the disease-free equilibrium to be
linearly stable, it must be the case that tr(J) < 0. This occurs when

N1+µ > βN−ζ
α .

Since β, ζ, and α are all positive constants, we must impose the condition

N ≥ α−ζ
β . (A1)

So tr(J) < 0 when

µ >
ln
(
βN−ζ
α

)
ln(N)

− 1. (6)

We summarize our finding in what follows.

Theorem 1. The disease-free equilibrium of system (4) satisfying assumption (A1) is lin-
early stable if and only if

µ >
ln
(
βN−ζ
α

)
ln(N)

− 1.
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We will now consider the implications of this to the zombie infection. We will analyze
system (4) with the parameter values from Table 1. First note that for N > 1 > α−ζ

β , and

so assumption (A1) is satisfied. Figure 7 shows the bifurcation of instability to stability of
the disease-free equilibrium. Thus, we see that perturbations in the system parameter µ can
cause the stability of the disease-free equilibrium to change from unstable to stable. This
change in the ability to remove zombies can be due to increase in skills and equipment at
the disposal of the human population, for example.

ln( βN−ζ
α )

ln(N) − 1

Unstable

Stable
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.1
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N

µ

Figure 7: Bifurcation diagram for the SZR model.

3 Perturbing the Quarantine Model

The second model we will study is a perturbation of the SEZQR model, as described in Fig-
ure 8 and system (7). System (7) has two equilibria: the epidemic equilibrium (0, 0, N, 0, 0)
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γQ

Figure 8: Perturbed SEZQR model.

S′ = −βSZ
E′ = βSZ − (ρ+ κ)E

Z ′ = ρE + ζR− σZ − αS1+µZ

Q′ = κE + σZ − γQ
R′ = αS1+µZ + γQ− ζR.

(7)

and the disease-free equilibrium (N, 0, 0, 0, 0). As in the previous section, we wish to see
if there are any values of µ which elicit a linearly stable disease-free equilibrium. This
would require analyzing the eigenvalues of a large matrix system. Instead, we will use the
next-generation matrix, described in [2], to determine the basic reproduction number R0

for the system. This is interpreted as the number of secondary infections produced by an
infected individual. In the case of the SEZQR model, the number of individuals infected
with zombiism by a single zombie. The disease-free equilibrium will be linearly stable if
R0 < 1. So we will use the basic reproduction number to determine if any perturbation in
the SEZQR system will allow for survival of the human population.

To aid in the construction of the next-generation matrix, we will reduce the SEZQR
model to a system of four ordinary differential equations replacing R with N−S−E−Z−Q.
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Thus we will consider the following system of differential equations.

S′ = −βSZ
E′ = βSZ − (ρ+ κ)E

Z ′ = ρE + ζ(N − S − E − Z −Q)− σZ − αS1+µZ

Q′ = κE + σZ − γQ

(8)

To construct the next-generation matrix, we focus only on the compartments which in-
troduce new infections, or transition existing infections from compartment to compartment.
For this, we will focus on the E′, Z ′, and Q′ equations. From these, we will construct the
new-infection matrix F and the transition matrix V in such a way that [E′ Z ′ Q′]

T
= F−V.

For system (8), the new-infection and transition matrices are given by

F =

βSZ0
0

 and V =

 (ρ+ κ)E
αS1+µZ + σZ − ρE − ζ(N − S − E − Z −Q)

γQ− σZ − κE

 .
Then the basic reproduction number is given by the spectral radius of FV −1, where

F and V are the Jacobian matrices of F and V, respectively, evaluated at the disease-free
equilibrium.

Thus, we have

F =

0 βN 0
0 0 0
0 0 0

 and V =

ρ+ κ 0 0
ζ − ρ αN1+µ + σ + ζ ζ
−κ −σ γ


with

FV −1 =
−βN(ζκ+ γ(ζ − ρ))

(ρ+ κ)(αγN1+µ + ζσ + γ(ζ + σ))
·

1 βγN(ρ+κ)
−βN(ζκ+γ(ζ−ρ))

−βζN(ρ+κ)
−βN(ζκ+γ(ζ−ρ))

0 0 0
0 0 0

 ,
which is an upper-triangular matrix. Hence we have

R0(µ) =
−βN(ζκ+ γ(ζ − ρ))

(ρ+ κ)(αγN1+µ + ζσ + γ(ζ + σ))
.

As we will see in equation (9), it must be the case that

ζκ+ γ(ζ − ρ) < 0. (A′1)

Under this condition, then R0(µ) will be positive for all values of µ. And so, to determine
the values of µ for which the disease-free equilibrium is linearly stable, we determine when
R0(µ) < 1. To this end, we deduce that

N1+µ >
βN(ζκ+ γ(ζ − ρ)) + (ρ+ κ)(ζσ + γ(ζ + σ))

−αγ(ρ+ κ)
. (9)

Since αγ(ρ+ κ) > 0, it must be the case that

βN(ζκ+ γ(ζ − ρ)) + (ρ+ κ)(ζσ + γ(ζ + σ)) < 0,

which in turn requires

N >
−(ρ+ κ)(ζσ + γ(ζ + σ))

β(ζκ+ γ(ζ − ρ))
. (A′2)

Finally, for R0(µ) < 1 it must be the case that

µ >
ln
(
βN(ζκ+γ(ζ−ρ))+(ρ+κ)(ζσ+γ(ζ+σ))

−αγ(ρ+κ)

)
ln(N)

− 1,

which we summarize in what follows.
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Theorem 2. The disease-free equilibrium of system (7), satisfying (A′1) and (A′2), is
linearly stable if and only if

µ >
ln
(
βN(ζκ+γ(ζ−ρ))+(ρ+κ)(ζσ+γ(ζ+σ))

−αγ(ρ+κ)

)
ln(N)

− 1.

We will now see if this theorem can be applied to the SEZQR model, and what impli-
cations this has on the survivability of the human population. We will analyze system (7)
with the parameter values from Table 1. First note that ζκ+ γ(ζ − ρ) = −4.89× 10−6 < 0,
and thus assumption (A′1) is satisfied. Also, we have

−(ρ+ κ)(ζσ + γ(ζ + σ))

β(ζκ+ γ(ζ − ρ))
= 0.230546.

So with N > 1, assumption (A′2) is satisfied.
Figure 9 shows the bifurcation of instability to stability of the disease-free equilibrium.

Thus, we see that perturbations in the system parameter µ can cause the stability of the
disease-free equilibrium to change from unstable to stable.

ln( βN(ζκ+γ(ζ−ρ))+(ρ+κ)(ζσ+γ(ζ+σ))
−αγ(ρ+κ) )
ln(N) − 1

Unstable

Stable
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Figure 9: Bifurcation diagram for the SEZQR model.

4 Conclusions

Much study has been devoted to epidemiological models with nonlinear incidence rates, see
[4], [6], and [10] for example. Although the biological relevance of nonlinear incidence rates
can be discussed, the introduction of the nonlinearity in this paper was not biologically
motivated. Rather, we wish to show the usefulness of perturbation analysis in the study
of epidemiological models. A linear stability analysis is often a starting point in the math-
ematical modeling and analysis of infectious disease. While this analysis can offer some
high-level insight into the situation, the conclusions may be sensitive to many factors.

As was shown in the previous sections, perturbations in the removal mechanism of the
zombie disease expose chaotic behavior in the system. A linearly unstable equilibrium in
the basic model can become linearly stable in this process. The biological justification for
whether such a perturbation is reasonable would be dependent on the particular disease. In
the case of zombies, the nonlinearity could be attributed to differences in the populations
of humans and zombies, such as humans are organized and possibly trained while zombies
are unorganized and constantly hungry.
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