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ABSTRACT

In this work, we present an approach called Disease Informed Neural Networks

(DINNs) that can be employed to e�ectively predict the spread of infectious diseases.

We build on the application of physics informed neural network (PINNs) to SIR

compartmental models and expand it to a sca�olded family of mathematical models

describing various infectious diseases. We show how the neural networks are capable

of learning how diseases spread, forecasting their progression, and �nding their

unique parameters (e.g., death rate). To demonstrate the robustness and e�cacy

of DINNs, we apply the approach to eleven highly infectious diseases that have been

modeled in increasing levels of complexity. Our computational experiments suggest

that DINNs is a reliable candidate to e�ectively learn the dynamics of their spread

and forecast their progression into the future from available real-world data. Code

and data can be found here: https://github.com/Shaier/DINN
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1 Introduction

Understanding the early transmission dynamics of infection diseases has never been more important in history as of today. The
outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that led to several million confirmed cases across the
globe has challenged us to re-envision how we model, analysis and simulate infectious diseases and evaluate the effectiveness of
non-pharmaceutical control measures as important mechanisms for assessing the potential for sustained transmission to occur
in new areas.

An important contribution to the mathematical theory of epidemics was developed by Kermack-McKendrick epidemic
model of 1927 (Kermack and McKendrick, 1927). This was considered one of the earliest attempts to formulate a simple math-
ematical model to predict the spread of an infectious disease where the population being studies is divided into compartments
namely a susceptible class S, an infective class I , and a removed class R.

This simple SIR epidemic model can be illustrated in compartments as in Figure 1. Not only was it capable of generating
realistic single-epidemic outbreaks but also provided important theoretical epidemiological insights. In Figure 1, it is assumed

Figure 1: Compartmental Model for SIR model.

that each class resides within exactly one compartment and can move from one compartment to another. The dynamics of the
three sub-populations S (t), I (t) and R(t) may be described by the following SIR model given by first order coupled ordinary
differential equations (ODE) (Hethcote, 2009; Brauer et al., 2012; Martcheva, 2015; Brauer, 2017):

dS
dt

= −β S I , dI
dt

= β S I − α I ,
dR
dt

= α I . (1)
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Note that this closed system does not allow any births/deaths. This SIR model in system (1) is fully specified by prescribing the
transmission rate β and recovery rate α along with a set of initial conditions S (0), I (0) andR(0). The total populationN at time
t = 0 is given by N = S (0) + I (0) +R(0). Adding all the equations in system (1), we notice that N ′ (t) = 0 and therefore N (t)
is a constant and equal to its initial value. One can further assume R(0) = 0 since no one has yet had a chance to recover or die.
Thus a choice of I (0) = I0 is enough to define the system at t = 0 since then S0 = N − I0.

Following the influenza pandemic, several countries and leading organizations increased funding and attention to finding
cures for infectious diseases in the form of vaccines and medicines. Along with these policy implementations, newer modified
SIR models for mathematical epidemiology continued to evolve, particularly for those diseases that are categorized as re-emerging
infections (Castillo-Chavez et al., 2002), those that are spread through sexual transmission such as HIV (Castillo-Chavez, 2013;
Luo et al., 2016), those that are spread through vectors such as mosquitoes such as Malaria or Dengue (Li, 2011; Chowell et al.,
2007), those that can spread through both sexual and vector transmissions such as Zika (Padmanabhan et al., 2017; Padmanab-
han and Seshaiyer, 2017), and those that can be spread by viruses, including SARS and MERS (Dye and Gay, 2003; Alshakhoury
et al., 2017). Diseases were also categorized according to the rate at which they spread, for example, super-spreader diseases. This
point is especially relevant to COVID-19 (Ohajunwa et al., 2020; Ohajunwa and Seshaiyer, 2021), categorized as a super-spreader
based on the disproportionately fast rate and large (and growing) number of infected persons.

Along with the development of mathematical modeling, there have been a variety of approaches that have been introduced
to estimate the parameters such as the transmission, infection, quarantine and recovery using real data. These include nonpara-
metric estimation (Smirnova et al., 2019), optimal control (Neilan and Lenhart, 2010), Bayesian frameworks (Coelho et al.,
2011; Akman et al., 2016), partical swarm optimization (Akman et al., 2018), inverse methods, least-squares approach, agent-
based modeling, using final size calculations (Bell, 1990; Pollicott et al., 2012; Yong et al., 2015a; Martcheva, 2015). Also, re-
searchers have employed a variety of statistical approaches including maximum-likelihood, Bayesian inference and Poisson re-
gression methods (Huang et al., 2006; Longini Jr et al., 1988; Hadeler, 2011; O’Dea et al., 2014; Capaldi et al., 2012). Some of
this work also showed that the precision of the estimate increased with the number of outbreaks used for estimation (O’Dea
et al., 2014). To determine the relative importance of model parameters to disease transmission and prevalence, there has also
been work around sensitivity analysis of the parameters using techniques such as Latin Hypercube Sampling and Partial Rank
Correlation Coefficients analysis with the associated mathematical models (Blower and Dowlatabadi, 1994; McKay et al., 2000;
Chitnis et al., 2008). While there have been significant advances in estimating parameters, there is still a great need to develop
efficient, reliable and fast computational techniques.

The dominant algorithm associated with the advancements in artificial intelligence ranging from computer vision (Good-
fellow et al., 2014; Krizhevsky et al., 2012; Redmon et al., 2016; Tan et al., 2020) to natural language processing (Devlin et al.,
2019; Vaswani et al., 2017) has been the neural networks (NN). A main reason for it is its behavior as a universal function ap-
proximator (Hornik et al., 1989). However, this field is largely relying on huge amounts of data and computational resources.
Recent approaches (Raissi et al., 2019) have been shown to be successful in combining the best of both fields. That is, using
neural networks to model nonlinear systems, but reducing the required data and by constraining the model’s search space with
known knowledge such as a system of differential equations.

Along with this, there have also been several works recently showing how differential equations can be learned from data.
For example, Ling et al. (2016) used a deep neural network to model the Reynolds stress anisotropy tensor, E et al. (2017) solved
for parabolic PDEs and backward stochastic differential equations using reinforcement learning, and Hagge et al. (2017) solved
ODEs using a recurrent neural network. Additionally, Raissi and Karniadakis (2018); Raissi et al. (2019) developed physics
informed models and used neural networks to estimate the solutions of such equations. Using this, recently such physics in-
formed neural network approaches were applied for the first time to estimating parameters accurately for SIR model applied to
a benchmark application (Raissi et al., 2019). The Physics Informed Neural Network approaches have also been recently used
for studying the dynamics of COVID-19 involving human-human and human-pathogen interaction (Nguyen et al., 2022).

Building on this, a unified approach called DINNs: Disease Informed Neural Networks is introduced in this work and
systematically applied to some increasingly complex governing system of differential equations describing various prominent
infectious diseases over the last hundred years. These systems vary in their complexity, ranging from a system of three to nine
coupled equations and from a few parameters to over a dozen. For illustration of the application of DINNs, we introduce its
application to COVID, Anthrax, HIV, Zika, Smallpox, Tuberculosis, Pneumonia, Ebola, Dengue, Polio, and Measles. Our
contribution in this work is three fold. First, we extend the recent physics informed neural networks (PINNs) approach to a
large family of infectious diseases. Second, we perform an extensive analysis of the capabilities and shortcomings of DINNs on
diseases. Lastly, we show the ease at which one can use DINNs to effectively learn the dynamics of the disease and forecast its
progression a month into the future from real-life data.

The paper is structured as follows. In Section 2 we review the necessary background information. Section 3 introduces
DINNs and presents our technical approach. Section 4 shows the application of DINNS to some of the benchmark models
through computational experiments. Lastly, we conclude with a summary in Section 5.
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2 Background Models and Methods

A grand challenge in mathematical biology and epidemiology, with great opportunities for researchers working on infectious
disease modeling, is to develop a coherent framework that enables them to blend differential equations such as the system (1)
with the vast data sets now available.

Noting that dS
dt < 0 for all t, the susceptible population S (t) is monotonically decreasing and always declining independently

of the initial condition S(0). Also, we have limt→∞ S (t) = S∞. This quantity is refered to as final size of the epidemic (Brauer
et al., 2012). Also, when S = α

β the second equation in system (1), dI
dt = 0 which indicates that I (t) has a stationary point

at some maximum time. On the other hand, the number of infected individuals may be monotonically decreasing to zero, or
may have non-monotone behavior by first increasing to some maximum level, and then decreasing to zero. One may note that
the spread starts to increase if dI

dt > 0. This yields the following necessary and sufficient condition for an initial increase in the
number of infectives given by βS (0)

α > 1. Hence if S0 < α
β , the infection dies out and there is no epidemic. The last equation in

system (1) also indicates that the recovered individuals also have monotone behavior, independent of R(0) = R0. Since dR
dt > 0

for all t, the number of recovered is always increasing monotonically. Since we know that this number is constrained by the total
population N , we also have limt→∞ R(t) = R∞. Since the total population N = S∞ + R∞ = S0 + R0, one can derive (Brauer
et al., 2012)

S∞ = S0e−
β
α (S0+I0−S∞ ) (2)

as well as the the maximum number of infected individuals Imax reached in the epidemic which occurs at S = α
β :

Imax = − α
β +

α
β ln

( α
β
)
+ I0 + S0 − α

β ln S0. (3)

2.1 Approaches for estimating rates

There are multiple approaches that can be used to estimate parameters α and β in system (1). Assuming the epidemic was initiated
by one infected individual infectingnother individuals a day later, a crude approximation could be to use dS

dt ≈ −nper individual
per day. Given S0 and I0, one can then estimate the initial transmission rate to be

β = −
dS
dt

S0I0
=

n
S0I0

.

If the infected individuals are isolated within d days of becoming sick, one may estimate that 1
d of the infected population was

removed each day, or α = 1
d per day. This then yields the ratio of α

β . Using these values one can then plot the dynamics of the
model predictions compared to the data using the system (1). Moreover one can use equations (2) and (3) to determine S∞ and
Imax .

Another approach to determine the rates that can be employed is by noticing the population that seem to have escaped the
epidemic which could serve as the S∞. Then, using equation (2) with the given dataset one can determine the ratio:

β
α
=

ln
(
S0
S∞

)
N − S∞

. (4)

Then assuming as before that the infected were quarantined for about d days as infectious individuals, one can find the recovery
rate to be α = 1

d which can then used to estimate β using (4).
It must be pointed out that this data set consists of a closed population. It must be also noted that all these models assumed

that the recovery rate α can be computed heuristically. However, there are also methods in the literature that can help to estimate
the parameters including S0, α and β in system (1) by minimizing the deviation between the SIR model out and a given data set.
One such software implementation is Berkeley Madonna (Macey et al., 2000) which has been shown to fit the data using the
fitting parameter as α (Yong et al., 2015b).

Yet another approach for parameter estimation is an optimization algorithm that employs a least-squares minimization ap-
proach to estimate optimal parameters. Specifically, one can employ an unconstrained nonlinear optimization algorithm such
as the Nelder-Mead algorithm which searches for a local minimum using a regression approach. This direct search method at-
tempts to minimize a function of real variables using only function evaluations without any derivatives (Nsoesie et al., 2013).
The minimized objective function is represented by differences in the daily infected counts from observed data and the computer
simulated data.

Clearly, from these estimation approaches outlined so far, there can be variations in the ability of the dynamics of the com-
puted values of infected population to track the true data for the various combination of parameters. As noted, these parameters
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Figure 2: An illustration of a neural network.

are often calculated through heuristic methods in some of these algorithms and may not be optimal. Also, all the methods that
have been discussed so far assumed the prior knowledge of initial number of each of the human sub-populations including the
Susceptible S0, Infected I0 and Recovered R0.

In this work, we introduce deep learning as an alternative and powerful approach, that employs neural networks which is a
system of decisions modeled after the human brain (LeCun et al., 2015). Consider the illustration shown in Figure 2. The first
layer of perceptrons first weigh and bias the input which can be observed values of infected data. The next layer then will make
more complex decisions based off those inputs, until the final decision layer is reached which generates the outputs which can
correspond to the values of parameters such as β and α. In this research, we implement a physics informed neural network based
approach which makes decisions based on appropriate activation functions depending on the computed bias (b) and weights (w).
The network then seeks to minimize the mean squared error of the regression with respect to the weights and biases by utilizing
gradient descent type methods used in conjunction with software such as tensorflow. While there is currently a lot of enthusiasm
about “big data”, useful data in infectious diseases is usually “small” and expensive to acquire. In this work, we will describe how
one can apply such physics informed neural network based deep learning approaches specifically to infectious diseases using
DINNs and apply it to a real-world example to estimate optimal parameters, namely the transmission and recovery rates, in the
SIR model.

3 Disease Informed Neural Networks

In this section, we present the DINNs methodology (sample architecture can be seen in figure 3). Subsection 3.1 briefly discusses
background information for neural networks. Subsection 3.2 provides an overview of the DINNs approach and outlines the
algorithm, associated loss functions, and training information.

3.1 Neural networks architechture

Briefly speaking, neural network is an attempt to mimic the way the human brain operates. The general fully connected model
is organized into layers of nodes (i.e. neurons) where each node in a single layer is connected to every node in the following
layer (except for the output layer), and each connection has a particular weight. The idea is that deeper layers capture richer
structures (Eldan and Shamir, 2016). A neuron takes the sum of weighted inputs from each incoming connection (plus a bias
term), applies an activation function (i.e nonlinearity), and passes the output to all the neurons in the next layer. Mathematically,
each neuron’s output looks as follows

output = σ

( n∑︁
i=1

xiwi + b

)
where n represents the number of incoming connections, xi the value of each incoming neuron, wi the weight on each connec-
tion, b is a bias term, and σ is referred to as the activation function.

A schematic representation of the resulting disease informed neural networks is given in Figure 3. Note that for simplicity
of illustration figure 3 depicts a network that comprises of 2 hidden layers with 5 neurons in the first hidden layer and 3 in the
second. Networks with this kind of many-layer structure—two or more hidden layers—are called deep neural networks. These
neurons in the network may be thought of as holding numbers that are calculated by a special activation function that depends
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Figure 3: A Simple DINNs Architecture (input: time, has a size of 1 and the output can vary in size (S,I,R)).

on suitable weights and biases corresponding to each connection between neurons in each layer. With prior knowledge of such
an activation function, the problem boils down to identifying the weights and biases that correspond to computed values of
infected data that is close to the observed values. The three sub-populations are approximated by the deep neural network with
calculus on computation graphs using a backpropogation algorithm (Hecht-Nielsen, 1992; Schmidhuber, 2015; Goodfellow
et al., 2016).

Inspired by recent developments in physics-informed deep learning (Raissi and Karniadakis, 2018; Raissi et al., 2019), we
propose to leverage the hidden physics of infectious diseases (1) and infer the latent quantities of interest (i.e., S, I , and R) by
approximating them using deep neural networks. This choice is motivated by modern techniques for solving forward and inverse
problems associated with differential equations, where the unknown solution is approximated either by a neural network or a
Gaussian process. Following these approaches, we approximate the latent function

t ↦−→ (S, I ,R)

by a deep neural network and obtain the following DINNs corresponding to equation (1) and the total populationN = S+I+R,
i.e.,

E1 ≔ dS
dt + β S I ,

E2 ≔ dI
dt − β S I + α I ,

E3 ≔ dR
dt − α I .

(5)

We acquire the required derivatives to compute the residual networksE1,E2 andE3 (disease informed) by applying the chain
rule for differentiating compositions of functions using automatic differentiation (Baydin et al., 2018). In our computations,
we employed a densely connected neural network, which takes the input variable t and outputs S, I , and R.

It is worth highlighting that parameters α and β of the differential equations turn into parameters of the resulting disease
informed neural networks E1, E2 and E3. The total loss function is composed of the regression loss corresponding to S, I and R
and the loss imposed by the differential equations system (5). Moreover, the gradients of the loss function are back-propogated
through the entire network to train the parameters using a gradient-based optimization algorithm. As will be explained next,
we will assume that the only observables are noisy data that we will use in conjunction with the neural networks for S, I, R
to estimate parameters α, β and γ by minimizing the sum of squared errors loss function. The idea employed builds on Physics
Informed Neural Networks that can embed the knowledge of any physical law that govern a given data-set in the learning process
(Raissi and Karniadakis, 2018; Raissi et al., 2019).

3.2 DINNs for parameter estimation

The predictive capability of any algorithm is measured partially by its robustness to unknown data. A dataset for known pa-
rameters can be simulated by solving a system of equations in a forward fashion and potentially adding some noise. If that is
provided to any parameter estimation algorithm, the efficacy of the algorithm can be determined by how well it is able to predict
the true values for a wide range of starting guesses.
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For simplicity, we generated data by solving the systems of disease ODEs using LSODA algorithm (Hindmarsh and Petzold,
2005), the initial conditions, and the true parameters corresponding to each disease (e.g. death rate) from the literature. This
limited dataset (50 − 100 points) corresponds to the SIR compartments. To make our neural networks disease informed, once
the data was obtained we introduced it to our neural network without any prior knowledge of the transmission and recovery
parameters. It is worth noting that in this formulation there are no training, validation, and test datasets, such as in most common
neural networks training. Instead, the model is trained from data of how the disease is spread over time. The model then learned
the system, and predicted the parameters that generated them. Since in many of these systems there exist a large set of parameters
that can generate them, we restricted our parameters to be in a certain range around the true value. That is, to show that our
model can in fact identify the systems and one set of parameters that match the literature they came from. However, our method
is incredibly flexible in the sense that adding, modifying, or removing such restrictions can be done with one simple line of code.
Additionally, we used nearly a years worth of real data aggregated over every US state and accurately predicted a month into the
future of COVID transmission. Next we employ Literate programming style that is intended to facilitate presenting parts of
written code in the form of a narrative (Knuth, 1984). DINNs takes the form

def n e t _ s i r ( t i m e _ a r r a y ) :
SIR = n e u r a l _ n e t w o r k ( t i m e _ a r r a y )
re turn SIR

def n e t _ f ( t i m e _ a r r a y ) :
d S d t = t o r c h . g r a d ( S , t i m e _ a r r a y )
d I d t = t o r c h . g r a d ( I , t i m e _ a r r a y )
dRdt = t o r c h . g r a d ( R , t i m e _ a r r a y )

f 1 = d S d t − (− b e t a S I )
f 2 = d I d t − ( b e t a S I − a l p h a I )
f 3 = dRdt − ( a l p h a I )
re turn f 1 , f2 , f3 , S , I , R

The input of the neural network net_sir is a batch of time steps (e.g. [0, 1, 2, ..., 100]), and the output is a tensor (e.g.
[S,I,R]) that represents what the network believes the disease’s compartments look like at each time step. Here, net_f bounds
the NN by forcing it to match the environment’s conditions (e.g. f1, f2, f3). These fi corresponds to the Ei that was described
earlier.

The parameters of the neural network net_sir and the network net_f can be learned by minimizing the mean squared
error loss given by

MSE = MSEnet_sir + MSEnet_f

where

MSEnet_sir =
1

Nnet_sir

[Nnet_sir∑︁
i=1

��net_sir(time_arrayi) − SIRi ��2]
MSEnet_f =

1
Nnet_f

[Nnet_f∑︁
i=1

��net_fi
��2]

That is, minimizing the loss

loss = mean
(
(Sactual − Spredict)2

)
+ mean

(
(Iactual − Ipredict)2

)
+ mean

(
(Ractual − Rpredict)2

)
+ mean

(
(f1)2

)
+ mean

(
(f2)2

)
+ mean

(
(f3)2

)
Here, “actual” and “predict” refer to the actual data that the model was provided with and the prediction the model com-

puted, respectively. DINNs also leverages the automatic differentiation that neural networks are trained on to compute the
partial derivatives of each S,I,R with respect to time. The neural networks themselves will consist of multiple fully connected
layers with a multiple neurons each depending on the complexity of the system and rectified linear activation function (ReLU)
activation in between.
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4 Computational Experiments with DINNs

Most mathematical models describing the spread of a disease employ classical compartments, such as the Susceptible-Infected-
Recovered (SIR) or Susceptible-Exposed-Infected-Recovered (SEIR) structure described as an ordinary differential equation
system (Brauer and Castillo-Chávez, 2001). Over the past several months there have been a variety of compartmental models that
have been introduced as modified SEIR models to study various aspects of COVID-19 including containment strategies (Maier
and Brockmann, 2020), social distancing (Matrajt and Leung, 2020) and the impact of non-pharmaceutical interventions and
the social behavior of the population (Ohajunwa et al., 2020; Ohajunwa and Seshaiyer, 2021). Along with these there have been a
lot of work on modified SIR models as well including the SIRD model (Fernández-Villaverde and Jones, 2020; Anastassopoulou
et al., 2019; Sen and Sen, 2021; Chatterjee et al., 2021). Next, to investigate the performance of DINNs, we apply DINNs on a
simple SIRD model describing COVID-19 dynamics (Anastassopoulou et al., 2019).

4.1 Applying DINNS to an SIRD model applied to COVID-19

Consider following differential equation system describing the SIRD system where α is the transmission rate, β is the recovery
rate, γ is the death rate from the infected individuals (Anastassopoulou et al., 2019), and N represents the total population:

dS
dt

= − α
N

SI ,
dI
dt

=
α
N

SI − βI − γI ,
dR
dt

= βI ,
dD
dt

= γI . (6)

The neural networks we considered, are fairly simple, consisting of 8 fully connected layers with either 20 or 64 neurons
each depending on the complexity of the system and rectified linear activation function (ReLU) activation in between. Since the
data is relatively small, our batch size contained the entire time array. The networks were trained on Intel(R) Xeon(R) CPU @
2.30GHz, and depending on the complexity of the system the training time ranged from 30 minutes to 58 hours, which could
be accelerated on GPUs and TPUs. That is, to learn both a system and its unknown parameters. However if the parameters
are known, the training time to solely learn the system can be as short as 3 minutes. We used Adam optimizer (Kingma and Ba,
2014), and PyTorch’s CyclicLR as our learning rate scheduler, with mode = “exp_range”, min_lr ranging from 1 × 10−6 to
1× 10−9 depending on the complexity of the system, max_lr = 1× 10−3, gamma=0.85, and step_size_up=1000. In the next
sections we will refer to “min_lr” simply as “learning rate”. It is important to note that some diseases’ systems were much more
difficult for DINNs to learn (e.g. Anthrax considered later) and further training exploration such as larger/smaller learning rate,
longer training, etc. may be needed to achieve better performance.

4.1.1 In�uence of ranges in parameter estimation

Given that most models may include a large set of parameters, it is important to consider ranges for each of them. Hence, we
restricted our parameters to be in a certain range to show that our model can learn the set that was used in the literature. First, we
experimented with various parameter ranges to identify the influence they had on the model. In the following we used a 4 layer
neural network with 20 neurons each, 1×10−6 learning rate, 100 data points, and the models were trained for 700,000 iterations
(taking roughly 30 minutes). In our experiments we report two kinds of relative MSE loss errors. The first, “Error NN”, is the
error on the neural network’s predicted system. The second, “Error learnable parameters”, is the error on the system that was
generated from the learnable parameters. That is, using LSODA algorithm to generate the system given the neural networks’
parameters (e.g. α).

As an example, if the actual parameter’s value was 0.1, a 0% search range would simply be (0.1, 0.1), a 100% range would be
(0.1+1×0.1,−0.1−1×0.1) = (0.2,−0.2). Further ranges are multiplications of those: 1000% = (2,−2), 10000% = (20,−20),
and so on. That is, each unknown parameter is initialized with a random initial value in between its corresponding search
range. Table 1 (left) shows the parameters, their actual value, the range DINNs was searching in, and the parameters values that
were found by DINNs. The right part of the table shows the error of the neural network and the LSODA generation of the
system from the parameters. That is, it shows the effect that the search range had on how well the neural networks’ learned the
parameters. As seen from table 1 and figures 4–8, at least in the case of the COVID-19 system (6), DINNs managed to find
extremely close set of parameters in any range we tested. Specifically, in figures 4–8, the panel on the left shows the effect that
the parameter search range had on the neural networks’ outputs and the right panel results show the effect that the search ranges
had on how well the neural networks’ learned the parameters. Additionally, the systems were almost learned perfectly, though,
there was some variation in the relative error between experiments. It is worth noting that DINN might be able to learn the
system quite well while also having some discrepancies in the learned parameters. Several reasons can explain this such as having
a disease system that is relatively simple to learn and a too complex deep learning network, or that DINN found another set of
parameters that can explain the data.
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Table 1: Parameter predictions and relative MSE loss errors for various ranges.
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Figure 4: 0% search range for NN Output (Left panel) vs LSODA generation from Learnable Parameters (Right Panel).
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Figure 5: 100% search range for NN Output (Left panel) vs LSODA generation from Learnable Parameters (Right Panel).
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Figure 6: 1000% search range for NN Output (Left) vs LSODA generation from Learnable Parameters (Right).
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Figure 7: 10000% search range for NN Output (Left) vs LSODA generation from Learnable Parameters (Right).
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Figure 8: 100000% search range for NN Output (Left) vs LSODA generation from Learnable Parameters (Right).
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Table 2: Parameter Values for various Uncorrelated Gaussian Noises.

4.1.2 In�uence of noise

Next, to show the robustness of DINNs, we generated various amounts of uncorrelated Gaussian noise. The models were
trained for 1.4 million iterations (roughly 1 hour), using parameter ranges of 1000% variation and similar learning parameters
(e.g., learning rate) as the previous section. We used a 4 layer neural network with 20 neurons each, and 100 data points. The
experiments showed that even with a very high amount of noise such as 20%, DINNs achieves accurate results with maximum
relative error of 0.143 on learning the system. That being said, the exact parameters were harder to learn in that amount of noise.
It appears that the models may need further training to stabilize the parameters, as there were some variations in the amount of
noise versus the accuracy. Figure 9 shows DINN’s predictions on 1%, 5%, 10% and 20% uncorrelated gaussian noise respectively.
Table 2 summarizes the estimated optimal parameters for these varying noises.

4.1.3 In�uence of data variability

Next, we trained our models with various amounts of data: 10, 20, 100, and 1000 points (See Figure 10). The models were
trained for 700,000 iterations, consisting of 4 layers with 20 neurons each, and 1 × 10−6 learning rate. Our analysis shows that
there was a big increase in the parameters accuracy from 10 points to 20 points. The model that was trained on 1000 data points
performed the best compared to the others. Note that even with 20 data points the model learns the system incredibly well (See
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(a) 1% – Neural Network’s System.
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(b) 5% – Neural Network’s System.
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(c) 10% – Neural Network’s System.
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(d) 20% – Neural Network’s System.

Figure 9: DINNs performance with varying Uncorrelated Gaussian Noise.
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Table 3: Performance of DINNs for 20 data points.

Table 4: Influence of Architecture Variation with (S, I, D, R) error from neural network output.

Neurons Per Layer

Layers 10 20 64

2 (0.030, 0.109, 0.027, 0.027) (0.024, 0.15, 0.022, 0.022) (0.005, 0.038, 0.004, 0.004)
4 (0.002, 0.027, 0.004, 0.004) (0.001, 0.007, 0.001, 8e−4) (8e−4, 0.004, 7e−4, 7e−4)
8 (0.001, 0.008, 0.002, 0.002) (4e−4, 0.002, 5e−4, 4e−4) (3e−4, 0.001, 2e−4, 1e−4)

12 (0.001, 0.008, 0.002, 0.002) (5e−4, 0.002, 8e−4, 6e−4) (2e−4, 0.001, 2e−4, 2e−4)

Table 3). The left-hand side of the table shows the parameters and values found after training. The right-hand side as before
shows the two errors: “Error NN” is the relative MSE loss error from the system that the neural network output (what DINNs
believes the systems’ dynamics look like), and “Error Learnable Parameters” is the relative MSE loss error from the LSODA
generated system using the parameters found values. DINNs was also compared against a traditional least-squares approach
using Gauss-Newton and the Nelder-mead method with variable data points. Both of these techniques require an initial guess
for the parameters which was chosen to be (0.1, 0.1, 0.1). Additionally, a search range which the algorithms could search for
parameters within was also included to be (0, 2). The results of the two traditional approaches are illustrated in Figure 11 and
Figure 12 respectively, which show that these traditional approaches only start to perform comparable to DINNs when there
are more data points. While Nelder-Mead was a little better than Gauss-Newton method, both could not perform as well as
DINNs for a minimal dataset. More experiments were also conducted by increasing the search range for the parameters, but
both the Gauss-Newton and Nelder-Mead performed worse.

4.1.4 In�uence of neural network architectures

In the next computational experiment, we examined the effect that wider or deeper neural network architecture has on DINNs.
The models were trained on 100 data points, using parameter ranges of 1000%, a learning rate of 1×10−6, and 700,000 iterations.
Tables 4 and 5 show a clear decrease in error as one increases the amount of neurons per layer. Specifically, Table 4 itemizes the
(S,I,D,R) error from the neural network’s output. For the Neural network architecture variations (depth and width), relative
MSE errors were reported on the predicted NN system. Table 5 itemizes similar findings for LSODA generation of the learning
parameters. There also seem to be a clear decrease in error as the number of layers increase. However, the error seem to stabilize
around 8 layers, with very minor performance increase in 12 layers.

Table 5: Influence of Architecture Variation with (S, I, D, R) error from LSODA.

Neurons Per Layer

Layers 10 20 64

2 (0.132, 0.519, 0.088, 0.111) (0.106, 0.423, 0.083, 0.077) (0.001, 0.009, 0.019, 0.011)
4 (0.038, 0.148, 0.026, 0.029) (0.064, 0.256, 0.045, 0.050) (0.009, 0.044, 0.010, 0.008)
8 (0.036, 0.138, 0.033, 0.024) (0.027, 0.107, 0.018, 0.022) (0.057, 0.234, 0.045, 0.043)

12 (0.036, 0.138, 0.033, 0.024) (0.022, 0.091, 0.015, 0.019) (0.017, 0.076, 0.017, 0.017)
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(a) 10 points – Neural Network’s System.
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(b) 20 points – Neural Network’s System.
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(c) 100 points – Neural Network’s System.
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(d) 1000 points – Neural Network’s System.

Figure 10: DINNs performance for increasing Data Points: 10 (top left), 20 (top right), 100 (bottom left), 1000 (bottom
right).
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Figure 11: Least-squares performance for increasing Points: 10 (top left), 20 (top right), 100 (bottom left), 1000 (bottom
right).

Figure 12: Nelder-Mead performance for increasing Points: 10 (top left), 20 (top right), 100 (bottom left), 1000 (bottom
right).
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Table 6: Learning Rate & Step Size vs Training Time.

Step Size Up

Learning Rate 100 1000 10000

1 × 10−5 2min 31s 2min 57s 3min 16s
1 × 10−6 21min 11s 20min 59s 18min 43s
1 × 10−8 >8hrs >8hrs >8hrs

4.1.5 In�uence of learning rates

We found that quickly increasing the learning rates and then quickly decreasing it to a steady value allows the network to learn
well. One such learning rate schedule is PyTorch’s CyclicLR learning rate scheduler. To show the importance of learning rate in
the amount of needed training time, we trained DINNs with several values: 1× 10−5, 1× 10−6, 1× 10−8 as well as different step
size for each one: 100, 1000, 10000. We used 4 layers with 20 neurons each, and 100 data points. The time was measured from
the moment the network started training and until the loss was smaller than 4 × 10−4, which usually corresponds to learning
the system almost perfectly. As can be seen from the results (Table 6) both the minimum learning rate and the step size play an
important role in learning the system. Reducing the learning rate to a small value too quickly may result in hours of training time
instead of minutes. As an afterthought, this might be the reason why most of the systems were taking so long to train (>10 hrs),
while the COVID system took <25 minutes.

4.1.6 Application of DINNs to real data

Finally, to verify that DINNs is in fact as reliable as it appears, we used 310 days (04-12-2020 to 02-16-2021) of real US data from
Dong et al. (2020). We trained a neural network that learned the cumulative cases of susceptible, infected, dead, and recovered,
and predicted the cases for a future month. Specifically, out of those 310 days we gave the network 280 days worth of data and
asked it to predict each compartment’s progression a month (30 days) into the future. The network received 31 data points (1
per 10 days), was trained for 100k epochs (roughly 5 minutes), had 8 layers with 20 neurons each, a 1000% parameters variation,
and 1 × 10−5 learning rate.

Our results suggest that the learnable parameters found were quite different from the parameters in the literature (α =
0.0176 instead of 0.191, β = 0.0046 instead of 0.05, and γ = 0.0001 instead of 0.0294). This may imply that either the data
was different from the initial data distribution used in the literature (Anastassopoulou et al., 2019), or that as other authors
mentioned these are time-varying parameters rather than constant ones. As seen from figure 13, the cumulative cases had less
data variation and were fairly easy to learn. Additionally, it appears as DINNs managed to accurately predict the future month
on each compartment.

4.1.7 In�uence of missing data

So far we assumed that we have all the data for each compartment. However, this is often not the case. For example, there is a lot
of data that went unreported during COVID-19. To test the reliability of DINNs, we tested the method on the SIRD model
again which was trained on 100 data points, were given the known parameters from the literature, and were only given the initial
conditions for the missing data. The model was trained with 1 × 10−6 learning rate for 1 million iterations (roughly 1 hour).
Our results show that DINNs can in fact learn systems even when given partial data. However, it is important to note that the
missing data compartments should be in at least one other compartment in order to get good results. For example, when we
tried to remove the COVID recovered compartment (i.e., R), DINNs learned S, I, and D nearly perfectly. However, it did not
do very well on R. That is because R is not in any of the other equations. The neural networks’ systems outputs and their losses
for COVID model was (0.003,0.078, 0.003, 0.003). The prediction using these values is shown in Figure 14.

4.2 Application of DINNs to other infectious diseases

In this sections, we apply DINNs to multiple infectious diseases. Note that we chose smaller ranges for the following diseases
for demonstrating that DINN can in fact identify the systems and one set of parameters that match the literature they came
from, as in many of these systems there exist a large set of parameters that can generate them. However, one can easily expand
the ranges as done in a previous section. Similarly to the previous sections we report relative errors, except when the true value
of the parameter is zero, which then we use the absolute error.
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Figure 13: DINN’s output on COVID real-life cumulative cases over 310 days.
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Figure 14: Performance of DINNs on Missing data for COVID.
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Figure 15: Performance of DINNs on Missing data for COVID Tuberculosis (left) and Ebola (right).

First, we employ DINNs to two systems modeling diseases with missing data as in the last section. These include the follow-
ing:

• A Tuberculosis SLIT model (Castillo-Chavez and Feng, 1997) with missing data on Latent compartment L and infected
individuals I given by

dS
dt

= δ −
βcSI
N

− µS,
dL
dt

=
βcSI
N

− (µ + k + r1)L +
β′cT
N

,

dI
dt

= kL − (µ + d)I − r2I ,
dT
dt

= r1L + r2I −
β′cT
N

− µT .

• An Ebola SEIHFR model (Legrand et al., 2007) with missing data on hospitalized cases H given by

dS
dt

= − 1
N

(β1SI + βhSH + βf SF ),
dE
dt

=
1
N

(β1SI + βhSH + βf SF ) − αE,

dI
dt

= αE − (γhθ1 + γi (1 − θ1) (1 − δ1) + γd (1 − θ1)δ1)I ,
dH
dt

= γhθ1I −
(
γdhδ2 + γih(1 − δ2)

)
H ,

dF
dt

= γd (1 − θ1)δ1I + γdhδ2H − γf F ,
dR
dt

= γi (1 − θ1) (1 − δ1)I + γih(1 − δ2)H + γf F .

The models were also trained on 100 data points, were given the known parameters from the literature, and were only given
the initial conditions for the missing data. The tuberculosis model was trained with 1 × 10−5 learning rate for 100k iterations.
The Ebola model was trained with 1 × 10−6 learning rate for 800,000 iterations. The neural networks’ systems outputs and
their losses for the Tuberculosis model was (0.041,0.086,0.051, 0.004) and the Ebola model was (0.013, 0.011, 0.014,0.103,
0.007, 0.001). Figure 14 illustrate the outputs for the respective models.

4.2.1 A summary of DINNs applied to eleven diseases

Expanding on the relatively simple SIRD model for COVID that was used for simplicity to demonstrate the capability of
DINNs, here we apply the method to ten other highly infectious diseases, namely Anthrax, HIV, Zika, Smallpox, Tubercu-
losis, Pneumonia, Ebola, Dengue, Polio, and Measles. These diseases vary in their complexity, ranging from a system of three
to nine ordinary differential equations, and from a few parameters to over a dozen. Table 7 provides a summary of our analysis.
Specifically, it itemizes for each disease its best, worst, and median parameter estimate error. In the subsequent subsections, for
each of the diseases described by a system of differential equations, we identify the relative error for the disease from LSODA
generation of the learnable parameters, a table representing parameter values (actual and computed values) with their range and
percentage relative error, and a graph of the prediction from the data.
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Table 7: Summary of the analysis for eleven diseases.

Disease Best Worse Median
COVID 0.2 1.151 1.02
Anthrax 0.5754 6.0459 2.4492
HIV 0.007515 3.811689 0.829756
Zika 0.0588 5.8748 0.7261
Smallpox 0.0882 10.8598 4.9239
Tuberculosis 0.5424 11.0583 3.8952
Pneumonia 0.0005 11.6847 1.6372
Ebola 0.2565 9.6403 1.1244
Dengue 0.2696 9.7723 0.8796
Polio 0 0.4168 0.3587
Measles 2.9999 12.704 3.1453

4.2.2 COVID-19

The DINNs COVID system considered was given by

dS
dt

= − α
N

SI ,
dI
dt

=
α
N

SI − βI − γI ,
dD
dt

= γI ,
dR
dt

= βI .

The model used 8 layers with 20 neurons per layer, 1 × 10−6 min learning rate, and was trained for 400k iterations (about
20 minutes). Figure 16 and table 8 show our results. The relative error corresponding to the SIDR system was (0.022, 0.082,
0.022, 0.014).

4.2.3 HIV

The DINN HIV model had 8 layers with 20 neurons per layer, 1 × 10−8 min learning rate, and was trained for 25mil iterations
(about 22 hours). Figure 17 and table 9 show our results. The relative error corresponding to the system was (0.008, 0.002,
0.003).

System:

dT
dt

= s − µTT + rT
(
1 − T + I

Tmax
− k1VT

)
dI
dt

= k′1VT − µI I
dV
dt

= NµbI − k1VT − µVV

4.2.4 Smallpox

The DINN Smallpox model had 8 layers with 20 neurons per layer, 1e−7 min learning rate, and was trained for 12mil iterations
(about 14 hours). Figure 18 and table 10 show our results. The relative error corresponding to the system was (0.033, 0.053,
0.045, 0.060, 0.014, 0.036, 0.027, 0.021).

System:

dS
dt

=χ1 (1 − 1)Ci − β(ϕ + ρ − ϕρ)SI dEn
dt

= βϕ(1 − ρ)SI − αEn

dEi
dt

= βϕρSI −
(
χ12 + α(1 − 2)

)
Ei

dCi
dt

= βρ(1 − ϕ)SI − χ1Ci

dI
dt

= α(1 − θ)En − (θ + γ)I
dQ
dt

= α(1 − 2)Ei + θ(αEn + I) − χ2Q

dU
dt

= γI + χ2Q
dV
dt

= χ1 (2Ei + 1Ci)

4.2.5 Tuberculosis

The DINN Tuberculosis model had 8 layers with 20 neurons per layer, 1e−7 min learning rate, and was trained for 10mil itera-
tions (about 12 hours). Figure 19 and table 11 show our results. The relative error corresponding to the system was (0.030, 0.034,
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Figure 16: COVID: Neural Network Output.

Table 8: COVID: Parameter Estimation.

Parameter Actual Value Range Parameter Found % Relative Error
α 0.191 (-1,1) 0.1932 1.151
β 0.05 (-1,1) 0.0501 0.2
γ 0.0294 (-1,1) 0.0297 1.02

Table 9: HIV: Parameter Estimation.

Parameter Actual Value Range Parameter Found % Relative Error
s 10 (9.9,10.1) 10.000751 0.007515
µT 0.02 (0.018,0.022) 0.020762 3.811689
µI 0.26 (0.255,0.265) 0.261271 0.488758
µb 0.24 (0.235,0.245) 0.241747 0.727760
µV 2.4 (2.5,2.3) 2.419914 0.829756
r 0.03 (0.029,0.031) 0.030605 2.015910
N 250 (247.5,252.5) 249.703094 0.118762
Tmax 1500 (1485,1515) 1506.543823 0.436255
k1 2.4 · 10e−5 (2.3 · 10e−5, 2.6 · 10e−5) 0.000246 2.447948
k′1 2 · 10e−5 (1.9 · 10e−5, 2.1 · 10e−5) 0.000203 1.599052



LETTERS IN BIOMATHEMATICS 91

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time /days

0

200

400

600

800

1000

1200

1400

Nu
m

be
r

T Prediction
I Prediction
V Prediction
T Data
I Data
V Data

Figure 17: HIV: Neural Network Output.

0 20 40 60 80 100
Time /days

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r

S Prediction
En Prediction
Ei Prediction
Ci Prediction
I Prediction
Q Prediction
U Prediction
V Prediction
S Data
En Data
Ei Data
Ci Data
I Data
Q Data
U Data
V Data

Figure 18: Smallpox: Neural Network Output.
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0.034, 0.008).

System:

dS
dt

= δ −
βcSI
N

− µS
dL
dt

=
βcSI
N

− (µ + k + r1)L +
β′cT
N

dI
dt

= kL − (µ + d)I − r2I
dT
dt

= r1L + r2I −
β′cT
N

− µT

4.2.6 Pneumonia

The DINN Pneumonia model had 8 layers with 64 neurons per layer, 1 × 10−7 min learning rate, and was trained for 25mil it-
erations (about 41 hours). Figure 20 and tables 12 show our results. The relative error corresponding to the system was (0.020,
0.039, 0.034, 0.019, 0.023).

System:

dS
dt

= (1 − p)π + ϕV + δR − (µ + λ + θ)S dV
dt

= pπ + θS − (µ + λ + ϕ)V

dC
dt

= ρλS + ρλV + (1 − q)ηI − (µ + β + χ)C dI
dt

= (1 − ρ)λS + (1 − ρ)λV + χC − (µ + α + η)I

dR
dt

= βC + qηI − (µ + δ)R

4.2.7 Ebola

Next, we consider the Ebola model considered before. The DINN Ebola model had 8 layers with 20 neurons per layer, 1e−7 min
learning rate, and was trained for 20mil iterations (about 33 hours). Figure 21 and table 13 show our results. The relative error
corresponding to the SIDR system was (0.023, 0.050, 0.044, 0.062, 0.049, 0.005)

4.2.8 Dengue

The DINN Dengue model had 8 layers with 20 neurons per layer, 1e−7 min learning rate, and was trained for 35mil iterations
(about 58 hours). Figure 22 and table 14 show our results.The relative error is (0.003, 0.012, 0.030, 0.054, 0.001, 0.001, 0.002).

System:

dSh
dt

= πh − λhSh − µhSh
dEh
dt

= λhSh − (σhµh)Eh
dIh
dt

= σhEh − (τh + µh + δh)Ih

dRh
dt

= τhIh − µhRh
dSv
dt

= πv − δvSv − µvSv
dEv
dt

= δvSv − (σv + µv)Ev

dIv
dt

= σvEv − (µv + δv)Iv

4.2.9 Anthrax

The DINN Anthrax model had 8 layers with 64 neurons per layer, 1e−8 min learning rate, and was trained for 55mil iterations
(about 91 hours). Figure 23 and tables 15, 16 show our results.

System:

dS
dt

= r(S + I)
(
1 − S + I

K

)
− ηaAS − ηcSC − ηi

SI
S + I

− µS + τI
dA
dt

= −σA + βC

dI
dt

= ηaAS + ηcSC +
(
ηi

SI
S + I

− (γ + µ + τ)
)
I

dC
dt

= (γ + µ)I − δ(S + I)C − κC
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Table 10: Smallpox: Parameter Estimation.

Parameter Actual Value Range Parameter Found % Relative Error
χ1 0.06 (0.054,0.066) 0.0554 7.7222
χ2 0.04 (0.036,0.044) 0.0380 4.9239
1 0.975 (0.86,1.04) 0.9839 0.9089
2 0.3 (0.27,0.33) 0.2841 5.2848
ρ 0.975 (0.86,1.04) 0.9759 0.0882
θ 0.95 (0.86,1.04) 0.9050 4.7371
α 0.068 (0.061,0.075) 0.0626 8.5490
γ 0.11 (0.10,0.12) 0.1034 10.8598
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Figure 19: Tuberculosis: Neural Network Output.

Table 11: Tuberculosis: Parameter Estimation.

Parameter Actual Value Range Parameter Found % Relative Error
δ 500 (480,520) 509.4698 1.8587
β 13 (9,15) 12.5441 3.6341
c 1 (-1,3) 1.0405 3.8952
µ 0.143 (0.1,0.3) 0.1474 3.0142
k 0.5 (0,1) 0.5396 7.3433
r1 2 (1,3) 1.9892 0.5424
r2 1 (-1,3) 1.1243 11.0583
β′ 13 (9,15) 13.7384 5.3746
d 0 (-0.4,0.4) -0.0421 0.0421
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Figure 20: Pneumonia: Neural Network Output.

Table 12: Pneumonia: Parameter Estimation.

Parameter Actual Value Range Parameter Found % Relative Error
π 0.01 (0.0099,0.011) 0.0098 2.0032
λ 0.1 (0.099,0.11) 0.0990 0.9622
k 0.5 (0.49,0.51) 0.5025 0.5083

0.002 (0.001,0.003) 0.0022 11.6847
τ 0.89 (0.87,0.91) 0.8912 0.1309
ϕ 0.0025 (0.0023,0.0027) 0.0027 7.4859
χ 0.001 (0.0009,0.0011) 0.0011 6.7374
p 0.2 (0.19, 0.21) 0.2033 1.6372
θ 0.008 (0.0075,0.0085) 0.0084 4.8891
µ 0.01 (0.009,0.011) 0.0092 8.4471
α 0.057 (0.056,0.058) 0.0570 0.0005
ρ 0.05 (0.049,0.051) 0.0508 1.5242
β 0.0115 (0.0105,0.0125) 0.0122 5.8243
η 0.2 (0.19,0.21) 0.2023 1.1407
q 0.5 (0.49,0.51) 0.4960 0.8003
δ 0.1 (0.09,0.11) 0.1038 3.7502
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Figure 21: Ebola: Neural Network Output.

Table 13: Ebola: Parameter Estimation.

Parameter Actual Value Range Parameter Found % Relative Error
β1 3.532 (3.5,3.56) 3.5589 0.7622
βh 0.012 (0.011,0.013) 0.0129 7.8143
βf 0.462 (0.455,0.465) 0.4638 0.3976
α 1/12 (0.072,0.088) 0.0866 3.9320
γh 1/4.2 (0.22,0.28) 0.2471 3.7853
θ1 0.65 (0.643,0.657) 0.6523 0.3477
γi 0.1 (0.099,0.11) 0.0904 9.6403
δ1 0.47 (0.465,0.475) 0.4712 0.2565
γd 1/8 (0.118,0.122) 0.1205 3.6124
δ2 0.42 (0.415,0.425) 0.4247 1.1244
γf 0.5 (0.45,0.55) 0.5196 3.9246
γih 0.082 (0.081,0.083) 0.0811 1.0932
γdh 0.07 (0.069,0.071) 0.0710 0.7563
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Figure 22: Dengue: Neural Network Output.

Table 14: Dengue: parameters, their values, the parameters search range that DINN was trained on, the parameters found
after training, and the relative error percentage.

Parameter Actual Value Range Parameter Found % Relative Error
πh 10 (9.9,10.1) 9.9317 0.6832
πv 30 (29.7,30.3) 29.8542 0.4859
λh 0.055 (0.054,0.056) 0.0552 0.2696
λv 0.05 (0.049,0.051) 0.0506 1.2876
δh 0.99 (0.9,1.1) 0.9643 2.5967
δv 0.057 (0.056,0.058) 0.0567 0.5294
µh 0.0195 (0.0194,0.0196) 0.0194 0.3835
µv 0.016 (0.015,0.017) 0.0159 0.8796
σh 0.53 (0.52,0.54) 0.5372 1.3567
σv 0.2 (0.19,0.21) 0.1989 0.5483
τh 0.1 (0.05,0.15) 0.0902 9.7723

Table 15: Anthrax: relative error from LSODA generation of the learnable parameters.

(S, I, A, C) Error

(0.052, 0.144, 0.171, 0.171)



LETTERS IN BIOMATHEMATICS 97

Figure 23: Anthrax: Neural Network Output.

Table 16: Anthrax: parameters, their values, the parameters search range that DINN was trained on, the parameters found
after training, and the relative error percentage.

Parameter Actual Value Range Parameter Found % Relative Error
r 1/300 (0.003,0.0036) 0.0034 1.2043
µ 1/600 (0.0014,0.0018) 0.0017 0.5754
κ 0.1 (0.99,0.11) 0.1025 2.5423
ηa 0.5 (0.49,0.51) 0.5035 0.7022
ηc 0.1 (0.09,0.11) 0.1024 2.4492
ηi 0.01 (0.09,0.011) 0.0106 6.0459
τ 0.1 (0.09,0.11) 0.0976 2.4492
γ 1/7 (0.13,0.15) 0.1444 1.0542
δ 1/64 (0.03,0.07) 0.0512 2.3508
K 100 (98,102) 100.6391 0.6391
β 0.02 (0.0018,0.0022) 0.0021 6.5466
σ 0.1 (0.09,0.11) 0.1051 5.1029
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4.2.10 Polio

The DINN Polio model had 8 layers with 64 neurons per layer, 1e−8 min learning rate, and was trained for 40mil iterations
(about 66 hours). Figure 24 and tables 17, 18 show our results.

System:

dSc
dt

= µN −
(
α + µ +

βcc
Nc

Ic +
βca
Nc

Ia
)
Sc

dSa
dt

= αSc −
(
µ +

βaa
Na

Ia +
βac
Na

Ic
)
Sa

dIc
dt

=
(
βcc
Nc

Ic +
βca
Nc

Ia
)
Sc − (γc + α + µ)Ic dIa

dt
=

(
βac
Na

Ic +
βaa
Na

Ia
)
Sa − (γa + µ)Ia + αIc

dRc
dt

= γcIc − µRc − αRc
dRa
dt

= γaIa − µRa + αRc

4.2.11 Measles

The DINN Measles model had 8 layers with 64 neurons per layer, 1e−7 min learning rate, and was trained for 17mil iterations
(about 28 hours). Figure 25 and tables 19, 20 show our results.

System:

dS
dt

= µ(N − S) −
βSI
N

dE
dt

=
βSI
N

− (µσ)E dI
dt

= σE − (µ + γ)I

4.2.12 Zika

The DINN Zika model had 8 layers with 64 neurons per layer, 1e−9 min learning rate, and was trained for 8mil iterations (about
13 hours). The following image has a selection of the compartments to reduce scatter in visualization. Figure 26 and tables 21,
22 show our results.

System:

dSh
dt

= −ab Iv
Nh

Sh − β
κEh + Ih1 + τIh2

Nh
Sh

dEh
dt

= θ
(
−ab Iv

Nh
Sh − β

κEh + Ih1 + τIh2
Nh

Sh
)
− VhEh

dIh1
dt

= VhEh − γh1Ih1
dAh
dt

= (1 − θ)
(
ab

Iv
Nh

Sh − β
κEh + Ih1 + τIh2

Nh
Sh

)
− γhAh

dIh2
dt

= γh1Ih1 − γh2Ih2
dRh
dt

= γh2Ih2 + γhAh

dSv
dt

= µvNv − ac
ηEh + Ih1

Nh
Sv − µvSv

dEv
dt

= ac
ηEh + Ih1

Nh
− (Vv + µv)Ev

dIv
dt

= VvEv − µvIv

5 Discussion and Conclusion

In this work, we have introduced Disease Informed Neural Networks (DINNs) which is a neural network approach capable of
learning a number of diseases, how they spread, forecasting their progression, and finding unique parameters that are used in
models to describe the disease dynamics. Specifically, for a benchmark problem we were able to study the influence in ranges of
parameter estimation, noise, data variability, NN architechture, learning rates and missing data on the performance of DINNs.
Our results from this work suggest that DINNs is a robust and reliable candidate that can be used as an inverse approach to char-
acterize and learn parameters used in compartmental models for understanding dynamics of infectious diseases. To compare the
performance of the proposed DINNs, we also wrote the parameter estimation in R and MATLAB that employed powerful non-
linear optimization methods such as Nelder-Mead, Gauss Newton and gradient decent methods. In all the types of simulations,
we noticed DINNs outperformed and was more robust to initial parameter guesses. Especially, all the other methods failed to
achieve the optimal solution if the initial guesses were far from the actual values for these optimization based methods compared
to DINNs which worked extremely well.
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Table 17: Polio: relative error from LSODA generation of the learnable parameters.

(Sc, Sa, Ic, Ia, Rc, Ra) Error

(0.001, 0.001, 0.017, 0.021, 0.004, 0.001)

Table 18: Polio: parameters, their values, the parameters search range that DINN was trained on, the parameters found after
training, and the relative error percentage.

Parameter Actual Value Range Parameter Found % Relative Error
µ 0.02 (0.018,0.022) 0.0200 0.0200
α 0.5 (0.495,0.505) 0.5018 0.36
γa 18 (17.9,18.1) 18.0246 0.4168
γc 36 (35.8,36.2) 36.0701 0.3587
βaa 40 (39,41) 40.2510 0.6275
βcc 90 (89,91) 90.6050 0.6722
βac 0 (-0.001,0.001) 0.0002 0.0002
βca 0 (-0.001,0.001) 0.0004 0.0004
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Figure 24: Polio: Neural Network Output.

Table 19: Measles: relative error from LSODA generation of the learnable parameters.

(S, E, I) Error

(0.017, 0.058, 0.059)
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Figure 25: Measles: Neural Network Output.

Table 20: Measles: parameters, their values, the parameters search range that DINN was trained on, the parameters found
after training, and the relative error percentage.

Parameter Actual Value Range Parameter Found % Relative Error
µ 0.02 (0.01,0.03) 0.0225 12.704
β1 0.28 (0.27,0.37) 0.2700 3.5704
γ 100 (97,103) 97.0001 2.9999
σ 35.84 (33,37) 34.7127 3.1453

Table 21: Zika: relative error from LSODA generation of the learnable parameters.

(Sh, Ih1, Ih2,Ah,Rh, Sv,Ev, Iv, I) Error

(2.215e−06, 0.017, 0.014, 0.003, 0.024, 0.091, 0.005, 0.012, 0.018, 0.018)
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Table 22: Zika: parameters, their values, the parameters search range that DINN was trained on, the parameters found after
training, and the relative error percentage.

Parameter Actual Value Range Parameter Found % Relative Error
a 0.5 (0.49,0.51) 0.4997 0.0588
b 0.4 (0.39,0.41) 0.4033 0.8297
c 0.5 (0.49,0.51) 0.5015 0.3086
η 0.1 (0.09,0.11) 0.0999 0.0687
β 0.05 (0.0495,0.0505) 0.0498 0.4098
κ 0.6 (0.594,0.606) 0.6033 0.5486
τ 0.3 (0.27,0.33) 0.2902 3.2565
θ 18 (0.17.8,18.2) 17.9669 0.1838
m 5 (4.5,5.5) 5.2937 5.8748
Vh 1/5 (0.198,0.202) 0.1996 0.1798
Vv 10 (9.9,10.1) 10.0170 0.1700
γh1 1/5 (0.18,0.22) 0.1991 0.4651
γh2 1/64 (0.045,0.055) 0.0504 0.7261
γh 1/7 (0.139,0.141) 0.1406 1.5967
µv 1/14 (0.063,0.077) 0.0723 1.1806
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Figure 26: Zika: Neural Network Output.
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Building on a simple SIRD model for COVID-19, we used it to model eleven infectious diseases and show the simplicity,
efficacy, and generalization of DINNs in their respective applications. These diseases were modeled into various differential
equations systems with various number of learnable parameters. We found that DINNs can quite easily learn systems with a
low number of parameters and dimensions (e.g., COVID), and when the learnable parameters are known the training time can
change from 50 hours to a few minutes. Moreover, it appears as if the number of dimensions does not affect the performance
as much as the number of learnable parameters (e.g., see pneumonia vs ebola). From the anthrax model result we see that it is
far more difficult for DINNs to learn systems which have numerous quick and sharp oscillations. That being said, looking at
the polio and zika models results we can see that it is not impossible, but rather more time consuming (both in training and
hyperparameter search). Also, based on the measles, tuberculosis, and smallpox models results we can see that a low number of
sharp oscillations are relatively easy to learn.

It maybe noted that while the goal of this work was to introduce a powerful algorithm for predicting infectious diseases, the
algorithms have the potential to be applied to complex models (for example, involving spatial dependencies, using facemasks,
impact of lockdowns, etc.). Also, while DINNs presented here is shown to be robust and reliable, it can be slow to train on
particular problems and there is no known theoretical guarantee of corresponding error bounds. These will be explored in
forthcoming papers.
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